hy I'm a Neurologist, and This Is This Is the One 'Healthy' Breakfast I'll Never, Ever Eat By www.yahoo.com Published On :: 2024-11-12T15:25:00Z Full Article
hy Here are 5 signs you’re financially healthy in America even if you don't feel like it — how many do you show? By finance.yahoo.com Published On :: 2024-11-12T12:42:00Z Full Article
hy Jon Stewart Blows Up Key Theory on Why Dems Got ‘Shellacked’ By www.yahoo.com Published On :: 2024-11-12T05:05:30Z Full Article
hy I’m Retired and Regret Claiming Social Security at 70 — Here’s Why By finance.yahoo.com Published On :: 2024-11-12T14:01:02Z Full Article
hy Near-death experience inspires Benzly Hype’s album By jamaica-star.com Published On :: Tue, 12 Nov 2024 05:01:17 -0500 An out-of-body experience is the inspiration behind Benzly Hype's latest album Star Its The 7th Year. Released on November 7, the entertainer said the project was done to bring back joy in music and will leave its listeners in an upbeat mood.... Full Article
hy Bridge over troubled water - Bushy Park residents construct new walkway after floodwaters sweep away old one By jamaica-star.com Published On :: Tue, 12 Nov 2024 05:01:10 -0500 After parking his taxi cab along the sidewalk, Leon Thompson exited his vehicle and held on tightly to the tiny hands of his four small passengers. They all walked towards a makeshift bridge, and Thompson lifted each child, making four trips,... Full Article
hy Biochemical transformation of bacterial lipopolysaccharides by acyloxyacyl hydrolase reduces host injury and promotes recovery [Enzymology] By www.jbc.org Published On :: 2020-12-18T00:06:18-08:00 Animals can sense the presence of microbes in their tissues and mobilize their own defenses by recognizing and responding to conserved microbial structures (often called microbe-associated molecular patterns (MAMPs)). Successful host defenses may kill the invaders, yet the host animal may fail to restore homeostasis if the stimulatory microbial structures are not silenced. Although mice have many mechanisms for limiting their responses to lipopolysaccharide (LPS), a major Gram-negative bacterial MAMP, a highly conserved host lipase is required to extinguish LPS sensing in tissues and restore homeostasis. We review recent progress in understanding how this enzyme, acyloxyacyl hydrolase (AOAH), transforms LPS from stimulus to inhibitor, reduces tissue injury and death from infection, prevents prolonged post-infection immunosuppression, and keeps stimulatory LPS from entering the bloodstream. We also discuss how AOAH may increase sensitivity to pulmonary allergens. Better appreciation of how host enzymes modify LPS and other MAMPs may help prevent tissue injury and hasten recovery from infection. Full Article
hy Molecular architecture and domain arrangement of the placental malaria protein VAR2CSA suggests a model for carbohydrate binding [Glycobiology and Extracellular Matrices] By www.jbc.org Published On :: 2020-12-25T00:06:31-08:00 VAR2CSA is the placental-malaria–specific member of the antigenically variant Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family. It is expressed on the surface of Plasmodium falciparum-infected host red blood cells and binds to specific chondroitin-4-sulfate chains of the placental proteoglycan receptor. The functional ∼310 kDa ectodomain of VAR2CSA is a multidomain protein that requires a minimum 12-mer chondroitin-4-sulfate molecule for specific, high affinity receptor binding. However, it is not known how the individual domains are organized and interact to create the receptor-binding surface, limiting efforts to exploit its potential as an effective vaccine or drug target. Using small angle X-ray scattering and single particle reconstruction from negative-stained electron micrographs of the ectodomain and multidomain constructs, we have determined the structural architecture of VAR2CSA. The relative locations of the domains creates two distinct pores that can each accommodate the 12-mer of chondroitin-4-sulfate, suggesting a model for receptor binding. This model has important implications for understanding cytoadherence of infected red blood cells and potentially provides a starting point for developing novel strategies to prevent and/or treat placental malaria. Full Article
hy The structure of a family 110 glycoside hydrolase provides insight into the hydrolysis of {alpha}-1,3-galactosidic linkages in {lambda}-carrageenan and blood group antigens [Enzymology] By www.jbc.org Published On :: 2020-12-25T00:06:31-08:00 α-Linked galactose is a common carbohydrate motif in nature that is processed by a variety of glycoside hydrolases from different families. Terminal Galα1–3Gal motifs are found as a defining feature of different blood group and tissue antigens, as well as the building block of the marine algal galactan λ-carrageenan. The blood group B antigen and linear α-Gal epitope can be processed by glycoside hydrolases in family GH110, whereas the presence of genes encoding GH110 enzymes in polysaccharide utilization loci from marine bacteria suggests a role in processing λ-carrageenan. However, the structure–function relationships underpinning the α-1,3-galactosidase activity within family GH110 remain unknown. Here we focus on a GH110 enzyme (PdGH110B) from the carrageenolytic marine bacterium Pseudoalteromonas distincta U2A. We showed that the enzyme was active on Galα1–3Gal but not the blood group B antigen. X-ray crystal structures in complex with galactose and unhydrolyzed Galα1–3Gal revealed the parallel β-helix fold of the enzyme and the structural basis of its inverting catalytic mechanism. Moreover, an examination of the active site reveals likely adaptations that allow accommodation of fucose in blood group B active GH110 enzymes or, in the case of PdGH110, accommodation of the sulfate groups found on λ-carrageenan. Overall, this work provides insight into the first member of a predominantly marine clade of GH110 enzymes while also illuminating the structural basis of α-1,3-galactoside processing by the family as a whole. Full Article
hy Structural and biochemical characteristics of two Staphylococcus epidermidis RNase J paralogs RNase J1 and RNase J2 [Protein Structure and Folding] By www.jbc.org Published On :: 2020-12-04T00:06:06-08:00 RNase J enzymes are metallohydrolases that are involved in RNA maturation and RNA recycling, govern gene expression in bacteria, and catalyze both exonuclease and endonuclease activity. The catalytic activity of RNase J is regulated by multiple mechanisms which include oligomerization, conformational changes to aid substrate recognition, and the metal cofactor at the active site. However, little is known of how RNase J paralogs differ in expression and activity. Here we describe structural and biochemical features of two Staphylococcus epidermidis RNase J paralogs, RNase J1 and RNase J2. RNase J1 is a homodimer with exonuclease activity aided by two metal cofactors at the active site. RNase J2, on the other hand, has endonuclease activity and one metal ion at the active site and is predominantly a monomer. We note that the expression levels of these enzymes vary across Staphylococcal strains. Together, these observations suggest that multiple interacting RNase J paralogs could provide a strategy for functional improvisation utilizing differences in intracellular concentration, quaternary structure, and distinct active site architecture despite overall structural similarity. Full Article
hy {alpha}2-Macroglobulin-like protein 1 can conȷugate and inhibit proteases through their hydroxyl groups, because of an enhanced reactivity of its thiol ester [Protein Structure and Folding] By www.jbc.org Published On :: 2020-12-04T00:06:05-08:00 Proteins in the α-macroglobulin (αM) superfamily use thiol esters to form covalent conjugation products upon their proteolytic activation. αM protease inhibitors use theirs to conjugate proteases and preferentially react with primary amines (e.g. on lysine side chains), whereas those of αM complement components C3 and C4B have an increased hydroxyl reactivity that is conveyed by a conserved histidine residue and allows conjugation to cell surface glycans. Human α2-macroglobulin–like protein 1 (A2ML1) is a monomeric protease inhibitor but has the hydroxyl reactivity–conveying histidine residue. Here, we have investigated the role of hydroxyl reactivity in a protease inhibitor by comparing recombinant WT A2ML1 and the A2ML1 H1084N mutant in which this histidine is removed. Both of A2ML1s' thiol esters were reactive toward the amine substrate glycine, but only WT A2ML1 reacted with the hydroxyl substrate glycerol, demonstrating that His-1084 increases the hydroxyl reactivity of A2ML1's thiol ester. Although both A2ML1s conjugated and inhibited thermolysin, His-1084 was required for the conjugation and inhibition of acetylated thermolysin, which lacks primary amines. Using MS, we identified an ester bond formed between a thermolysin serine residue and the A2ML1 thiol ester. These results demonstrate that a histidine-enhanced hydroxyl reactivity can contribute to protease inhibition by an αM protein. His-1084 did not improve A2ML1's protease inhibition at pH 5, indicating that A2ML1's hydroxyl reactivity is not an adaption to its acidic epidermal environment. Full Article
hy The cation diffusion facilitator protein MamM's cytoplasmic domain exhibits metal-type dependent binding modes and discriminates against Mn2+ [Molecular Biophysics] By www.jbc.org Published On :: 2020-12-04T00:06:05-08:00 Cation diffusion facilitator (CDF) proteins are a conserved family of divalent transition metal cation transporters. CDF proteins are usually composed of two domains: the transmembrane domain, in which the metal cations are transported through, and a regulatory cytoplasmic C-terminal domain (CTD). Each CDF protein transports either one specific metal or multiple metals from the cytoplasm, and it is not known whether the CTD takes an active regulatory role in metal recognition and discrimination during cation transport. Here, the model CDF protein MamM, an iron transporter from magnetotactic bacteria, was used to probe the role of the CTD in metal recognition and selectivity. Using a combination of biophysical and structural approaches, the binding of different metals to MamM CTD was characterized. Results reveal that different metals bind distinctively to MamM CTD in terms of their binding sites, thermodynamics, and binding-dependent conformations, both in crystal form and in solution, which suggests a varying level of functional discrimination between CDF domains. Furthermore, these results provide the first direct evidence that CDF CTDs play a role in metal selectivity. We demonstrate that MamM's CTD can discriminate against Mn2+, supporting its postulated role in preventing magnetite formation poisoning in magnetotactic bacteria via Mn2+ incorporation. Full Article
hy A structural and kinetic survey of GH5_4 endoglucanases reveals determinants of broad substrate specificity and opportunities for biomass hydrolysis [Protein Structure and Folding] By www.jbc.org Published On :: 2020-12-18T00:06:18-08:00 Broad-specificity glycoside hydrolases (GHs) contribute to plant biomass hydrolysis by degrading a diverse range of polysaccharides, making them useful catalysts for renewable energy and biocommodity production. Discovery of new GHs with improved kinetic parameters or more tolerant substrate-binding sites could increase the efficiency of renewable bioenergy production even further. GH5 has over 50 subfamilies exhibiting selectivities for reaction with β-(1,4)–linked oligo- and polysaccharides. Among these, subfamily 4 (GH5_4) contains numerous broad-selectivity endoglucanases that hydrolyze cellulose, xyloglucan, and mixed-linkage glucans. We previously surveyed the whole subfamily and found over 100 new broad-specificity endoglucanases, although the structural origins of broad specificity remained unclear. A mechanistic understanding of GH5_4 substrate specificity would help inform the best protein design strategies and the most appropriate industrial application of broad-specificity endoglucanases. Here we report structures of 10 new GH5_4 enzymes from cellulolytic microbes and characterize their substrate selectivity using normalized reducing sugar assays and MS. We found that GH5_4 enzymes have the highest catalytic efficiency for hydrolysis of xyloglucan, glucomannan, and soluble β-glucans, with opportunistic secondary reactions on cellulose, mannan, and xylan. The positions of key aromatic residues determine the overall reaction rate and breadth of substrate tolerance, and they contribute to differences in oligosaccharide cleavage patterns. Our new composite model identifies several critical structural features that confer broad specificity and may be readily engineered into existing industrial enzymes. We demonstrate that GH5_4 endoglucanases can have broad specificity without sacrificing high activity, making them a valuable addition to the biomass deconstruction toolset. Full Article
hy Snapshots during the catalytic cycle of a histidine acid phytase reveal an induced-fit structural mechanism [Protein Structure and Folding] By www.jbc.org Published On :: 2020-12-18T00:06:18-08:00 Highly engineered phytases, which sequentially hydrolyze the hexakisphosphate ester of inositol known as phytic acid, are routinely added to the feeds of monogastric animals to improve phosphate bioavailability. New phytases are sought as starting points to further optimize the rate and extent of dephosphorylation of phytate in the animal digestive tract. Multiple inositol polyphosphate phosphatases (MINPPs) are clade 2 histidine phosphatases (HP2P) able to carry out the stepwise hydrolysis of phytate. MINPPs are not restricted by a strong positional specificity making them attractive targets for development as feed enzymes. Here, we describe the characterization of a MINPP from the Gram-positive bacterium Bifidobacterium longum (BlMINPP). BlMINPP has a typical HP2P-fold but, unusually, possesses a large α-domain polypeptide insertion relative to other MINPPs. This insertion, termed the U-loop, spans the active site and contributes to substrate specificity pockets underpopulated in other HP2Ps. Mutagenesis of U-loop residues reveals its contribution to enzyme kinetics and thermostability. Moreover, four crystal structures of the protein along the catalytic cycle capture, for the first time in an HP2P, a large ligand-driven α-domain motion essential to allow substrate access to the active site. This motion recruits residues both downstream of a molecular hinge and on the U-loop to participate in specificity subsites, and mutagenesis identified a mobile lysine residue as a key determinant of positional specificity of the enzyme. Taken together, these data provide important new insights to the factors determining stability, substrate recognition, and the structural mechanism of hydrolysis in this industrially important group of enzymes. Full Article
hy Mapping the transition state for a binding reaction between ancient intrinsically disordered proteins [Molecular Biophysics] By www.jbc.org Published On :: 2020-12-18T00:06:18-08:00 Intrinsically disordered protein domains often have multiple binding partners. It is plausible that the strength of pairing with specific partners evolves from an initial low affinity to a higher affinity. However, little is known about the molecular changes in the binding mechanism that would facilitate such a transition. We previously showed that the interaction between two intrinsically disordered domains, NCBD and CID, likely emerged in an ancestral deuterostome organism as a low-affinity interaction that subsequently evolved into a higher-affinity interaction before the radiation of modern vertebrate groups. Here we map native contacts in the transition states of the low-affinity ancestral and high-affinity human NCBD/CID interactions. We show that the coupled binding and folding mechanism is overall similar but with a higher degree of native hydrophobic contact formation in the transition state of the ancestral complex and more heterogeneous transient interactions, including electrostatic pairings, and an increased disorder for the human complex. Adaptation to new binding partners may be facilitated by this ability to exploit multiple alternative transient interactions while retaining the overall binding and folding pathway. Full Article
hy Hydrogen/deuterium exchange memory NMR reveals structural epitopes involved in IgE cross-reactivity of allergenic lipid transfer proteins [Protein Structure and Folding] By www.jbc.org Published On :: 2020-12-18T00:06:18-08:00 Identification of antibody-binding epitopes is crucial to understand immunological mechanisms. It is of particular interest for allergenic proteins with high cross-reactivity as observed in the lipid transfer protein (LTP) syndrome, which is characterized by severe allergic reactions. Art v 3, a pollen LTP from mugwort, is frequently involved in this cross-reactivity, but no antibody-binding epitopes have been determined so far. To reveal human IgE-binding regions of Art v 3, we produced three murine high-affinity mAbs, which showed 70–90% coverage of the allergenic epitopes from mugwort pollen–allergic patients. As reliable methods to determine structural epitopes with tightly interacting intact antibodies under native conditions are lacking, we developed a straightforward NMR approach termed hydrogen/deuterium exchange memory (HDXMEM). It relies on the slow exchange between the invisible antigen-mAb complex and the free 15N-labeled antigen whose 1H-15N correlations are detected. Due to a memory effect, changes of NH protection during antibody binding are measured. Differences in H/D exchange rates and analyses of mAb reactivity to homologous LTPs revealed three structural epitopes: two partially cross-reactive regions around α-helices 2 and 4 as well as a novel Art v 3–specific epitope at the C terminus. Protein variants with exchanged epitope residues confirmed the antibody-binding sites and revealed strongly reduced IgE reactivity. Using the novel HDXMEM for NMR epitope mapping allowed identification of the first structural epitopes of an allergenic pollen LTP. This knowledge enables improved cross-reactivity prediction for patients suffering from LTP allergy and facilitates design of therapeutics. Full Article
hy Seeded fibrils of the germline variant of human {lambda}-III immunoglobulin light chain FOR005 have a similar core as patient fibrils with reduced stability [Molecular Biophysics] By www.jbc.org Published On :: 2020-12-25T00:06:31-08:00 Systemic antibody light chains (AL) amyloidosis is characterized by deposition of amyloid fibrils derived from a particular antibody light chain. Cardiac involvement is a major risk factor for mortality. Using MAS solid-state NMR, we studied the fibril structure of a recombinant light chain fragment corresponding to the fibril protein from patient FOR005, together with fibrils formed by protein sequence variants that are derived from the closest germline (GL) sequence. Both analyzed fibril structures were seeded with ex-vivo amyloid fibrils purified from the explanted heart of this patient. We find that residues 11-42 and 69-102 adopt β-sheet conformation in patient protein fibrils. We identify arginine-49 as a key residue that forms a salt bridge to aspartate-25 in the patient protein fibril structure. In the germline sequence, this residue is replaced by a glycine. Fibrils from the GL protein and from the patient protein harboring the single point mutation R49G can be both heterologously seeded using patient ex-vivo fibrils. Seeded R49G fibrils show an increased heterogeneity in the C-terminal residues 80-102, which is reflected by the disappearance of all resonances of these residues. By contrast, residues 11-42 and 69-77, which are visible in the MAS solid-state NMR spectra, show 13Cα chemical shifts that are highly like patient fibrils. The mutation R49G thus induces a conformational heterogeneity at the C terminus in the fibril state, whereas the overall fibril topology is retained. These findings imply that patient mutations in FOR005 can stabilize the fibril structure. Full Article
hy Determinants of replication protein A subunit interactions revealed using a phosphomimetic peptide [Molecular Biophysics] By www.jbc.org Published On :: 2020-12-25T00:06:31-08:00 Replication protein A (RPA) is a eukaryotic ssDNA-binding protein and contains three subunits: RPA70, RPA32, and RPA14. Phosphorylation of the N-terminal region of the RPA32 subunit plays an essential role in DNA metabolism in processes such as replication and damage response. Phosphorylated RPA32 (pRPA32) binds to RPA70 and possibly regulates the transient RPA70-Bloom syndrome helicase (BLM) interaction to inhibit DNA resection. However, the structural details and determinants of the phosphorylated RPA32–RPA70 interaction are still unknown. In this study, we provide molecular details of the interaction between RPA70 and a mimic of phosphorylated RPA32 (pmRPA32) using fluorescence polarization and NMR analysis. We show that the N-terminal domain of RPA70 (RPA70N) specifically participates in pmRPA32 binding, whereas the unphosphorylated RPA32 does not bind to RPA70N. Our NMR data revealed that RPA70N binds pmRPA32 using a basic cleft region. We also show that at least 6 negatively charged residues of pmRPA32 are required for RPA70N binding. By introducing alanine mutations into hydrophobic positions of pmRPA32, we found potential points of contact between RPA70N and the N-terminal half of pmRPA32. We used this information to guide docking simulations that suggest the orientation of pmRPA32 in complex with RPA70N. Our study demonstrates detailed features of the domain-domain interaction between RPA70 and RPA32 upon phosphorylation. This result provides insight into how phosphorylation tunes transient bindings between RPA and its partners in DNA resection. Full Article
hy Structural transitions in Orb2 prion-like domain relevant for functional aggregation in memory consolidation [Molecular Biophysics] By www.jbc.org Published On :: 2020-12-25T00:06:30-08:00 The recent structural elucidation of ex vivo Drosophila Orb2 fibrils revealed a novel amyloid formed by interdigitated Gln and His residue side chains belonging to the prion-like domain. However, atomic-level details on the conformational transitions associated with memory consolidation remain unknown. Here, we have characterized the nascent conformation and dynamics of the prion-like domain (PLD) of Orb2A using a nonconventional liquid-state NMR spectroscopy strategy based on 13C detection to afford an essentially complete set of 13Cα, 13Cβ, 1Hα, and backbone 13CO and 15N assignments. At pH 4, where His residues are protonated, the PLD is disordered and flexible, except for a partially populated α-helix spanning residues 55–60, and binds RNA oligos, but not divalent cations. At pH 7, in contrast, His residues are predominantly neutral, and the Q/H segments adopt minor populations of helical structure, show decreased mobility and start to self-associate. At pH 7, the His residues do not bind RNA or Ca2+, but do bind Zn2+, which promotes further association. These findings represent a remarkable case of structural plasticity, based on which an updated model for Orb2A functional amyloidogenesis is suggested. Full Article
hy The UK’s Huawei Decision: Why the West is Losing the Tech Race By www.chathamhouse.org Published On :: Fri, 17 Jul 2020 16:36:31 +0000 17 July 2020 Dr Yu Jie Senior Research Fellow on China, Asia-Pacific Programme @yu_jiec LinkedIn Joyce Hakmeh Senior Research Fellow, International Security Programme; Co-Editor, Journal of Cyber Policy @joycehakmeh LinkedIn On 5G and the technological race, the answer is a visionary rather than a reactive approach and, so far, the West has opted for the latter. GettyImages-1140107267.jpg A pedestrian walks past a Huawei product stand at a telecommunications shop in central London on 29 April 2019. Photo: Getty Images. The UK’s decision to ban its mobile providers from buying new Huawei 5G equipment after December 2020 and removing all the company’s 5G kit from their networks by 2027 is a blow to Huawei and China, but it is one battle in a long war that the West is currently losing.5G’s significance for the next generation of technology is indisputable and so is its critical role in helping countries achieve digital transformation and economic success. Not only does it offer faster and better connection speeds and greater capacity, it also transforms the way people interact with online services. And it will allow industry to automate and optimize processes that are not possible today.Due to its transformative importance, what is in essence a technological issue has turned into a contest over global technological leadership that extends beyond the US-China rivalry and has created tensions between the US and its long-time allies. Yet 5G is just one key technology in a more expansive landscape that will underpin the future of the world’s critical infrastructure, including in areas such as quantum computing, biotechnology, artificial intelligence, the internet of things and big data.To achieve technological leadership in these domains requires governments to invest in a long-term, strategic and agile vision that is able to encompass the interdependencies between these areas and then leverage the resulting technological advances for economic progress. It also requires governments working with each other and with the private sector to support research and development and to create companies with leading-edge technologies that can compete globally.China understands this and has a national and international vision to establish itself as a technological superpower. Re-balancing from a hub of labour-intensive manufacturing to a global innovation powerhouse is the absolute priority of the ruling Chinese Communist Party.China’s state-led approachIn the earlier part of this journey, commercial espionage and IP theft of western R&D were at the heart of the Chinese way of competing. Now, Beijing is cultivating national champions that can drive China’s technological innovation, with the goal of using domestic suppliers to reduce reliance on foreign technology at home as well as extending its international outreach. In the 5G area, Beijing has introduced domestically the so-called ‘New Infrastructure Investments Fund’, which earmarks special loans to boost 5G technology applications in medical devices, electric vehicles and communication platforms. This Fund constitutes a major part of the stimulus package for China’s post-COVID economic recovery.Apart from 5G, China's recent launch of a second state-funded semiconductor development fund valued at $29 billion, following an earlier $20 billion fund for the same purpose, shows the extent to which state financial resources are being utilized in China’s quest to become technologically self-sufficient.It is too early to know if the Chinese government’s industrial policies will eventually achieve the technological self-sufficiency Beijing has long desired. But its growing national capabilities have stoked serious concerns across the West and led to the current US administration’s determined effort to dismantle Chinese high-tech companies.China’s approach to macroeconomic management diverges significantly from that of the US and other market economies, particularly in its policy towards driving innovation. Due to the legacy of a state-planned economy, China is certain that simply relying on market forces is insufficient.While Beijing financially supports government-controlled technological enterprises, Washington takes a laissez-faire, light-touch approach by the state to the business sector. The US believes that a politicized process of distributing public money is inherently susceptible to rent-seeking and corruption, and gets in the way of competitive innovation. In line with most liberal economists, many Western governments believe the government should refrain from market intervention. For its part, Beijing stresses a state-dominated economy as a necessary precondition both to the future growth of the Chinese economy and to the legitimization of one-party rule. If the pro-market economists’ view is correct, the US should have little to fear from Chinese industrial innovation policy in the long-term. Let Beijing waste money and distort resource allocation, while Washington follows its private sector-led principles, confident that this approach will produce a more competitive economy in the long run.Using the leverage of technical standardsBut one area that should concern the US and that illustrates the Chinese vision for global technological dominance is technical standard setting. Technical standards determine how technologies work with each other, enabling their interoperability around the world, meaning they can function irrespective of where they are being used.The Chinese leadership has long understood the relationship between technical standards and economic power. Standards help to monetize technological innovation and research and can help shape new technologies. China has therefore been playing an increasingly active role in international standards organizations to legitimize Chinese technologies, whereas the US, which historically has been highly influential in this area, has not been participating as much or as effectively.China has also been using its Belt and Road Initiative (BRI) as an opportunity to internationalize the distribution of its standards to countries signed up to the BRI. The so-called Digital Silk Road, which has been described as China’s most important global governance initiative, acts as a route to accelerate this process. Later this year, China is expected to launch its new ‘China Standards 2035’ plan, which aims to shape how the next generation of technologies will work together.China’s preferred model and its recent actions have given Western leaders much to worry about. But standing up to China’s growing global influence in high technology and re-establishing the West’s desired technological edge will take much more than achieving a common front on excluding China from their 5G networks. It requires a long-term vision built on the power of competitive markets, backed by solid investment in the next generation of technology. This will require, in turn, much greater cooperation between Western governments and between them and their private sectors.And, whilst recent protective steps taken in Washington and other Western capitals may slow down China’s trailblazing in the technology sphere, it will only hasten China's determination to become tech self-sufficient in the long term. This will increase the probability of a splintered internet, which will have negative repercussions for all. Full Article
hy Why the Corrupt President of Belarus Deserves Sanctions By www.chathamhouse.org Published On :: Mon, 10 Aug 2020 19:31:05 +0000 10 August 2020 Ryhor Astapenia Robert Bosch Stiftung Academy Fellow, Russia and Eurasia Programme @ryhorastapenia LinkedIn Sanctions would be a wake-up call for those who oversaw this brutal and dirty election campaign. 2020-08-10-Belarus-Protest-Election People protest at a rally of solidarity with political prisoners in Belarus. Photo by Beata Zawrzel/NurPhoto via Getty Images. Belarusian president Aliaksandr Lukashenka deserves sanctions. This election campaign in Belarus, which culminated in a vote on Sunday is the most brutal and dirty in its history. But, so far, the EU, the UK and the US have only issued familiar-sounding and futile appeals to the Belarusian authorities condemning their actions. Not imposing sanctions is a de facto licence to continue with repression.Despite all this, the West is unlikely to impose significant sanctions afterwards. There are several questionable reasons for this. First, Western policymakers fear sanctions against Lukashenko will make him more likely to genuflect to Russia. However, relations with Russia have already deteriorated as Belarus accuses Russia of trying to interfere with its domestic affairs.Sanctions serve as a wake-up call. The Belarusian authorities then might seek - once again - to repair relations with the West and reduce repression for greater assistance in any direct confrontation with Russia.Second, the West is reluctant to implement sanctions because it has already invested somewhat in warming relations with Belarusian authorities. Punishing Lukashenko could mean burying the - admittedly modest - achievements of a Belarus-West dialogue that started in 2014 after the conflict in Ukraine began.Even US secretary of state Mike Pompeo met with Lukashenko in Minsk this year, after which Belarus replaced a small but symbolic amount of Russian oil for American. All the same, the West has its conscience to answer to if dialogue is won but repressions continue.The third reason why the West may not resort to targeted economic sanctions and visa restrictions is a latent concern whether such measures have any effect on democratization processes at all. They may be appropriate punishment, but there is little evidence they ever change the nature of a regime.According to this logic, if the West imposes sanctions, the Belarusian authorities will continue to crack down with repression because they will have nothing to lose. That said, in previous years, the Belarusian authorities have released political prisoners in response to sticks and carrots brandished by the West. If Belarusian political prisoners did not have a price tag, the authorities would most likely keep everyone in jail.To be fair, there are reasonable arguments in favour of and against sanctions. But if the West fails to impose them - be it through lack of political will or out of genuine concern about their effectiveness - at least it should focus on helping ordinary Belarusians withstand Lukashenko’s repressions. After the vote, arrested and jailed Belarusian citizens might lack money for lawyers and arbitrarily imposed fines.If repression spreads further, independent media and human rights organizations will need funds to keep their structures running in the heat of the crackdown. Many entrepreneurs might lose their companies for openly supporting free elections. Thus, if the West will not sanction Lukashenko, it should at least show solidarity with these Belarusians in peril.This article was originally published in The Telegraph. Full Article
hy Why the Mali Coup Should Matter to the UK By www.chathamhouse.org Published On :: Thu, 20 Aug 2020 09:24:41 +0000 20 August 2020 Dr Alex Vines OBE Managing Director, Ethics, Risk & Resilience; Director, Africa Programme This coup was not unexpected as it followed months of mass protests against alleged corruption, a worsening economy and disputed elections. 2020-08-20-Mali-Coup-Military Press conference in Kati after the military arrested Malian president Ibrahim Boubacar Keita and he officially resigned. Photo by ANNIE RISEMBERG / AFP via Getty Images. The coup in Mali is not a putsch by disgruntled soldiers in a distant land. It is an extended European neighbourhood and matters to Britain. The UK already has three Chinook helicopters deployed in country and 250 British troops are scheduled to take up UN peacekeeping duties in December in what could be the ministry of defence’s most dangerous deployment since Afghanistan.This coup was not unexpected as it followed months of mass protests against alleged corruption, a worsening economy, disputed legislative election results and deteriorating security in this West African country. Mali’s military is struggling to stop the insurgents, some of them now also affiliated with the ISIL (ISIS) armed group, despite UN, EU, French and regional military support.The departure of Mali's President Ibrahim Boubacar Keita was met with jubilation by anti-government demonstrators in Bamako and the leaders of the military coup say they would enact a political transition and stage elections within a 'reasonable time'.Coups, followed by transitional arrangements and then new elections, are not rare in this region and have happened before in Mali when Keita’s predecessor Amadou Toumani Toure was overthrown by the military in 2012. The current cycle of insecurity followed despite a significant military intervention by France to restore elected government and stop the spread of Islamic extremist insurgency.This is a reminder of how fragile the Sahel regon is and the importance of seeking stability and state building in a region of spreading Islamic extremist insurgency and rapidly-eroding state legitimacy.The regional bloc ECOWAS (Economic Community of West African States) has denounced the coup and ordered the closing of regional borders with Mali as well as the suspension of all financial flows between Mali and its 15 members states. What follows now will be negotiations over the transitional arrangements and the timetable for new elections.This will not be straightforward. Although the opposition was united in their demand for Keita's resignation there is little consensus on what to do next, while the UN Security Council and ECOWAS are divided on how to respond beyond initial condemnation.It is urgent that three UK cabinet ministers, led by the first secretary of state Dominic Raab, who are currently reviewing the UK’s Sahel strategy complete this and decide upon its future direction.The UK government needs crystal clarity on its Mali objectives as the clock ticks down to the deployment of British troops there. Increasingly this UN duty looks to become more peacemaking than peacekeeping.This article was originally published in The Telegraph. Full Article
hy The glucose-sensing transcription factor ChREBP is targeted by proline hydroxylation [Metabolism] By www.jbc.org Published On :: 2020-12-11T00:06:20-08:00 Cellular energy demands are met by uptake and metabolism of nutrients like glucose. The principal transcriptional regulator for adapting glycolytic flux and downstream pathways like de novo lipogenesis to glucose availability in many cell types is carbohydrate response element–binding protein (ChREBP). ChREBP is activated by glucose metabolites and post-translational modifications, inducing nuclear accumulation and regulation of target genes. Here we report that ChREBP is modified by proline hydroxylation at several residues. Proline hydroxylation targets both ectopically expressed ChREBP in cells and endogenous ChREBP in mouse liver. Functionally, we found that specific hydroxylated prolines were dispensable for protein stability but required for the adequate activation of ChREBP upon exposure to high glucose. Accordingly, ChREBP target gene expression was rescued by re-expressing WT but not ChREBP that lacks hydroxylated prolines in ChREBP-deleted hepatocytes. Thus, proline hydroxylation of ChREBP is a novel post-translational modification that may allow for therapeutic interference in metabolic diseases. Full Article
hy Methylarginine metabolites are associated with attenuated muscle protein synthesis in cancer-associated muscle wasting [Protein Synthesis and Degradation] By www.jbc.org Published On :: 2020-12-18T00:06:18-08:00 Cancer cachexia is characterized by reductions in peripheral lean muscle mass. Prior studies have primarily focused on increased protein breakdown as the driver of cancer-associated muscle wasting. Therapeutic interventions targeting catabolic pathways have, however, largely failed to preserve muscle mass in cachexia, suggesting that other mechanisms might be involved. In pursuit of novel pathways, we used untargeted metabolomics to search for metabolite signatures that may be linked with muscle atrophy. We injected 7-week–old C57/BL6 mice with LLC1 tumor cells or vehicle. After 21 days, tumor-bearing mice exhibited reduced body and muscle mass and impaired grip strength compared with controls, which was accompanied by lower synthesis rates of mixed muscle protein and the myofibrillar and sarcoplasmic muscle fractions. Reductions in protein synthesis were accompanied by mitochondrial enlargement and reduced coupling efficiency in tumor-bearing mice. To generate mechanistic insights into impaired protein synthesis, we performed untargeted metabolomic analyses of plasma and muscle and found increased concentrations of two methylarginines, asymmetric dimethylarginine (ADMA) and NG-monomethyl-l-arginine, in tumor-bearing mice compared with control mice. Compared with healthy controls, human cancer patients were also found to have higher levels of ADMA in the skeletal muscle. Treatment of C2C12 myotubes with ADMA impaired protein synthesis and reduced mitochondrial protein quality. These results suggest that increased levels of ADMA and mitochondrial changes may contribute to impaired muscle protein synthesis in cancer cachexia and could point to novel therapeutic targets by which to mitigate cancer cachexia. Full Article
hy Ascertaining the biochemical function of an essential pectin methylesterase in the gut microbe Bacteroides thetaiotaomicron [Metabolism] By www.jbc.org Published On :: 2020-12-25T00:06:31-08:00 Pectins are a major dietary nutrient source for the human gut microbiota. The prominent gut microbe Bacteroides thetaiotaomicron was recently shown to encode the founding member (BT1017) of a new family of pectin methylesterases essential for the metabolism of the complex pectin rhamnogalacturonan-II (RG-II). However, biochemical and structural knowledge of this family is lacking. Here, we showed that BT1017 is critical for the metabolism of an RG-II–derived oligosaccharide ΔBT1017oligoB generated by a BT1017 deletion mutant (ΔBT1017) during growth on carbohydrate extract from apple juice. Structural analyses of ΔBT1017oligoB using a combination of enzymatic, mass spectrometric, and NMR approaches revealed that it is a bimethylated nonaoligosaccharide (GlcA-β1,4-(2-O-Me-Xyl-α1,3)-Fuc-α1,4-(GalA-β1,3)-Rha-α1,3-Api-β1,2-(Araf-α1,3)-(GalA-α1,4)-GalA) containing components of the RG-II backbone and its side chains. We showed that the catalytic module of BT1017 adopts an α/β-hydrolase fold, consisting of a central twisted 10-stranded β-sheet sandwiched by several α-helices. This constitutes a new fold for pectin methylesterases, which are predominantly right-handed β-helical proteins. Bioinformatic analyses revealed that the family is dominated by sequences from prominent genera of the human gut microbiota, including Bacteroides and Prevotella. Our re-sults not only highlight the critical role played by this family of enzymes in pectin metabolism but also provide new insights into the molecular basis of the adaptation of B. thetaiotaomicron to the human gut. Full Article
hy Methylated PP2A stabilizes Gcn4 to enable a methionine-induced anabolic program [Metabolism] By www.jbc.org Published On :: 2020-12-25T00:06:31-08:00 Methionine, through S-adenosylmethionine, activates a multifaceted growth program in which ribosome biogenesis, carbon metabolism, and amino acid and nucleotide biosynthesis are induced. This growth program requires the activity of the Gcn4 transcription factor (called ATF4 in mammals), which facilitates the supply of metabolic precursors that are essential for anabolism. However, how Gcn4 itself is regulated in the presence of methionine is unknown. Here, we discover that Gcn4 protein levels are increased by methionine, despite conditions of high cell growth and translation (in which the roles of Gcn4 are not well-studied). We demonstrate that this mechanism of Gcn4 induction is independent of transcription, as well as the conventional Gcn2/eIF2α-mediated increased translation of Gcn4. Instead, when methionine is abundant, Gcn4 phosphorylation is decreased, which reduces its ubiquitination and therefore degradation. Gcn4 is dephosphorylated by the protein phosphatase 2A (PP2A); our data show that when methionine is abundant, the conserved methyltransferase Ppm1 methylates and alters the activity of the catalytic subunit of PP2A, shifting the balance of Gcn4 toward a dephosphorylated, stable state. The absence of Ppm1 or the loss of the PP2A methylation destabilizes Gcn4 even when methionine is abundant, leading to collapse of the Gcn4-dependent anabolic program. These findings reveal a novel, methionine-dependent signaling and regulatory axis. Here methionine directs the conserved methyltransferase Ppm1 via its target phosphatase PP2A to selectively stabilize Gcn4. Through this, cells conditionally modify a major phosphatase to stabilize a metabolic master regulator and drive anabolism. Full Article
hy Serum lipoprotein-derived fatty acids regulate hypoxia-inducible factor [Metabolism] By www.jbc.org Published On :: 2020-12-25T00:06:31-08:00 Oxygen regulates hypoxia-inducible factor (HIF) transcription factors to control cell metabolism, erythrogenesis, and angiogenesis. Whereas much has been elucidated about how oxygen regulates HIF, whether lipids affect HIF activity is un-known. Here, using cultured cells and two animal models, we demonstrate that lipoprotein-derived fatty acids are an independent regulator of HIF. Decreasing extracellular lipid supply inhibited HIF prolyl hydroxylation, leading to accumulation of the HIFα subunit of these heterodimeric transcription factors comparable with hypoxia with activation of downstream target genes. The addition of fatty acids to culture medium suppressed this signal, which required an intact mitochondrial respiratory chain. Mechanistically, fatty acids and oxygen are distinct signals integrated to control HIF activity. Finally, we observed lipid signaling to HIF and changes in target gene expression in developing zebrafish and adult mice, and this pathway operates in cancer cells from a range of tissues. This study identifies fatty acids as a physiological modulator of HIF, defining a mechanism for lipoprotein regulation that functions in parallel to oxygen. Full Article
hy Why Ethiopia must close its political gender gap By www.chathamhouse.org Published On :: Fri, 29 Jul 2022 18:40:47 +0000 Why Ethiopia must close its political gender gap The World Today mhiggins.drupal 29 July 2022 Women urgently need to gain access to high office if the country hopes to survive, say Hilina Berhanu Degefa and Emebet Getachew. At the end of 2021, Prime Minister Abiy Ahmed’s government announced the formation of a three-year national dialogue to address Ethiopia’s political crisis, looking at the ongoing civil war and conflict, inflation, unemployment, drought and other urgent domestic issues. But, while efforts have been made to ensure the participation of women in this dialogue, it must be more than symbolic otherwise gaps in meaningful gender inclusion could have significant implications on the very survival of the country. One of the challenges for meaningful inclusion is that Ethiopia is a highly patriarchal society. Patriarchal norms and practices permeate all aspects of the country’s social, economic and political life. Women constitute over half of the Ethiopian population and represent 41 per cent of the national parliament. Nevertheless, most political parties, including those with liberal credentials, are exclusively governed by men, with women taking almost no part in key decision-making processes. As a result, women are relegated to the margins of political and economic activities. Prime Minister Abiy Ahmed won praise for appointing a gender-balanced cabinet in 2018. By 2021, women accounted for just 36 per cent of positions Though there has been little systematic study of the structural challenges faced by Ethiopian women in politics, women members of political parties encounter many barriers, including political violence, male-coded norms and sexist discourses across Ethiopian society. The nature and scale of political violence perpetrated against women is particularly disempowering and affects their ability to participate in political spaces. While attitudes to gender equality, sexual violence and gender discrimination are often trivialized, they remain ever-present threats in women’s lives. As late as 2016, a significant minority of men still believed wife-beating to be justified in certain situations. Even when women overcome social pressure to pursue their political ambitions, patriarchal views and practices within political party structures about the role of women significantly undermine their active participation and engagement. The political space is even more inaccessible to women with disabilities and in conflict and climate-related crises such as among internally displaced people and in pastoral communities. Male-coded norms ingrained at both party and community levels remain a significant concern. Specifically, sex in exchange for candidacy, inconsiderate working schedules affecting women with children and denial of access to equal information and financial resources are frequently reported as major internal hurdles among political parties. Closing the gender gap could offer Ethiopia a new beginning Many political initiatives designed to tackle these gender imbalances often have been driven by short-term political considerations without proper gender-gap assessment and policy analysis. In most cases, the authorities have viewed gender-targeted reforms as acts of benevolence, dispensed by the government, without adopting the legal and financial measures necessary to ensure sustainability and impact. Take, for example, Abiy’s appointment of a 50:50 gender-balanced cabinet in 2018. At the time, much was made about its transformative potential, with the prime minister attracting widespread global approval. Yet, a cabinet reshuffle in 2021 reduced female representation to 36.3 per cent, with far less scrutiny or accountability. The proposed national dialogue presents an ideal opportunity for Ethiopian women to begin reshaping attitudes This indicates that gender equality in Ethiopia is not considered a priority but rather an endeavour for more opportune, ‘stable’ times. Without thorough measures that create the conditions for real change, the aspiration of having a gender-balanced cabinet will always be challenging to translate into lasting equal representation. The proposed national dialogue presents an ideal opportunity for Ethiopian women to begin reshaping attitudes and closing the gender gap through their inclusion and participation in the political process. To do so, three issues must be addressed. First, the varying rights of women need to be consolidated, including on identity, constitutional reform and economic issues . Second, gender equality considerations must be absorbed into mainstream political discourse at all levels. Third, the experiences of women in the recent war, other ongoing conflicts and past and lingering legacies of political violence targeting women from specific communities, must be acknowledged and remedied. If Ethiopia is indeed serious about addressing its asymmetric gender power dynamics, this national dialogue provides an excellent opportunity to begin the process. Genuine participation of women as independent actors, with their own agency, could offer Ethiopia a new beginning. Full Article
hy Why Africa needs to be in space By www.chathamhouse.org Published On :: Mon, 01 Aug 2022 07:40:43 +0000 Why Africa needs to be in space The World Today mhiggins.drupal 1 August 2022 From agriculture and navigation to banking and tele-education, satellite technology can have a huge impact on rapidly developing societies, says Val Munsami. Africa’s socio-economic and environmental development is widely acknowledged as being crucial to its growth and long-term sustainability – and the prosperity of its more than one billion residents. Increasingly, though, attention is also turning to the contribution that the space industry can make to progress on the continent. Space-based products and services have a critical role to play in meeting national and continental priorities, as underpinned by the UN’s Sustainable Development Goals and the African Union’s Agenda 2063 – the bloc’s strategic framework for development, democracy and peace. With this in the mind of policymakers, the African Union’s space policy and strategy is embedded in Agenda 2063 as one of its 15 key programmes. It guides the sector’s development and the nascent African Space Agency, to become operational later this year from its headquarters in Egypt. The continental agency is expected to leverage the benefits of space science and technology for socio-economic and environmental development. It will lead on bridging the space divide, especially for those countries that do not have a focus on, or activities in, space science and technology – and simultaneously inject some momentum into improving capabilities of existing national space programmes. The African Union’s commitment to space has accelerated the growth of the African space industry. More than 20 national space agencies or space-related institutions have been established on the continent over the past five or so years. Our modern lifestyles are intimately dependent on space products and services. Meteorological and communication satellites are placed in geostationary orbits at an altitude of 36,000km above the equator. At this point above the Earth, they complete one orbit every 24 hours in the direction of the planet’s rotation, appearing, essentially, motionless – and providing a constant gaze on the same geographic location. They provide a wealth of information that fuels the everyday services we take for granted, but that are essential for our everyday lives, from health to education to the economy. From their vantage point, geostationary orbit satellites provide our daily weather reports, monitor climate-related cycles and offer a platform for near-instantaneous communications across the globe to relay multimedia, live sporting events and up-to-the-minute global news. This lightning-fast communication is also indispensable for tele-education and tele-medicine, by which professionals in urban areas can deliver educational content and health services to rural schools and clinics, respectively. Banking transactions also rely on telecommunication satellites to communicate between an automated teller machine and the data servers located at the bank. How satellites can detect disease Other satellites are placed in low Earth orbits. These complete on average one polar orbit around the Earth every 100 minutes. Because the planet rotates across the plane of the orbit, such a satellite eventually covers the whole Earth, which is immensely useful for remote sensing and navigation and positioning applications. Remote sensing applications provide a myriad of products and services, including monitoring the state of our natural resources, observing ship traffic in our coastal economic zones and providing information for precision farming that can help a farmer decide, for example, when to irrigate and how much fertilizer to use. They can also detect changes that might indicate encroaching water-borne diseases, aid peacekeeping missions and help ensure public safety and security. Navigation applications are vital for aviation and marine navigation, whereas positioning applications are important for safety-of-life services. The rich source of information derived from satellites is vital for evidence-based decision and policymaking Another way that positioning applications in developing countries are put to good use is the assignment of geolocation addresses to dwellings in informal settlements where postbox addresses do not exist. This then allows the overlaying of key vector data about populations on to geophysical base maps. This type of data is vital for town planning in terms of how many schools and clinics are needed to serve the population, and the extent of the road, water, sanitation and electrical infrastructure needed. The rich source of information derived from satellites, overlaid with in-situ data, is vital for evidence-based decision and policymaking. Datasets accessed from historical archives can be used to observe the time evolution of environmental and statistical data. When policy decisions are taken, we can utilize the same satellite and in-situ platforms to monitor progress after their implementation. The utility of data to inform decision-making is being enhanced through the adoption of AI and big-data analytics, which is placing key information at our disposal in near real time. It is therefore not surprising to notice the increasing focus on space science and technology activities on the continent. However, to ensure the effective uptake and utilization of space products and services, certain building blocks are needed to establish robust national and regional space ecosystems. Africa’s route into space These ecosystems must include four primary elements to function: the human capital required to establish and operate the space initiatives; a significant industry base to capitalize on the commercial aspects of the space sector; the requisite infrastructure needed to support the space value chain; and international cooperation to ensure knowledge transfer and diffusion – so that we don’t have to reinvent the wheel. To take advantage of the space ecosystem, Africa needs strong governance and institutional architectures The applications and problem-solving innovations provided by space products and services are endless. To take advantage of this, Africa needs strong governance and institutional architectures. The evolution of the space ecosystem on the continent must be premised on key instruments such as a space policy – which areas to focus on and why – and a space strategy that outlines which programmes and performance indicators to pursue. The conceptualization of a space ecosystem is by no means a simple endeavour and there is certainly a dearth of skills and experience on the African continent to establish effective and relevant space ecosystems. There are many institutions leading efforts to build space capacity and skills on the continent, such as the International Space University in France, which offers programmes that provide a holistic overview of the complex global space sector, and the African Space Leadership Institute, which has been recently created to develop capacity in space policy, law and strategy. With the right approach, commitment and investment, Africa can rapidly change the fate of its citizens by effectively using space science and technology to support and drive its developmental agenda. Full Article
hy Comparison Between Brain and Cerebellar Autoradiography Using [18F]Flortaucipir, [18F]MK6240, and [18F]PI2620 in Postmortem Human Brain Tissue By jnm.snmjournals.org Published On :: 2024-10-30T08:04:16-07:00 Visual Abstract Full Article
hy Global lysine acetylation and 2-hydroxyisobutyrylation reveal the metabolism conversion mechanism in Giardia lamblia By www.mcponline.org Published On :: 2020-12-29 Wenhe ZhuDec 29, 2020; 0:RA120.002353v1-mcp.RA120.002353Research Full Article
hy Separation and identification of permethylated glycan isomers by reversed phase nanoLC-NSI-MS By www.mcponline.org Published On :: 2020-12-29 Simone KurzDec 29, 2020; 0:RA120.002266v1-mcp.RA120.002266Research Full Article
hy Identification of Microorganisms by Liquid Chromatography-Mass Spectrometry (LC-MS1) and in Silico Peptide Mass Libraries By www.mcponline.org Published On :: 2020-12-01 Peter LaschDec 1, 2020; 19:2125-2138Technological Innovation and Resources Full Article
hy In depth characterization of the Staphylococcus aureus phosphoproteome reveals new targets of Stk1 By www.mcponline.org Published On :: 2020-12-17 Nadine PrustDec 17, 2020; 0:RA120.002232v1-mcp.RA120.002232Research Full Article
hy Thyroglobulin interactome profiling defines altered proteostasis topology associated with thyroid dyshormonogenesis By www.mcponline.org Published On :: 2020-11-18 Madison T WrightNov 18, 2020; 0:RA120.002168v1-mcp.RA120.002168Research Full Article
hy Imaging Mass Spectrometry and Lectin Analysis of N-linked Glycans in Carbohydrate Antigen Defined Pancreatic Cancer Tissues By www.mcponline.org Published On :: 2020-11-24 Colin T. McDowellNov 24, 2020; 0:RA120.002256v1-mcp.RA120.002256Research Full Article
hy Mutation-independent Proteomic Signatures of Pathological Progression in Murine Models of Duchenne Muscular Dystrophy By www.mcponline.org Published On :: 2020-12-01 Tirsa L. E. van WesteringDec 1, 2020; 19:2047-2067Research Full Article
hy Pluripotency of embryonic stem cells lacking clathrin-mediated endocytosis cannot be rescued by restoring cellular stiffness [Molecular Biophysics] By www.jbc.org Published On :: 2020-12-04T00:06:06-08:00 Mouse embryonic stem cells (mESCs) display unique mechanical properties, including low cellular stiffness in contrast to differentiated cells, which are stiffer. We have previously shown that mESCs lacking the clathrin heavy chain (Cltc), an essential component for clathrin-mediated endocytosis (CME), display a loss of pluripotency and an enhanced expression of differentiation markers. However, it is not known whether physical properties such as cellular stiffness also change upon loss of Cltc, similar to what is seen in differentiated cells, and if so, how these altered properties specifically impact pluripotency. Using atomic force microscopy (AFM), we demonstrate that mESCs lacking Cltc display higher Young's modulus, indicative of greater cellular stiffness, compared with WT mESCs. The increase in stiffness was accompanied by the presence of actin stress fibers and accumulation of the inactive, phosphorylated, actin-binding protein cofilin. Treatment of Cltc knockdown mESCs with actin polymerization inhibitors resulted in a decrease in the Young's modulus to values similar to those obtained with WT mESCs. However, a rescue in the expression profile of pluripotency factors was not obtained. Additionally, whereas WT mouse embryonic fibroblasts could be reprogrammed to a state of pluripotency, this was inhibited in the absence of Cltc. This indicates that the presence of active CME is essential for the pluripotency of embryonic stem cells. Additionally, whereas physical properties may serve as a simple readout of the cellular state, they may not always faithfully recapitulate the underlying molecular fate. Full Article
hy Angiostatic cues from the matrix: Endothelial cell autophagy meets hyaluronan biology [Glycobiology and Extracellular Matrices] By www.jbc.org Published On :: 2020-12-04T00:06:06-08:00 The extracellular matrix encompasses a reservoir of bioactive macromolecules that modulates a cornucopia of biological functions. A prominent body of work posits matrix constituents as master regulators of autophagy and angiogenesis and provides molecular insight into how these two processes are coordinated. Here, we review current understanding of the molecular mechanisms underlying hyaluronan and HAS2 regulation and the role of soluble proteoglycan in affecting autophagy and angiogenesis. Specifically, we assess the role of proteoglycan-evoked autophagy in regulating angiogenesis via the HAS2-hyaluronan axis and ATG9A, a novel HAS2 binding partner. We discuss extracellular hyaluronan biology and the post-transcriptional and post-translational modifications that regulate its main synthesizer, HAS2. We highlight the emerging group of proteoglycans that utilize outside-in signaling to modulate autophagy and angiogenesis in cancer microenvironments and thoroughly review the most up-to-date understanding of endorepellin signaling in vascular endothelia, providing insight into the temporal complexities involved. Full Article
hy Site-specific contacts enable distinct modes of TRPV1 regulation by the potassium channel Kv{beta}1 subunit [Molecular Biophysics] By www.jbc.org Published On :: 2020-12-11T00:06:21-08:00 Transient receptor potential vanilloid 1 (TRPV1) channel is a multimodal receptor that is responsible for nociceptive, thermal, and mechanical sensations. However, which biomolecular partners specifically interact with TRPV1 remains to be elucidated. Here, we used cDNA library screening of genes from mouse dorsal root ganglia combined with patch-clamp electrophysiology to identify the voltage-gated potassium channel auxiliary subunit Kvβ1 physically interacting with TRPV1 channel and regulating its function. The interaction was validated in situ using endogenous dorsal root ganglia neurons, as well as a recombinant expression model in HEK 293T cells. The presence of Kvβ1 enhanced the expression stability of TRPV1 channels on the plasma membrane and the nociceptive current density. Surprisingly, Kvβ1 interaction also shifted the temperature threshold for TRPV1 thermal activation. Using site-specific mapping, we further revealed that Kvβ1 interacted with the membrane-distal domain and membrane-proximal domain of TRPV1 to regulate its membrane expression and temperature-activation threshold, respectively. Our data therefore suggest that Kvβ1 is a key element in the TRPV1 signaling complex and exerts dual regulatory effects in a site-specific manner. Full Article
hy GUCY2D mutations in retinal guanylyl cyclase 1 provide biochemical reasons for dominant cone-rod dystrophy but not for stationary night blindness [Cell Biology] By www.jbc.org Published On :: 2020-12-25T00:06:31-08:00 Mutations in the GUCY2D gene coding for the dimeric human retinal membrane guanylyl cyclase (RetGC) isozyme RetGC1 cause various forms of blindness, ranging from rod dysfunction to rod and cone degeneration. We tested how the mutations causing recessive congenital stationary night blindness (CSNB), recessive Leber's congenital amaurosis (LCA1), and dominant cone–rod dystrophy-6 (CORD6) affected RetGC1 activity and regulation by RetGC-activating proteins (GCAPs) and retinal degeneration-3 protein (RD3). CSNB mutations R666W, R761W, and L911F, as well as LCA1 mutations R768W and G982VfsX39, disabled RetGC1 activation by human GCAP1, -2, and -3. The R666W and R761W substitutions compromised binding of GCAP1 with RetGC1 in HEK293 cells. In contrast, G982VfsX39 and L911F RetGC1 retained the ability to bind GCAP1 in cyto but failed to effectively bind RD3. R768W RetGC1 did not bind either GCAP1 or RD3. The co-expression of GUCY2D allelic combinations linked to CSNB did not restore RetGC1 activity in vitro. The CORD6 mutation R838S in the RetGC1 dimerization domain strongly dominated the Ca2+ sensitivity of cyclase regulation by GCAP1 in RetGC1 heterodimer produced by co-expression of WT and the R838S subunits. It required higher Ca2+ concentrations to decelerate GCAP-activated RetGC1 heterodimer—6-fold higher than WT and 2-fold higher than the Ser838-harboring homodimer. The heterodimer was also more resistant than homodimers to inhibition by RD3. The observed biochemical changes can explain the dominant CORD6 blindness and recessive LCA1 blindness, both of which affect rods and cones, but they cannot explain the selective loss of rod function in recessive CSNB. Full Article
hy NSun2 promotes cell migration through methylating autotaxin mRNA [Cell Biology] By www.jbc.org Published On :: 2020-12-25T00:06:30-08:00 NSun2 is an RNA methyltransferase introducing 5-methylcytosine into tRNAs, mRNAs, and noncoding RNAs, thereby influencing the levels or function of these RNAs. Autotaxin (ATX) is a secreted glycoprotein and is recognized as a key factor in converting lysophosphatidylcholine into lysophosphatidic acid (LPA). The ATX-LPA axis exerts multiple biological effects in cell survival, migration, proliferation, and differentiation. Here, we show that NSun2 is involved in the regulation of cell migration through methylating ATX mRNA. In the human glioma cell line U87, knockdown of NSun2 decreased ATX protein levels, whereas overexpression of NSun2 elevated ATX protein levels. However, neither overexpression nor knockdown of NSun2 altered ATX mRNA levels. Further studies revealed that NSun2 methylated the 3'-UTR of ATX mRNA at cytosine 2756 in vitro and in vivo. Methylation by NSun2 enhanced ATX mRNA translation. In addition, NSun2-mediated 5-methylcytosine methylation promoted the export of ATX mRNA from nucleus to cytoplasm in an ALYREF-dependent manner. Knockdown of NSun2 suppressed the migration of U87 cells, which was rescued by the addition of LPA. In summary, we identify NSun2-mediated methylation of ATX mRNA as a novel mechanism in the regulation of ATX. Full Article
hy Exploitation of dihydroorotate dehydrogenase (DHODH) and p53 activation as therapeutic targets: A case study in polypharmacology [Computational Biology] By www.jbc.org Published On :: 2020-12-25T00:06:30-08:00 The tenovins are a frequently studied class of compounds capable of inhibiting sirtuin activity, which is thought to result in increased acetylation and protection of the tumor suppressor p53 from degradation. However, as we and other laboratories have shown previously, certain tenovins are also capable of inhibiting autophagic flux, demonstrating the ability of these compounds to engage with more than one target. In this study, we present two additional mechanisms by which tenovins are able to activate p53 and kill tumor cells in culture. These mechanisms are the inhibition of a key enzyme of the de novo pyrimidine synthesis pathway, dihydroorotate dehydrogenase (DHODH), and the blockage of uridine transport into cells. These findings hold a 3-fold significance: first, we demonstrate that tenovins, and perhaps other compounds that activate p53, may activate p53 by more than one mechanism; second, that work previously conducted with certain tenovins as SirT1 inhibitors should additionally be viewed through the lens of DHODH inhibition as this is a major contributor to the mechanism of action of the most widely used tenovins; and finally, that small changes in the structure of a small molecule can lead to a dramatic change in the target profile of the molecule even when the phenotypic readout remains static. Full Article
hy A kinetic dissection of the fast and superprocessive kinesin-3 KIF1A reveals a predominant one-head-bound state during its chemomechanical cycle [Molecular Biophysics] By www.jbc.org Published On :: 2020-12-25T00:06:30-08:00 The kinesin-3 family contains the fastest and most processive motors of the three neuronal transport kinesin families, yet the sequence of states and rates of kinetic transitions that comprise the chemomechanical cycle and give rise to their unique properties are poorly understood. We used stopped-flow fluorescence spectroscopy and single-molecule motility assays to delineate the chemomechanical cycle of the kinesin-3, KIF1A. Our bacterially expressed KIF1A construct, dimerized via a kinesin-1 coiled-coil, exhibits fast velocity and superprocessivity behavior similar to WT KIF1A. We established that the KIF1A forward step is triggered by hydrolysis of ATP and not by ATP binding, meaning that KIF1A follows the same chemomechanical cycle as established for kinesin-1 and -2. The ATP-triggered half-site release rate of KIF1A was similar to the stepping rate, indicating that during stepping, rear-head detachment is an order of magnitude faster than in kinesin-1 and kinesin-2. Thus, KIF1A spends the majority of its hydrolysis cycle in a one-head-bound state. Both the ADP off-rate and the ATP on-rate at physiological ATP concentration were fast, eliminating these steps as possible rate-limiting transitions. Based on the measured run length and the relatively slow off-rate in ADP, we conclude that attachment of the tethered head is the rate-limiting transition in the KIF1A stepping cycle. Thus, KIF1A's activity can be explained by a fast rear-head detachment rate, a rate-limiting step of tethered-head attachment that follows ATP hydrolysis, and a relatively strong electrostatic interaction with the microtubule in the weakly bound post-hydrolysis state. Full Article
hy Sterol regulatory element-binding protein Sre1 regulates carotenogenesis in the red yeast Xanthophyllomyces dendrorhous By www.jlr.org Published On :: 2020-12-01 Melissa GómezDec 1, 2020; 61:1658-1674Research Articles Full Article
hy A novel phosphoglycerol serine-glycine lipodipeptide of Porphyromonas gingivalis is a TLR2 ligand By www.jlr.org Published On :: 2020-12-01 Frank C. NicholsDec 1, 2020; 61:1645-1657Research Articles Full Article
hy LDL apheresis as an alternate method for plasma LPS purification in healthy volunteers and dyslipidemic and septic patients By www.jlr.org Published On :: 2020-12-01 Auguste DargentDec 1, 2020; 61:1776-1783Research Articles Full Article
hy Lipid metabolism dysregulation in diabetic retinopathy By www.jlr.org Published On :: 2020-12-23 Julia V BusikDec 23, 2020; 0:jlr.TR120000981v1-jlr.TR120000981Thematic Reviews Full Article
hy Problem Notes for SAS®9 - 48028: Custom Time Frame-based data versions do not aggregate correctly when referenced in worksheets with standard hierarchy levels By Published On :: Wed, 26 Aug 2020 16:17:42 EST In SAS Merchandise Financial Planning, custom time frame-based data versions do not aggregate correctly when referenced in worksheets with standard hierarchy levels. The data does not aggregate correctly from l Full Article MMFINANCPLN+SAS+Merchandise+Financial+Pl
hy WITHDRAWN: Structural and mechanistic studies of hydroperoxide conversions catalyzed by a CYP74 clan epoxy alcohol synthase from amphioxus (Branchiostoma floridae) [Research Articles] By www.jlr.org Published On :: 2014-03-04T09:59:12-08:00 This manuscript has been withdrawn by the Author. Full Article