if Omadacycline dihydrate, C29H40N4O7·2H2O, from X-ray powder diffraction data By journals.iucr.org Published On :: 2024-02-16 The crystal structure of the title compound {systematic name: (4S,4aS,5aR,12aR)-4,7-bis(dimethylamino)-9-[(2,2-dimethylpropylamino)methyl]-1,10,11,12a-tetrahydroxy-3,12-dioxo-4a,5,5a,6-tetrahydro-4H-tetracene-2-carboxamide dihydrate, C29H40N4O7·2H2O} has been solved and refined using synchrotron X-ray powder diffraction data: it crystallizes in space group R3 with a = 24.34430 (7), c = 14.55212 (4) Å, V = 7468.81 (2) Å3 and Z = 9. Most of the hydrogen bonds are intramolecular, but two classical N—H⋯O intermolecular hydrogen bonds (along with probable weak C—H⋯O and C—H⋯N hydrogen bonds) link the molecules into a three-dimensional framework. The framework contains voids, which contain disordered water molecules. Keto–enol tautomerism is apparently important in this molecule, and the exact molecular structure is ambiguous. Full Article text
if Synthesis, crystal structure and thermal properties of a new polymorphic modification of diisothiocyanatotetrakis(4-methylpyridine)cobalt(II) By journals.iucr.org Published On :: 2024-05-31 The title compound, [Co(NCS)2(C6H7N)4] or Co(NCS)2(4-methylpyridine)4, was prepared by the reaction of Co(NCS)2 with 4-methylpyridine in water and is isotypic to one of the polymorphs of Ni(NCS)2(4-methylpyridine)4 [Kerr & Williams (1977). Acta Cryst. B33, 3589–3592 and Soldatov et al. (2004). Cryst. Growth Des. 4, 1185–1194]. Comparison of the experimental X-ray powder pattern with that calculated from the single-crystal data proves that a pure phase has been obtained. The asymmetric unit consists of one CoII cation, two crystallographically independent thiocyanate anions and four independent 4-methylpyridine ligands, all located in general positions. The CoII cations are sixfold coordinated to two terminally N-bonded thiocyanate anions and four 4-methylpyridine coligands within slightly distorted octahedra. Between the complexes, a number of weak C—H⋯N and C—H⋯S contacts are found. This structure represent a polymorphic modification of Co(NCS)2(4-methylpyridine)4 already reported in the CCD [Harris et al. (2003). NASA Technical Reports, 211890]. In contrast to this form, the crystal structure of the new polymorph shows a denser packing, indicating that it is thermodynamically stable at least at low temperatures. Thermogravimetric and differential thermoanalysis reveal that the title compound starts to decomposes at about 100°C and that the coligands are removed in separate steps without any sign of a polymorphic transition before decomposition. Full Article text
if Rerefinement of the crystal structure of BiF5 By journals.iucr.org Published On :: 2024-07-09 The crystal structure of bismuth pentafluoride, BiF5, was rerefined from single-crystal data. BiF5 crystallizes in the α-UF5 structure type in the form of colorless needles. In comparison with the previously reported crystal-structure model [Hebecker (1971). Z. Anorg. Allg. Chem. 384, 111–114], the lattice parameters and fractional atomic coordinates were determined to much higher precision and all atoms were refined anisotropically, leading to a significantly improved structure model. The Bi atom (site symmetry 4/m..) is surrounded by six F atoms in a distorted octahedral coordination environment. The [BiF6] octahedra are corner-linked to form infinite straight chains extending parallel to [001]. Density functional theory (DFT) calculations at the PBE0/TZVP level of theory were performed on the crystal structure of BiF5 to calculate its IR and Raman spectra. These are compared with experimental data. Full Article text
if Crystal structure and supramolecular features of a host–guest inclusion complex based on A1/A2-hetero-difunctionalized pillar[5]arene By journals.iucr.org Published On :: 2024-09-24 A host–guest supramolecular inclusion complex was obtained from the co-crystallization of A1/A2-bromobutoxy-hydroxy difunctionalized pillar[5]arene (PilButBrOH) with adiponitrile (ADN), C47H53.18Br0.82O10·C6H8N2. The adiponitrile guest is stabilized within the electron-rich cavity of the pillar[5]arene host via multiple C—H⋯O and C—H⋯π interactions. Both functional groups on the macrocyclic rim are engaged in supramolecular interactions with an adjacent inclusion complex via hydrogen-bonding (O—H⋯N or C—H⋯Br) interactions, resulting in the formation of a supramolecular dimer in the crystal structure. Full Article text
if Crystal structures of two different multi-component crystals consisting of 1-(3,4-dimethoxybenzyl)-6,7-dimethoxyisoquinoline and fumaric acid By journals.iucr.org Published On :: 2024-10-11 Two different multi-component crystals consisting of papaverine [1-(3,4-dimethoxybenzyl)-6,7-dimethoxyisoquinoline, C20H21NO4] and fumaric acid [C4H4O4] were obtained. Single-crystal X-ray structure analysis revealed that one, C20H21NO4·1.5C4H4O4 (I), is a salt co-crystal composed of salt-forming and non-salt-forming molecules, and the other, C20H21NO4·0.5C4H4O4 (II), is a salt–co-crystal intermediate (i.e., in an intermediate state between a salt and a co-crystal). In this study, one state (crystal structure at 100 K) within the salt–co-crystal continuum is defined as the ‘intermediate’. Full Article text
if Time-resolved high-energy X-ray diffraction studies of ultrathin Ni ferrite films on MgO(001) By journals.iucr.org Published On :: 2023-11-29 Time-resolved high-energy X-ray diffraction was used during growth of ultrathin NixFe3−xO4 films with varying Ni content (0 ≤ x ≤ 1.5) deposited on MgO(001) substrates by reactive molecular beam epitaxy, providing an insight into the growth dynamics of these films. In order to obtain structural information, reciprocal-space maps were recorded and the temporal evolution of the Bragg peaks specific to the octahedral and tetrahedral lattice sites of the inverse spinel structure of NixFe3−xO4 was observed during growth of the films. A time delay, corresponding to a coverage of 1.2–1.8 nm, between the appearance of the Bragg reflections originating from octahedral sites and reflections originating exclusively from tetrahedral sites indicates that the ferrite films grow in two stages. In the initial growth phase, a rock salt interface layer is formed. Afterwards, a structural transition occurs and the films grow in an inverse spinel structure. The thickness of the initial rock salt phase was found to increase with Ni content and to be responsible for atypical strain in the thin films. Films with Ni contents x > 1 do not show a structural transition. These films remain in a (deficient) rock salt structure consisting of a mixed Ni–Fe oxide and do not form a spinel structure at all. They show an increased number of NiO clusters as detected by X-ray photoelectron spectroscopy of the valence band, accompanied by a significant roughening of the films. Full Article text
if POMFinder: identifying polyoxometallate cluster structures from pair distribution function data using explainable machine learning By journals.iucr.org Published On :: 2024-02-01 Characterization of a material structure with pair distribution function (PDF) analysis typically involves refining a structure model against an experimental data set, but finding or constructing a suitable atomic model for PDF modelling can be an extremely labour-intensive task, requiring carefully browsing through large numbers of possible models. Presented here is POMFinder, a machine learning (ML) classifier that rapidly screens a database of structures, here polyoxometallate (POM) clusters, to identify candidate structures for PDF data modelling. The approach is shown to identify suitable POMs from experimental data, including in situ data collected with fast acquisition times. This automated approach has significant potential for identifying suitable models for structure refinement to extract quantitative structural parameters in materials chemistry research. POMFinder is open source and user friendly, making it accessible to those without prior ML knowledge. It is also demonstrated that POMFinder offers a promising modelling framework for combined modelling of multiple scattering techniques. Full Article text
if ProLEED Studio: software for modeling low-energy electron diffraction patterns By journals.iucr.org Published On :: 2024-02-01 Low-energy electron diffraction patterns contain precise information about the structure of the surface studied. However, retrieving the real space lattice periodicity from complex diffraction patterns is challenging, especially when the modeled patterns originate from superlattices with large unit cells composed of several symmetry-equivalent domains without a simple relation to the substrate. This work presents ProLEED Studio software, built to provide simple, intuitive and precise modeling of low-energy electron diffraction patterns. The interactive graphical user interface allows real-time modeling of experimental diffraction patterns, change of depicted diffraction spot intensities, visualization of different diffraction domains, and manipulation of any lattice points or diffraction spots. The visualization of unit cells, lattice vectors, grids and scale bars as well as the possibility of exporting ready-to-publish models in bitmap and vector formats significantly simplifies the modeling process and publishing of results. Full Article text
if Refinement of X-ray and electron diffraction crystal structures using analytical Fourier transforms of Slater-type atomic wavefunctions in Olex2 By journals.iucr.org Published On :: 2024-02-01 An implementation of Slater-type spherical scattering factors for X-ray and electron diffraction for elements in the range Z = 1–103 is presented within the software Olex2. Both high- and low-angle Fourier behaviour of atomic electron density and electrostatic potential can thus be addressed, in contrast to the limited flexibility of the four Gaussian plus constant descriptions which are currently the most widely used method for calculating atomic scattering factors during refinement. The implementation presented here accommodates the increasing complexity of the electronic structure of heavier elements by using complete atomic wavefunctions without any interpolation between precalculated tables or intermediate fitting functions. Atomic wavefunctions for singly charged ions are implemented and made accessible, and these show drastic changes in electron diffraction scattering factors compared with the neutral atom. A comparison between the two different spherical models of neutral atoms is presented as an example for four different kinds of X-ray and two electron diffraction structures, and comparisons of refinement results using the existing diffraction data are discussed. A systematic but slight improvement in R values and residual densities can be observed when using the new scattering factors, and this is discussed relative to effects on the atomic displacement parameters and atomic positions, which are prominent near the heavier elements in a structure. Full Article text
if The Pixel Anomaly Detection Tool: a user-friendly GUI for classifying detector frames using machine-learning approaches By journals.iucr.org Published On :: 2024-02-12 Data collection at X-ray free electron lasers has particular experimental challenges, such as continuous sample delivery or the use of novel ultrafast high-dynamic-range gain-switching X-ray detectors. This can result in a multitude of data artefacts, which can be detrimental to accurately determining structure-factor amplitudes for serial crystallography or single-particle imaging experiments. Here, a new data-classification tool is reported that offers a variety of machine-learning algorithms to sort data trained either on manual data sorting by the user or by profile fitting the intensity distribution on the detector based on the experiment. This is integrated into an easy-to-use graphical user interface, specifically designed to support the detectors, file formats and software available at most X-ray free electron laser facilities. The highly modular design makes the tool easily expandable to comply with other X-ray sources and detectors, and the supervised learning approach enables even the novice user to sort data containing unwanted artefacts or perform routine data-analysis tasks such as hit finding during an experiment, without needing to write code. Full Article text
if Visualizing the fibre texture of satin spar using laboratory 2D X-ray diffraction By journals.iucr.org Published On :: 2024-02-12 The suitability of point focus X-ray beam and area detector techniques for the determination of the uniaxial symmetry axis (fibre texture) of the natural mineral satin spar is demonstrated. Among the various diffraction techniques used in this report, including powder diffraction, 2D pole figures, rocking curves looped on φ and 2D X-ray diffraction, a single simple symmetric 2D scan collecting the reciprocal plane perpendicular to the apparent fibre axis provided sufficient information to determine the crystallographic orientation of the fibre axis. A geometrical explanation of the `wing' feature formed by diffraction spots from the fibre-textured satin spar in 2D scans is provided. The technique of wide-range reciprocal space mapping restores the `wing' featured diffraction spots on the 2D detector back to reciprocal space layers, revealing the nature of the fibre-textured samples. Full Article text
if Convolutional neural network approach for the automated identification of in cellulo crystals By journals.iucr.org Published On :: 2024-02-23 In cellulo crystallization is a rare event in nature. Recent advances that have made use of heterologous overexpression can promote the intracellular formation of protein crystals, but new tools are required to detect and characterize these targets in the complex cell environment. The present work makes use of Mask R-CNN, a convolutional neural network (CNN)-based instance segmentation method, for the identification of either single or multi-shaped crystals growing in living insect cells, using conventional bright field images. The algorithm can be rapidly adapted to recognize different targets, with the aim of extracting relevant information to support a semi-automated screening pipeline, in order to aid the development of the intracellular protein crystallization approach. Full Article text
if X-ray diffraction from dislocation half-loops in epitaxial films By journals.iucr.org Published On :: 2024-02-23 X-ray diffraction from dislocation half-loops consisting of a misfit segment with two threading arms extending from it to the surface is calculated by the Monte Carlo method. The diffraction profiles and reciprocal space maps are controlled by the ratio of the total lengths of the misfit and the threading segments of the half-loops. A continuous transformation from the diffraction characteristic of misfit dislocations to that of threading dislocations with increasing thickness of epitaxial film is studied. Diffraction from dislocations with edge- and screw-type threading arms is considered and the contributions of the two types of dislocations are compared. Full Article text
if DLSIA: Deep Learning for Scientific Image Analysis By journals.iucr.org Published On :: 2024-03-21 DLSIA (Deep Learning for Scientific Image Analysis) is a Python-based machine learning library that empowers scientists and researchers across diverse scientific domains with a range of customizable convolutional neural network (CNN) architectures for a wide variety of tasks in image analysis to be used in downstream data processing. DLSIA features easy-to-use architectures, such as autoencoders, tunable U-Nets and parameter-lean mixed-scale dense networks (MSDNets). Additionally, this article introduces sparse mixed-scale networks (SMSNets), generated using random graphs, sparse connections and dilated convolutions connecting different length scales. For verification, several DLSIA-instantiated networks and training scripts are employed in multiple applications, including inpainting for X-ray scattering data using U-Nets and MSDNets, segmenting 3D fibers in X-ray tomographic reconstructions of concrete using an ensemble of SMSNets, and leveraging autoencoder latent spaces for data compression and clustering. As experimental data continue to grow in scale and complexity, DLSIA provides accessible CNN construction and abstracts CNN complexities, allowing scientists to tailor their machine learning approaches, accelerate discoveries, foster interdisciplinary collaboration and advance research in scientific image analysis. Full Article text
if Observations of specimen morphology effects on near-zone-axis convergent-beam electron diffraction patterns By journals.iucr.org Published On :: 2024-03-21 This work presents observations of symmetry breakages in the intensity distributions of near-zone-axis convergent-beam electron diffraction (CBED) patterns that can only be explained by the symmetry of the specimen and not the symmetry of the unit cell describing the atomic structure of the material. The specimen is an aluminium–copper–tin alloy containing voids many tens of nanometres in size within continuous single crystals of the aluminium host matrix. Several CBED patterns where the incident beam enters and exits parallel void facets without the incident beam being perpendicular to these facets are examined. The symmetries in their intensity distributions are explained by the specimen morphology alone using a geometric argument based on the multislice theory. This work shows that it is possible to deduce nanoscale morphological information about the specimen in the direction of the electron beam – the elusive third dimension in transmission electron microscopy – from the inspection of CBED patterns. Full Article text
if Laue microdiffraction on polycrystalline samples above 1500 K achieved with the QMAX-µLaue furnace By journals.iucr.org Published On :: 2024-03-31 X-ray Laue microdiffraction aims to characterize microstructural and mechanical fields in polycrystalline specimens at the sub-micrometre scale with a strain resolution of ∼10−4. Here, a new and unique Laue microdiffraction setup and alignment procedure is presented, allowing measurements at temperatures as high as 1500 K, with the objective to extend the technique for the study of crystalline phase transitions and associated strain-field evolution that occur at high temperatures. A method is provided to measure the real temperature encountered by the specimen, which can be critical for precise phase-transition studies, as well as a strategy to calibrate the setup geometry to account for the sample and furnace dilation using a standard α-alumina single crystal. A first application to phase transitions in a polycrystalline specimen of pure zirconia is provided as an illustrative example. Full Article text
if The tin content of lead inclusions in ancient tin-bronze artifacts: a time-dependent process? By journals.iucr.org Published On :: 2024-05-10 In antiquity, Pb was a common element added in the production of large bronze artifacts, especially large statues, to impart fluidity to the casting process. As Pb does not form a solid solution with pure Cu or with the Sn–Cu alloy phases, it is normally observed in the metal matrix as globular droplets embedded within or in interstitial positions among the crystals of Sn-bronze (normally the α phase) as the last crystallizing phase during the cooling process of the Cu–Sn–Pb ternary melt. The disequilibrium Sn content of the Pb droplets has recently been suggested as a viable parameter to detect modern materials [Shilstein, Berner, Feldman, Shalev & Rosenberg (2019). STAR Sci. Tech. Archaeol. Res. 5, 29–35]. The application assumes a time-dependent process, with a timescale of hundreds of years, estimated on the basis of the diffusion coefficient of Sn in Pb over a length of a few micrometres [Oberschmidt, Kim & Gupta (1982). J. Appl. Phys. 53, 5672–5677]. Therefore, Pb inclusions in recent Sn-bronze artifacts are actually a metastable solid solution of Pb–Sn containing ∼3% atomic Sn. In contrast, in ancient artifacts, unmixing processes and diffusion of Sn from the micro- and nano-inclusions of Pb to the matrix occur, resulting in the Pb inclusions containing a substantially lower or negligible amount of Sn. The Sn content in the Pb inclusions relies on accurate measurement of the lattice parameter of the phase in the Pb–Sn solid solution, since for low Sn values it closely follows Vegard's law. Here, several new measurements on modern and ancient samples are presented and discussed in order to verify the applicability of the method to the detection of modern artwork pretending to be ancient. Full Article text
if Applications of the Clifford torus to material textures By journals.iucr.org Published On :: 2024-04-15 This paper introduces a new 2D representation of the orientation distribution function for an arbitrary material texture. The approach is based on the isometric square torus mapping of the Clifford torus, which allows for points on the unit quaternion hypersphere (each corresponding to a 3D orientation) to be represented in a periodic 2D square map. The combination of three such orthogonal mappings into a single RGB (red–green–blue) image provides a compact periodic representation of any set of orientations. Square torus representations of five different orientation sampling methods are compared and analyzed in terms of the Riesz s energies that quantify the uniformity of the samplings. The effect of crystallographic symmetry on the square torus map is analyzed in terms of the Rodrigues fundamental zones for the rotational symmetry groups. The paper concludes with example representations of important texture components in cubic and hexagonal materials. The new RGB representation provides a convenient and compact way of generating training data for the automated analysis of material textures by means of neural networks. Full Article text
if Program VUE: analysing distributions of cryo-EM projections using uniform spherical grids By journals.iucr.org Published On :: 2024-05-10 Three-dimensional cryo electron microscopy reconstructions are obtained by extracting information from a large number of projections of the object. These projections correspond to different `views' or `orientations', i.e. directions in which these projections show the reconstructed object. Uneven distribution of these views and the presence of dominating preferred orientations may distort the reconstructed spatial images. This work describes the program VUE (views on uniform grids for cryo electron microscopy), designed to study such distributions. Its algorithms, based on uniform virtual grids on a sphere, allow an easy calculation and accurate quantitative analysis of the frequency distribution of the views. The key computational element is the Lambert azimuthal equal-area projection of a spherical uniform grid onto a disc. This projection keeps the surface area constant and represents the frequency distribution with no visual bias. Since it has multiple tunable parameters, the program is easily adaptable to individual needs, and to the features of a particular project or of the figure to be produced. It can help identify problems related to an uneven distribution of views. Optionally, it can modify the list of projections, distributing the views more uniformly. The program can also be used as a teaching tool. Full Article text
if Novel high-efficiency 2D position-sensitive ZnS:Ag/6LiF scintillator detector for neutron diffraction By journals.iucr.org Published On :: 2024-05-10 Scintillator-based ZnS:Ag/6LiF neutron detectors have been under development at ISIS for more than three decades. Continuous research and development aim to improve detector capabilities, achieve better performance and meet the increasingly demanding requirements set by neutron instruments. As part of this program, a high-efficiency 2D position-sensitive scintillator detector with wavelength-shifting fibres has been developed for neutron-diffraction applications. The detector consists of a double scintillator-fibre layer to improve detection efficiency. Each layer is made up of two orthogonal fibre planes placed between two ZnS:Ag/6LiF scintillator screens. Thin reflective foils are attached to the front and back scintillators of each layer to minimize light cross-talk between layers. The detector has an active area of 192 × 192 mm with a square pixel size of 3 × 3 mm. As part of the development process of the double-layer detector, a single-layer detector was built, together with a prototype detector in which the two layers of the detector could be read out separately. Efficiency calculations and measurements of all three detectors are discussed. The novel double-layer detector has been installed and tested on the SXD diffractometer at ISIS. The detector performance is compared with the current scintillator detectors employed on SXD by studying reference crystal samples. More than a factor of 3 improvement in efficiency is achieved with the double-layer wavelength-shifting-fibre detector. Software routines for further optimizations in spatial resolution and uniformity of response have been implemented and tested for 2D detectors. The methods and results are discussed in this manuscript. Full Article text
if Bragg Spot Finder (BSF): a new machine-learning-aided approach to deal with spot finding for rapidly filtering diffraction pattern images By journals.iucr.org Published On :: 2024-04-26 Macromolecular crystallography contributes significantly to understanding diseases and, more importantly, how to treat them by providing atomic resolution 3D structures of proteins. This is achieved by collecting X-ray diffraction images of protein crystals from important biological pathways. Spotfinders are used to detect the presence of crystals with usable data, and the spots from such crystals are the primary data used to solve the relevant structures. Having fast and accurate spot finding is essential, but recent advances in synchrotron beamlines used to generate X-ray diffraction images have brought us to the limits of what the best existing spotfinders can do. This bottleneck must be removed so spotfinder software can keep pace with the X-ray beamline hardware improvements and be able to see the weak or diffuse spots required to solve the most challenging problems encountered when working with diffraction images. In this paper, we first present Bragg Spot Detection (BSD), a large benchmark Bragg spot image dataset that contains 304 images with more than 66 000 spots. We then discuss the open source extensible U-Net-based spotfinder Bragg Spot Finder (BSF), with image pre-processing, a U-Net segmentation backbone, and post-processing that includes artifact removal and watershed segmentation. Finally, we perform experiments on the BSD benchmark and obtain results that are (in terms of accuracy) comparable to or better than those obtained with two popular spotfinder software packages (Dozor and DIALS), demonstrating that this is an appropriate framework to support future extensions and improvements. Full Article text
if MatchMaps: non-isomorphous difference maps for X-ray crystallography By journals.iucr.org Published On :: 2024-05-17 Conformational change mediates the biological functions of macromolecules. Crystallographic measurements can map these changes with extraordinary sensitivity as a function of mutations, ligands and time. A popular method for detecting structural differences between crystallographic data sets is the isomorphous difference map. These maps combine the phases of a chosen reference state with the observed changes in structure factor amplitudes to yield a map of changes in electron density. Such maps are much more sensitive to conformational change than structure refinement is, and are unbiased in the sense that observed differences do not depend on refinement of the perturbed state. However, even modest changes in unit-cell properties can render isomorphous difference maps useless. This is unnecessary. Described here is a generalized procedure for calculating observed difference maps that retains the high sensitivity to conformational change and avoids structure refinement of the perturbed state. This procedure is implemented in an open-source Python package, MatchMaps, that can be run in any software environment supporting PHENIX [Liebschner et al. (2019). Acta Cryst. D75, 861–877] and CCP4 [Agirre et al. (2023). Acta Cryst. D79, 449–461]. Worked examples show that MatchMaps `rescues' observed difference electron-density maps for poorly isomorphous crystals, corrects artifacts in nominally isomorphous difference maps, and extends to detecting differences across copies within the asymmetric unit or across altogether different crystal forms. Full Article text
if Neural networks for rapid phase quantification of cultural heritage X-ray powder diffraction data By journals.iucr.org Published On :: 2024-05-31 Recent developments in synchrotron radiation facilities have increased the amount of data generated during acquisitions considerably, requiring fast and efficient data processing techniques. Here, the application of dense neural networks (DNNs) to data treatment of X-ray diffraction computed tomography (XRD-CT) experiments is presented. Processing involves mapping the phases in a tomographic slice by predicting the phase fraction in each individual pixel. DNNs were trained on sets of calculated XRD patterns generated using a Python algorithm developed in-house. An initial Rietveld refinement of the tomographic slice sum pattern provides additional information (peak widths and integrated intensities for each phase) to improve the generation of simulated patterns and make them closer to real data. A grid search was used to optimize the network architecture and demonstrated that a single fully connected dense layer was sufficient to accurately determine phase proportions. This DNN was used on the XRD-CT acquisition of a mock-up and a historical sample of highly heterogeneous multi-layered decoration of a late medieval statue, called `applied brocade'. The phase maps predicted by the DNN were in good agreement with other methods, such as non-negative matrix factorization and serial Rietveld refinements performed with TOPAS, and outperformed them in terms of speed and efficiency. The method was evaluated by regenerating experimental patterns from predictions and using the R-weighted profile as the agreement factor. This assessment allowed us to confirm the accuracy of the results. Full Article text
if Accessing self-diffusion on nanosecond time and nanometre length scales with minute kinetic resolution By journals.iucr.org Published On :: 2024-06-07 Neutron spectroscopy uniquely and non-destructively accesses diffusive dynamics in soft and biological matter, including for instance proteins in hydrated powders or in solution, and more generally dynamic properties of condensed matter on the molecular level. Given the limited neutron flux resulting in long counting times, it is important to optimize data acquisition for the specific question, in particular for time-resolved (kinetic) studies. The required acquisition time was recently significantly reduced by measurements of discrete energy transfers rather than quasi-continuous neutron scattering spectra on neutron backscattering spectrometers. Besides this reduction in acquisition times, smaller amounts of samples can be measured with better statistics, and most importantly, kinetically changing samples, such as aggregating or crystallizing samples, can be followed. However, given the small number of discrete energy transfers probed in this mode, established analysis frameworks for full spectra can break down. Presented here are new approaches to analyze measurements of diffusive dynamics recorded within fixed windows in energy transfer, and these are compared with the analysis of full spectra. The new approaches are tested by both modeled scattering functions and a comparative analysis of fixed energy window data and full spectra on well understood reference samples. This new approach can be employed successfully for kinetic studies of the dynamics focusing on the short-time apparent center-of-mass diffusion. Full Article text
if Determination of α lamellae orientation in a β-Ti alloy using electron backscatter diffraction By journals.iucr.org Published On :: 2024-06-27 The spatial orientation of α lamellae in a metastable β-Ti matrix of Timetal LCB (Ti–6.8 Mo–4.5 Fe–1.5 Al in wt%) was examined and the orientation of the hexagonal close-packed α lattice in the α lamella was determined. For this purpose, a combination of methods of small-angle X-ray scattering, scanning electron microscopy and electron backscatter diffraction was used. The habit planes of α laths are close to {111}β, which corresponds to (1320)α in the hexagonal coordinate system of the α phase. The longest α lamella direction lies approximately along one of the 〈110〉β directions which are parallel to the specific habit plane. Taking into account the average lattice parameters of the β and α phases in aged conditions in Timetal LCB, it was possible to index all main axes and faces of an α lath not only in the cubic coordinate system of the parent β phase but also in the hexagonal system of the α phase. Full Article text
if Automated pipeline processing X-ray diffraction data from dynamic compression experiments on the Extreme Conditions Beamline of PETRA III By journals.iucr.org Published On :: 2024-07-04 Presented and discussed here is the implementation of a software solution that provides prompt X-ray diffraction data analysis during fast dynamic compression experiments conducted within the dynamic diamond anvil cell technique. It includes efficient data collection, streaming of data and metadata to a high-performance cluster (HPC), fast azimuthal data integration on the cluster, and tools for controlling the data processing steps and visualizing the data using the DIOPTAS software package. This data processing pipeline is invaluable for a great number of studies. The potential of the pipeline is illustrated with two examples of data collected on ammonia–water mixtures and multiphase mineral assemblies under high pressure. The pipeline is designed to be generic in nature and could be readily adapted to provide rapid feedback for many other X-ray diffraction techniques, e.g. large-volume press studies, in situ stress/strain studies, phase transformation studies, chemical reactions studied with high-resolution diffraction etc. Full Article text
if Patching-based deep-learning model for the inpainting of Bragg coherent diffraction patterns affected by detector gaps By journals.iucr.org Published On :: 2024-06-18 A deep-learning algorithm is proposed for the inpainting of Bragg coherent diffraction imaging (BCDI) patterns affected by detector gaps. These regions of missing intensity can compromise the accuracy of reconstruction algorithms, inducing artefacts in the final result. It is thus desirable to restore the intensity in these regions in order to ensure more reliable reconstructions. The key aspect of the method lies in the choice of training the neural network with cropped sections of diffraction data and subsequently patching the predictions generated by the model along the gap, thus completing the full diffraction peak. This approach enables access to a greater amount of experimental data for training and offers the ability to average overlapping sections during patching. As a result, it produces robust and dependable predictions for experimental data arrays of any size. It is shown that the method is able to remove gap-induced artefacts on the reconstructed objects for both simulated and experimental data, which becomes essential in the case of high-resolution BCDI experiments. Full Article text
if A simple protocol for determining the zone axis direction from selected-area electron diffraction spot patterns of cubic materials By journals.iucr.org Published On :: 2024-06-18 Using the well known Rn ratio method, a protocol has been elaborated for determining the lattice direction for the 15 most common cubic zone axis spot patterns. The method makes use of the lengths of the three shortest reciprocal-lattice vectors in each pattern and the angles between them. No prior pattern calibration is required for the method to work, as the Rn ratio method is based entirely on geometric relationships. In the first step the pattern is assigned to one of three possible pattern types according to the angles that are measured between the three reciprocal-lattice vectors. The lattice direction [uvw] and possible Bravais type(s) and Laue indices of the corresponding reflections can then be determined by using lookup tables. In addition to determining the lattice direction, this simple geometric analysis allows one to distinguish between the P, I and F Bravais lattices for spot patterns aligned along [013], [112], [114] and [233]. Moreover, the F lattice can always be uniquely identified from the [011] and [123] patterns. Full Article text
if Demonstration of neutron time-of-flight diffraction with an event-mode imaging detector By journals.iucr.org Published On :: 2024-07-11 Neutron diffraction beamlines have traditionally relied on deploying large detector arrays of 3He tubes or neutron-sensitive scintillators coupled with photomultipliers to efficiently probe crystallographic and microstructure information of a given material. Given the large upfront cost of custom-made data acquisition systems and the recent scarcity of 3He, new diffraction beamlines or upgrades to existing ones demand innovative approaches. This paper introduces a novel Timepix3-based event-mode imaging neutron diffraction detector system as well as first results of a silicon powder diffraction measurement made at the HIPPO neutron powder diffractometer at the Los Alamos Neutron Science Center. Notably, these initial measurements were conducted simultaneously with the 3He array on HIPPO, enabling direct comparison. Data reduction for this type of data was implemented in the MAUD code, enabling Rietveld analysis. Results from the Timepix3-based setup and HIPPO were benchmarked against McStas simulations, showing good agreement for peak resolution. With further development, systems such as the one presented here may substantially reduce the cost of detector systems for new neutron instrumentation as well as for upgrades of existing beamlines. Full Article text
if Mix and measure II: joint high-energy laboratory powder diffraction and microtomography for cement hydration studies By journals.iucr.org Published On :: 2024-07-04 Portland cements (PCs) and cement blends are multiphase materials of different fineness, and quantitatively analysing their hydration pathways is very challenging. The dissolution (hydration) of the initial crystalline and amorphous phases must be determined, as well as the formation of labile (such as ettringite), reactive (such as portlandite) and amorphous (such as calcium silicate hydrate gel) components. The microstructural changes with hydration time must also be mapped out. To address this robustly and accurately, an innovative approach is being developed based on in situ measurements of pastes without any sample conditioning. Data are sequentially acquired by Mo Kα1 laboratory X-ray powder diffraction (LXRPD) and microtomography (µCT), where the same volume is scanned with time to reduce variability. Wide capillaries (2 mm in diameter) are key to avoid artefacts, e.g. self-desiccation, and to have excellent particle averaging. This methodology is tested in three cement paste samples: (i) a commercial PC 52.5 R, (ii) a blend of 80 wt% of this PC and 20 wt% quartz, to simulate an addition of supplementary cementitious materials, and (iii) a blend of 80 wt% PC and 20 wt% limestone, to simulate a limestone Portland cement. LXRPD data are acquired at 3 h and 1, 3, 7 and 28 days, and µCT data are collected at 12 h and 1, 3, 7 and 28 days. Later age data can also be easily acquired. In this methodology, the amounts of the crystalline phases are directly obtained from Rietveld analysis and the amorphous phase contents are obtained from mass-balance calculations. From the µCT study, and within the attained spatial resolution, three components (porosity, hydrated products and unhydrated cement particles) are determined. The analyses quantitatively demonstrate the filler effect of quartz and limestone in the hydration of alite and the calcium aluminate phases. Further hydration details are discussed. Full Article text
if Quality assessment of the wide-angle detection option planned at the high-intensity/extended Q-range SANS diffractometer KWS-2 combining experiments and McStas simulations By journals.iucr.org Published On :: 2024-06-27 For a reliable characterization of materials and systems featuring multiple structural levels, a broad length scale from a few ångström to hundreds of nanometres must be analyzed and an extended Q range must be covered in X-ray and neutron scattering experiments. For certain samples or effects, it is advantageous to perform such characterization with a single instrument. Neutrons offer the unique advantage of contrast variation and matching by D-labeling, which is of great value in the characterization of natural or synthetic polymers. Some time-of-flight small-angle neutron scattering (TOF-SANS) instruments at neutron spallation sources can cover an extended Q range by using a broad wavelength band and a multitude of detectors. The detectors are arranged to cover a wide range of scattering angles with a resolution that allows both large-scale morphology and crystalline structure to be resolved simultaneously. However, for such analyses, the SANS instruments at steady-state sources operating in conventional monochromatic pinhole mode rely on additional wide-angle neutron scattering (WANS) detectors. The resolution must be tuned via a system of choppers and a TOF data acquisition option to reliably measure the atomic to mesoscale structures. The KWS-2 SANS diffractometer at Jülich Centre for Neutron Science allows the exploration of a wide Q range using conventional pinhole and lens focusing modes and an adjustable resolution Δλ/λ between 2 and 20%. This is achieved through the use of a versatile mechanical velocity selector combined with a variable slit opening and rotation frequency chopper. The installation of WANS detectors planned on the instrument required a detailed analysis of the quality of the data measured over a wide angular range with variable resolution. This article presents an assessment of the WANS performance by comparison with a McStas [Willendrup, Farhi & Lefmann (2004). Physica B, 350, E735–E737] simulation of ideal experimental conditions at the instrument. Full Article text
if On the feasibility of time-resolved X-ray powder diffraction of macromolecules using laser-driven ultrafast X-ray sources By journals.iucr.org Published On :: 2024-07-29 With the emergence of ultrafast X-ray sources, interest in following fast processes in small molecules and macromolecules has increased. Most of the current research into ultrafast structural dynamics of macromolecules uses X-ray free-electron lasers. In parallel, small-scale laboratory-based laser-driven ultrafast X-ray sources are emerging. Continuous development of these sources is underway, and as a result many exciting applications are being reported. However, because of their low flux, such sources are not commonly used to study the structural dynamics of macromolecules. This article examines the feasibility of time-resolved powder diffraction of macromolecular microcrystals using a laboratory-scale laser-driven ultrafast X-ray source. Full Article text
if Rapid detection of rare events from in situ X-ray diffraction data using machine learning By journals.iucr.org Published On :: 2024-07-17 High-energy X-ray diffraction methods can non-destructively map the 3D microstructure and associated attributes of metallic polycrystalline engineering materials in their bulk form. These methods are often combined with external stimuli such as thermo-mechanical loading to take snapshots of the evolving microstructure and attributes over time. However, the extreme data volumes and the high costs of traditional data acquisition and reduction approaches pose a barrier to quickly extracting actionable insights and improving the temporal resolution of these snapshots. This article presents a fully automated technique capable of rapidly detecting the onset of plasticity in high-energy X-ray microscopy data. The technique is computationally faster by at least 50 times than the traditional approaches and works for data sets that are up to nine times sparser than a full data set. This new technique leverages self-supervised image representation learning and clustering to transform massive data sets into compact, semantic-rich representations of visually salient characteristics (e.g. peak shapes). These characteristics can rapidly indicate anomalous events, such as changes in diffraction peak shapes. It is anticipated that this technique will provide just-in-time actionable information to drive smarter experiments that effectively deploy multi-modal X-ray diffraction methods spanning many decades of length scales. Full Article text
if Coherent X-ray diffraction imaging of single particles: background impact on 3D reconstruction By journals.iucr.org Published On :: 2024-08-30 Coherent diffractive imaging with X-ray free-electron lasers could enable structural studies of macromolecules at room temperature. This type of experiment could provide a means to study structural dynamics on the femtosecond timescale. However, the diffraction from a single protein is weak compared with the incoherent scattering from background sources, which negatively affects the reconstruction analysis. This work evaluates the effects of the presence of background on the analysis pipeline. Background measurements from the European X-ray Free-Electron Laser were combined with simulated diffraction patterns and treated by a standard reconstruction procedure, including orientation recovery with the expand, maximize and compress algorithm and 3D phase retrieval. Background scattering did have an adverse effect on the estimated resolution of the reconstructed density maps. Still, the reconstructions generally worked when the signal-to-background ratio was 0.6 or better, in the momentum transfer shell of the highest reconstructed resolution. The results also suggest that the signal-to-background requirement increases at higher resolution. This study gives an indication of what is possible at current setups at X-ray free-electron lasers with regards to expected background strength and establishes a target for experimental optimization of the background. Full Article text
if Energy-dispersive Laue diffraction analysis of the influence of statherin and histatin on the crystallographic texture during human dental enamel demineralization By journals.iucr.org Published On :: 2024-09-25 Energy-dispersive Laue diffraction (EDLD) is a powerful method to obtain position-resolved texture information in inhomogeneous biological samples without the need for sample rotation. This study employs EDLD texture scanning to investigate the impact of two salivary peptides, statherin (STN) and histatin-1 (HTN) 21 N-terminal peptides (STN21 and HTN21), on the crystallographic structure of dental enamel. These proteins are known to play crucial roles in dental caries progression. Three healthy incisors were randomly assigned to three groups: artificially demineralized, demineralized after HTN21 peptide pre-treatment and demineralized after STN21 peptide pre-treatment. To understand the micro-scale structure of the enamel, each specimen was scanned from the enamel surface to a depth of 250 µm using microbeam EDLD. Via the use of a white beam and a pixelated detector, where each pixel functions as a spectrometer, pole figures were obtained in a single exposure at each measurement point. The results revealed distinct orientations of hydroxyapatite crystallites and notable texture variation in the peptide-treated demineralized samples compared with the demineralized control. Specifically, the peptide-treated demineralized samples exhibited up to three orientation populations, in contrast to the demineralized control which displayed only a single orientation population. The texture index of the demineralized control (2.00 ± 0.21) was found to be lower than that of either the STN21 (2.32 ± 0.20) or the HTN21 (2.90 ± 0.46) treated samples. Hence, texture scanning with EDLD gives new insights into dental enamel crystallite orientation and links the present understanding of enamel demineralization to the underlying crystalline texture. For the first time, the feasibility of EDLD texture measurements for quantitative texture evaluation in demineralized dental enamel samples is demonstrated. Full Article text
if Pushing the limits of accessible length scales via a modified Porod analysis in small-angle neutron scattering on ordered systems By journals.iucr.org Published On :: 2024-08-27 Small-angle neutron scattering is a widely used technique to study large-scale structures in bulk samples. The largest accessible length scale in conventional Bragg scattering is determined by the combination of the longest available neutron wavelength and smallest resolvable scattering angle. A method is presented that circumvents this limitation and is able to extract larger length scales from the low-q power-law scattering using a modification of the well known Porod law connecting the scattered intensity of randomly distributed objects to their specific surface area. It is shown that in the special case of a highly aligned domain structure the specific surface area extracted from the modified Porod law can be used to determine specific length scales of the domain structure. The analysis method is applied to study the micrometre-sized domain structure found in the intermediate mixed state of the superconductor niobium. The analysis approach allows the range of accessible length scales to be extended from 1 µm to up to 40 µm using a conventional small-angle neutron scattering setup. Full Article text
if In situ counter-diffusion crystallization and long-term crystal preservation in microfluidic fixed targets for serial crystallography By journals.iucr.org Published On :: 2024-09-25 Compared with batch and vapor diffusion methods, counter diffusion can generate larger and higher-quality protein crystals yielding improved diffraction data and higher-resolution structures. Typically, counter-diffusion experiments are conducted in elongated chambers, such as glass capillaries, and the crystals are either directly measured in the capillary or extracted and mounted at the X-ray beamline. Despite the advantages of counter-diffusion protein crystallization, there are few fixed-target devices that utilize counter diffusion for crystallization. In this article, different designs of user-friendly counter-diffusion chambers are presented which can be used to grow large protein crystals in a 2D polymer microfluidic fixed-target chip. Methods for rapid chip fabrication using commercially available thin-film materials such as Mylar, propylene and Kapton are also detailed. Rules of thumb are provided to tune the nucleation and crystal growth to meet users' needs while minimizing sample consumption. These designs provide a reliable approach to forming large crystals and maintaining their hydration for weeks and even months. This allows ample time to grow, select and preserve the best crystal batches before X-ray beam time. Importantly, the fixed-target microfluidic chip has a low background scatter and can be directly used at beamlines without any crystal handling, enabling crystal quality to be preserved. The approach is demonstrated with serial diffraction of photoactive yellow protein, yielding 1.32 Å resolution at room temperature. Fabrication of this standard microfluidic chip with commercially available thin films greatly simplifies fabrication and provides enhanced stability under vacuum. These advances will further broaden microfluidic fixed-target utilization by crystallographers. Full Article text
if Multidimensional Rietveld refinement of high-pressure neutron diffraction data of PbNCN By journals.iucr.org Published On :: 2024-09-05 High-pressure neutron powder diffraction data from PbNCN were collected on the high-pressure diffraction beamline SNAP located at the Spallation Neutron Source (SNS) of Oak Ridge National Laboratory (Tennessee, USA). The diffraction data were analyzed using the novel method of multidimensional (two dimensions for now, potentially more in the future) Rietveld refinement and, for comparison, employing the conventional Rietveld method. To achieve two-dimensional analysis, a detailed description of the SNAP instrument characteristics was created, serving as an instrument parameter file, and then yielding both cell and spatial parameters as refined under pressure for the first time for solid-state cyanamides/carbodiimides. The bulk modulus B0 = 25.1 (15) GPa and its derivative B'0 = 11.1 (8) were extracted for PbNCN following the Vinet equation of state. Surprisingly, an internal transition was observed beyond 2.0 (2) GPa, resulting from switching the bond multiplicities (and bending direction) of the NCN2− complex anion. The results were corroborated using electronic structure calculation from first principles, highlighting both local structural and chemical bonding details. Full Article text
if Use of a confocal optical device for centring a diamond anvil cell in single-crystal X-ray diffraction experiments By journals.iucr.org Published On :: 2024-09-20 High-pressure crystallographic data can be measured using a diamond anvil cell (DAC), which allows the sample to be viewed only along a cell vector which runs perpendicular to the diamond anvils. Although centring a sample perpendicular to this direction is straightforward, methods for centring along this direction often rely on sample focusing, measurements of the direct beam or short data collections followed by refinement of the crystal offsets. These methods may be inaccurate, difficult to apply or slow. Described here is a method based on precise measurement of the offset in this direction using a confocal optical device, whereby the cell centre is located at the mid-point of two measurements of the distance between a light source and the external faces of the diamond anvils viewed along the forward and reverse directions of the cell vector. It is shown that the method enables a DAC to be centred to within a few micrometres reproducibly and quickly. Full Article text
if The AUREX cell: a versatile operando electrochemical cell for studying catalytic materials using X-ray diffraction, total scattering and X-ray absorption spectroscopy under working conditions By journals.iucr.org Published On :: 2024-09-20 Understanding the structure–property relationship in electrocatalysts under working conditions is crucial for the rational design of novel and improved catalytic materials. This paper presents the Aarhus University reactor for electrochemical studies using X-rays (AUREX) operando electrocatalytic flow cell, designed as an easy-to-use versatile setup with a minimal background contribution and a uniform flow field to limit concentration polarization and handle gas formation. The cell has been employed to measure operando total scattering, diffraction and absorption spectroscopy as well as simultaneous combinations thereof on a commercial silver electrocatalyst for proof of concept. This combination of operando techniques allows for monitoring of the short-, medium- and long-range structure under working conditions, including an applied potential, liquid electrolyte and local reaction environment. The structural transformations of the Ag electrocatalyst are monitored with non-negative matrix factorization, linear combination analysis, the Pearson correlation coefficient matrix, and refinements in both real and reciprocal space. Upon application of an oxidative potential in an Ar-saturated aqueous 0.1 M KHCO3/K2CO3 electrolyte, the face-centered cubic (f.c.c.) Ag gradually transforms first to a trigonal Ag2CO3 phase, followed by the formation of a monoclinic Ag2CO3 phase. A reducing potential immediately reverts the structure to the Ag (f.c.c.) phase. Following the electrochemical-reaction-induced phase transitions is of fundamental interest and necessary for understanding and improving the stability of electrocatalysts, and the operando cell proves a versatile setup for probing this. In addition, it is demonstrated that, when studying electrochemical reactions, a high energy or short exposure time is needed to circumvent beam-induced effects. Full Article text
if Towards dynamically configured databases for CIFs: the new modulated structures open database at the Bilbao Crystallographic Server By journals.iucr.org Published On :: 2024-09-17 This article presents a web-based framework to build a database without in-depth programming knowledge given a set of CIF dictionaries and a collection of CIFs. The framework consists of two main elements: the public site that displays the information contained in the CIFs in an ordered manner, and the restricted administrative site which defines how that information is stored, processed and, eventually, displayed. Thus, the web application allows users to easily explore, filter and access the data, download the original CIFs, and visualize the structures via JSmol. The modulated structures open database B-IncStrDB, the official International Union of Crystallography repository for this type of material and available through the Bilbao Crystallographic Server, has been re-implemented following the proposed framework. Full Article text
if Electronic angle focusing for neutron time-of-flight powder diffractometers By journals.iucr.org Published On :: 2024-10-01 A neutron time-of-flight (TOF) powder diffractometer with a continuous wide-angle array of detectors can be electronically focused to make a single pseudo-constant wavelength diffraction pattern, thus facilitating angle-dependent intensity corrections. The resulting powder diffraction peak profiles are affected by the neutron source emission profile and resemble the function currently used for TOF diffraction. Full Article text
if Characterization of sub-micrometre-sized voids in fixed human brain tissue using scanning X-ray microdiffraction By journals.iucr.org Published On :: 2024-10-01 Using a 5 µm-diameter X-ray beam, we collected scanning X-ray microdiffraction in both the small-angle (SAXS) and the wide-angle (WAXS) regimes from thin sections of fixed human brain tissue from Alzheimer's subjects. The intensity of scattering in the SAXS regime of these patterns exhibits essentially no correlation with the observed intensity in the WAXS regime, indicating that the structures responsible for these two portions of the diffraction patterns, which reflect different length scales, are distinct. SAXS scattering exhibits a power-law behavior in which the log of intensity decreases linearly with the log of the scattering angle. The slope of the log–log curve is roughly proportional to the intensity in the SAXS regime and, surprisingly, inversely proportional to the intensity in the WAXS regime. We interpret these observations as being due to the presence of sub-micrometre-sized voids formed during dehydration of the fixed tissue. The SAXS intensity is due largely to scattering from these voids, while the WAXS intensity derives from the secondary structures of macromolecular material surrounding the voids. The ability to detect and map the presence of voids within thin sections of fixed tissue has the potential to provide novel information on the degradation of human brain tissue in neurodegenerative diseases. Full Article text
if A miniature X-ray diffraction setup on ID20 at the European Synchrotron Radiation Facility By journals.iucr.org Published On :: 2024-10-25 We describe an ultra-compact setup for in situ X-ray diffraction on the inelastic X-ray scattering beamline ID20 at the European Synchrotron Radiation Facility. The main motivation for the design and construction of this setup is the increasing demand for on-the-fly sample characterization, as well as ease of navigation through a sample's phase diagram, for example subjected to high-pressure and/or high-temperature conditions. We provide technical details and demonstrate the performance of the setup. Full Article text
if Formulation of perfect-crystal diffraction from Takagi–Taupin equations: numerical implementation in the crystalpy library By journals.iucr.org Published On :: 2024-10-29 The Takagi–Taupin equations are solved in their simplest form (zero deformation) to obtain the Bragg-diffracted and transmitted complex amplitudes. The case of plane-parallel crystal plates is discussed using a matrix model. The equations are implemented in an open-source Python library crystalpy adapted for numerical applications such as crystal reflectivity calculations and ray tracing. Full Article text
if InComm Payments acquires digital gift card provider Mafin By thepaypers.com Published On :: Tue, 12 Nov 2024 08:27:00 +0100 InComm Payments has acquired the digital gift card provider Full Article
if XMDS Holding launches XPP to unify payment solutions across Europe By thepaypers.com Published On :: Tue, 12 Nov 2024 08:36:00 +0100 XMDS Holding has launched XPP, a new umbrella organisation... Full Article
if Emerging Technologies and Trends in Identity Verification, KYC, and KYB Report 2024 By thepaypers.com Published On :: Thu, 16 May 2024 09:00:00 +0100 The inaugural edition of the Emerging Technologies and Trends in Identity Verification (IDV), KYC, and KYB Report 2024 offers a comprehensive overview of the key technology trends and best practices in digital onboarding for consumers and businesses in 2024. Full Article
if Yuno unveils 'Payout' to simplify global payments for merchants By thepaypers.com Published On :: Tue, 29 Oct 2024 08:40:00 +0100 Yuno, a provider of payment orchestration, has... Full Article
if MODIFI obtains USD 15 million from SMBC Asia Rising Fund By thepaypers.com Published On :: Fri, 08 Nov 2024 12:51:00 +0100 Germany-based fintech MODIFI has announced... Full Article