no

Unexpected formation of a co-crystal containing the chalcone (E)-1-(5-chloro­thio­phen-2-yl)-3-(3-methyl­thio­phen-2-yl)prop-2-en-1-one and the keto–enol tautomer (Z)-1-(5-chloro­thio­phen-2-yl)-3-(3-methyl­thio­phe

The title crystal structure is assembled from the superposition of two mol­ecular structures, (E)-1-(5-chloro­thio­phen-2-yl)-3-(3-methyl­thio­phen-2-yl)prop-2-en-1-one, C12H9ClOS2 (93%), and (Z)-1-(5-chloro­thio­phen-2-yl)-3-(3-methyl­thio­phen-2-yl)prop-1-en-1-ol, C12H11ClOS2 (7%), 0.93C12H9ClOS2·0.07C12H11ClOS2. Both were obtained from the reaction of 3-methyl­thio­phene-2-carbaldehyde and 1-(5-chloro­thio­phen-2-yl)ethanone. In the extended structure of the major chalcone component, mol­ecules are linked by a combination of C—H⋯O/S, Cl⋯Cl, Cl⋯π and π–π inter­actions, leading to a compact three-dimensional supra­molecular assembly.




no

Crystal structure and Hirshfeld surface analysis of 4-allyl-2-meth­oxy-6-nitro­phenol

The asymmetric unit of the title compound, C10H11NO4, which was synthesized via nitration reaction of eugenol (4-allyl-2-meth­oxy­phenol) with a mixture of nitric acid and sulfuric acid, consists of three independent mol­ecules of similar geometry. Each mol­ecule displays an intra­molecular hydrogen bond involving the hydroxide and the nitro group forming an S(6) motif. The crystal cohesion is ensured by inter­molecular C—H⋯O hydrogen bonds in addition to π–π stacking inter­actions between the aromatic rings [centroid–centroid distances = 3.6583 (17)–4.0624 (16) Å]. The Hirshfeld surface analysis and the two-dimensional fingerprint plots show that H⋯H (39.6%), O⋯H/H⋯O (37.7%), C⋯H/H⋯C (12.5%) and C⋯C (4%) are the most important contributors towards the crystal packing.




no

Crystal structure of ethyl 2-(5-amino-1-benzene­sulfonyl-3-oxo-2,3-di­hydro-1H-pyrazol-2-yl)acetate

In the title compound, C13H15N3O5S, the two rings face each other in a `V' form at the S atom, with one N—H⋯O=S and one C—H⋯O=S contact from the pyrazolyl substituents to the sulfonyl group. Two classical hydrogen bonds from the amine group, one of the form N—H⋯O=S and one N—H⋯O=Coxo, link the mol­ecules to form layers parallel to the bc plane.




no

Crystal structure of (R,S)-2-hy­droxy-4-(methyl­sulfan­yl)butanoic acid

The title compound, a major animal feed supplement, abbreviated as HMTBA and alternatively called dl-me­thio­nine hy­droxy analogue, C5H10O3S, (I), was isolated in pure anhydrous monomeric form. The melting point is 302.5 K and the compound crystallizes in the monoclinic space group P21/c, with two conformationally non-equivalent mol­ecules [(IA) and (IB)] in the asymmetric unit. The crystal structure is formed by alternating polar and non-polar layers running along the bc plane and features an extensive hydrogen-bonding network within the polar layers. The Hirshfeld surface analysis revealed a significant contribution of non-polar H⋯H and H⋯S inter­actions to the packing forces for both mol­ecules.




no

Different packing motifs in the crystal structures of three mol­ecular salts containing the 2-amino-5-carb­oxy­anilinium cation: C7H9N2O2+·Cl−, C7H9N2O2+·Br− and C7H9N2O2+·NO3−·H2O

The syntheses and crystal structures of three mol­ecular salts of protonated 3,4-di­amino­benzoic acid, viz. 2-amino-5-carb­oxy­anilinium chloride, C7H9N2O2+·Cl−, (I), 2-amino-5-carb­oxy­anilinium bromide, C7H9N2O2+·Br−, (II), and 2-amino-5-carb­oxy­anilinium nitrate monohydrate, C7H9N2O2+·NO3−·H2O, (III), are described. The cation is protonated at the meta-N atom (with respect to the carb­oxy group) in each case. In the crystal of (I), carb­oxy­lic acid inversion dimers linked by pairwise O—H⋯O hydrogen bonds are seen and each N—H group forms a hydrogen bond to a chloride ion to result in (100) undulating layers of chloride ions bridged by the inversion dimers into a three-dimensional network. The extended structure of (II) features O—H⋯Br, N—H⋯Br and N—H⋯O hydrogen bonds: the last of these generates C(7) chains of cations. Overall, the packing in (II) features undulating (100) sheets of bromide ions alternating with the organic cations. Inter­molecular inter­actions in the crystal of (III) include O—H⋯O, O—H⋯(O,O), N—H⋯O, N—H⋯N and O—H⋯N links. The cations are linked into (001) sheets, and the nitrate ions and water mol­ecules form undulating chains. Taken together, alternating (001) slabs of organic cations plus anions/water mol­ecules result. Hirshfeld surfaces and fingerprint plots were generated to give further insight into the inter­molecular inter­actions in these structures. The crystal used for the data collection of (II) was twinned by rotation about [100] in reciprocal space in a 0.4896 (15):0.5104 (15) ratio.




no

Silver(I) nitrate two-dimensional coordination polymers of two new pyrazine­thio­phane ligands: 5,7-di­hydro-1H,3H-dithieno[3,4-b:3',4'-e]pyrazine and 3,4,8,10,11,13-hexa­hydro-1H,6H-bis­([1,4]di­thio­cino)[6,7-b:6',7'-e

The two new pyrazine­ophanes, 5,7-di­hydro-1H,3H-dithieno[3,4-b:3',4'-e]pyrazine, C8H8N2S2, L1, and 3,4,8,10,11,13-hexa­hydro-1H,6H-bis­([1,4]di­thio­cino)[6,7-b:6',7'-e]pyrazine, C12H16N2S4, L2, both crystallize with half a mol­ecule in the asymmetric unit; the whole mol­ecules are generated by inversion symmetry. The mol­ecule of L1, which is planar (r.m.s. deviation = 0.008 Å), consists of two sulfur atoms linked by a rigid tetra-2,3,5,6-methyl­ene­pyrazine unit, forming planar five-membered rings. The mol­ecule of L2 is step-shaped and consists of two S–CH2–CH2–S chains linked by the central rigid tetra-2,3,5,6-methyl­ene­pyrazine unit, forming eight-membered rings that have twist-boat-chair con­fig­urations. In the crystals of both compounds, there are no significant inter­molecular inter­actions present. The reaction of L1 with silver nitrate leads to the formation of a two-dimensional coordination polymer, poly[(μ-5,7-di­hydro-1H,3H-dithieno[3,4-b;3',4'-e]pyrazine-κ2S:S')(μ-nitrato-κ2O:O')silver(I)], [Ag(NO3)(C8H8N2S2)]n, (I), with the nitrato anion bridging two equivalent silver atoms. The central pyrazine ring is situated about an inversion center and the silver atom lies on a twofold rotation axis that bis­ects the nitrato anion. The silver atom has a fourfold AgO2S2 coordination sphere with a distorted shape. The reaction of L2 with silver nitrate also leads to the formation of a two-dimensional coordination polymer, poly[[μ33,4,8,10,11,13-hexa­hydro-1H,6H-bis­([1,4]di­thio­cino)[6,7-b;6',7'-e]pyrazine-κ3S:S':S''](nitrato-κO)silver(I)], [Ag(NO3)(C12H16N2S4)]n, (II), with the nitrate anion coordinating in a monodentate manner to the silver atom. The silver atom has a fourfold AgOS3 coordination sphere with a distorted shape. In the crystals of both complexes, the networks are linked by C—H⋯O hydrogen bonds, forming supra­molecular frameworks. There are additional C—H⋯S contacts present in the supra­molecular framework of II.




no

Crystal structure and Hirshfeld surface analysis of 2-amino-3-hy­droxy­pyridin-1-ium 6-methyl-2,2,4-trioxo-2H,4H-1,2,3-oxa­thia­zin-3-ide

The asymmetric unit of the title compound, C5H7N2O+·C4H4NO4S−, contains one cation and one anion. The 6-methyl-2,2,4-trioxo-2H,4H-1,2,3-oxa­thia­zin-3-ide anion adopts an envelope conformation with the S atom as the flap. In the crystal, the anions and cations are held together by N—H⋯O, N—H⋯N, O—H⋯O and C—H⋯O hydrogen bonds, thus forming a three-dimensional structure. The Hirshfeld surface analysis and fingerprint plots reveal that the crystal packing is dominated by O⋯H/H⋯O (43.1%) and H⋯H (24.2%) contacts.




no

Crystal structure of a new phen­yl(morpholino)methane­thione derivative: 4-[(morpholin-4-yl)carbothioyl]benzoic acid

4-[(Morpholin-4-yl)carbothioyl]benzoic acid, C12H13NO3S, a novel phen­yl(morpholino)methane­thione derivative, crystallizes in the monoclinic space group P21/n. The morpholine ring adopts a chair conformation and the carb­oxy­lic acid group is bent out slightly from the benzene ring mean plane. The mol­ecular geometry of the carb­oxy­lic group is characterized by similar C—O bond lengths [1.266 (2) and 1.268 (2) Å] as the carboxyl­ate H atom is disordered over two positions. This mol­ecular arrangement leads to the formation of dimers through strong and centrosymmetric low barrier O—H⋯O hydrogen bonds between the carb­oxy­lic groups. In addition to these inter­molecular inter­actions, the crystal packing consists of two different mol­ecular sheets with an angle between their mean planes of 64.4 (2)°. The cohesion between the different layers is ensured by C—H⋯S and C—H⋯O inter­actions.




no

Norpsilocin: freebase and fumarate salt

The solid-state structures of the naturally occurring psychoactive tryptamine norpsilocin {4-hy­droxy-N-methyl­tryptamine (4-HO-NMT); systematic name: 3-[2-(methyl­amino)­eth­yl]-1H-indol-4-ol}, C11H14N2O, and its fumarate salt (4-hy­droxy-N-methyl­tryptammonium fumarate; systematic name: bis­{[2-(4-hy­droxy-1H-indol-3-yl)eth­yl]methyl­aza­nium} but-2-enedioate), C11H15N2O+·0.5C4H2O42−, are reported. The freebase of 4-HO-NMT has a single mol­ecule in the asymmetric unit joined together by N—H⋯O and O—H⋯O hydrogen bonds in a two-dimensional network parallel to the (100) plane. The ethyl­amine arm of the tryptamine is modeled as a two-component disorder with a 0.895 (3) to 0.105 (3) occupancy ratio. The fumarate salt of 4-HO-NMT crystallizes with a tryptammonium cation and one half of a fumarate dianion in the asymmetric unit. The ions are joined together by N—H⋯O and O—H⋯O hydrogen bonds to form a three-dimensional framework, as well as π–π stacking between the six-membered rings of inversion-related indoles (symmetry operation: 2 − x, 1 − y, 2 – z).




no

Crystal structure, Hirshfeld surface analysis and inter­action energy and DFT studies of 2-(2,3-di­hydro-1H-perimidin-2-yl)-6-meth­oxy­phenol

The title compound, C18H16N2O2, consists of perimidine and meth­oxy­phenol units, where the tricyclic perimidine unit contains a naphthalene ring system and a non-planar C4N2 ring adopting an envelope conformation with the NCN group hinged by 47.44 (7)° with respect to the best plane of the other five atoms. In the crystal, O—HPhnl⋯NPrmdn and N—HPrmdn⋯OPhnl (Phnl = phenol and Prmdn = perimidine) hydrogen bonds link the mol­ecules into infinite chains along the b-axis direction. Weak C—H⋯π inter­actions may further stabilize the crystal structure. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (49.0%), H⋯C/C⋯H (35.8%) and H⋯O/O⋯H (12.0%) inter­actions. Hydrogen bonding and van der Waals inter­actions are the dominant inter­actions in the crystal packing. Computational chemistry indicates that in the crystal, the O—HPhnl⋯NPrmdn and N—HPrmdn⋯OPhnl hydrogen-bond energies are 58.4 and 38.0 kJ mol−1, respectively. Density functional theory (DFT) optimized structures at the B3LYP/ 6–311 G(d,p) level are compared with the experimentally determined mol­ecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap.




no

Crystal structures of {1,1,1-tris­[(salicylaldimino)­meth­yl]ethane}­gallium as both a pyridine solvate and an aceto­nitrile 0.75-solvate and {1,1,1-tris[(salicylaldimino)­meth­yl]ethane}­indium di­chloro­

The sexa­dentate ligand 1,1,1-tris­[(salicyl­idene­amino)­meth­yl]ethane has been reported numerous times in its triply deprotonated form coordinated to transition metals and lanthanides, yet it has been rarely employed with main-group elements, including in substituted forms. Its structures with gallium and indium are reported as solvates, namely, ({[(2,2-bis­{[(2-oxido­benzyl­idene)amino-κ2N,O]meth­yl}prop­yl)imino]­meth­yl}phenololato-κ2N,O)gallium(III) pyridine monosolvate, [Ga(C26H24N3O3)]·C5H5N, the aceto­nitrile 0.75-solvate, [Ga(C26H24N3O3)]·0.75C2H3N, and ({[(2,2-bis­{[(2-oxido­benzyl­idene)amino-κ2N,O]meth­yl}prop­yl)imino]­meth­yl}phenololato-κ2N,O)indium(III) di­chloro­methane monosolvate, [In(C26H24N3O3)]·CH2Cl2. All three metal complexes are pseudo-octa­hedral and each structure contains multiple weak C—H⋯O and/or C—H⋯N inter­molecular hydrogen-bonding inter­actions. The syntheses and additional characterization in the forms of melting points, high-resolution mass spectra, infra-red (IR) spectra, and 1H and 13C NMR spectra are also reported.




no

Crystal structure and Hirshfeld surface analysis of hexyl 1-hexyl-2-oxo-1,2-di­hydro­quinoline-4-carboxyl­ate

The asymmetric unit of the title compound, C22H31NO3, comprises of one mol­ecule. The mol­ecule is not planar, with the carboxyl­ate ester group inclined by 33.47 (4)° to the heterocyclic ring. Individual mol­ecules are linked by aromaticC—H⋯Ocarbon­yl hydrogen bonds into chains running parallel to [001]. Slipped π–π stacking inter­actions between quinoline moieties link these chains into layers extending parallel to (100). Hirshfeld surface analysis, two-dimensional fingerprint plots and mol­ecular electrostatic potential surfaces were used to qu­antify the inter­molecular inter­actions present in the crystal, indicating that the most important contributions for the crystal packing are from H⋯H (72%), O⋯H/H⋯O (14.5%) and C⋯H/H⋯C (5.6%) inter­actions.




no

Crystal structure of N'-[4-(di­methyl­amino)­benzyl­idene]furan-2-carbohydrazide monohydrate

The condensation of 2-furoic hydrazide and 4-dimethyl amino­benzaldehyde in ethanol yielded a yellow solid formulated as the title compound, C14H15N3O2·H2O. The crystal packing is stabilized by inter­molecular O(water)—H⋯O,N(carbohydrazide) and N—H⋯O(water) hydrogen bonds, which form a two-dimensional network along the bc plane. Additional C—H⋯O inter­actions link the mol­ecules into a three-dimensional network. The dihedral angle between the mean planes of the benzene and the furan ring is 34.47 (6)°. The carbohydrazide moiety, i.e., the C=N—N—C=O fragment and the benzene ring are almost coplanar, with an angle of 6.75 (9)° between their mean planes.




no

Crystal structure and DFT computational studies of (E)-2,4-di-tert-butyl-6-{[3-(tri­fluoro­meth­yl)benz­yl]imino­meth­yl}phenol

The title compound, C23H28F3NO, is an ortho-hy­droxy Schiff base compound, which adopts the enol–imine tautomeric form in the solid state. The mol­ecular structure is not planar and the dihedral angle between the planes of the aromatic rings is 85.52 (10)°. The tri­fluoro­methyl group shows rotational disorder over two sites, with occupancies of 0.798 (6) and 0.202 (6). An intra­molecular O—H⋯N hydrogen bonding generates an S(6) ring motif. The crystal structure is consolidated by C—H⋯π inter­actions. The mol­ecular structure was optimized via density functional theory (DFT) methods with the B3LYP functional and LanL2DZ basis set. The theoretical structure is in good agreement with the experimental data. The frontier orbitals and mol­ecular electrostatic potential map were also examined by DFT computations.




no

Crystal structure and Hirshfeld surface analysis of 4-{[(anthracen-9-yl)meth­yl]amino}­benzoic acid di­methyl­formamide monosolvate

The title compound, C22H17NO2·C3H7NO, was synthesized by condensation of an aromatic aldehyde with a secondary amine and subsequent reduction. It was crystallized from a di­methyl­formamide solution as a monosolvate, C22H17NO2·C3H7NO. The aromatic mol­ecule is non-planar with a dihedral angle between the mean planes of the aniline moiety and the methyl anthracene moiety of 81.36 (8)°. The torsion angle of the Car­yl—CH2—NH—Car­yl backbone is 175.9 (2)°. The crystal structure exhibits a three-dimensional supra­molecular network, resulting from hydrogen-bonding inter­actions between the carb­oxy­lic OH group and the solvent O atom as well as between the amine functionality and the O atom of the carb­oxy­lic group and additional C—H⋯π inter­actions. Hirshfeld surface analysis was performed to qu­antify the inter­molecular inter­actions.




no

Radiation damage in small-molecule crystallography: fact not fiction

Traditionally small-molecule crystallographers have not usually observed or recognized significant radiation damage to their samples during diffraction experiments. However, the increased flux densities provided by third-generation synchrotrons have resulted in increasing numbers of observations of this phenomenon. The diversity of types of small-molecule systems means it is not yet possible to propose a general mechanism for their radiation-induced sample decay, however characterization of the effects will permit attempts to understand and mitigate it. Here, systematic experiments are reported on the effects that sample temperature and beam attenuation have on radiation damage progression, allowing qualitative and quantitative assessment of their impact on crystals of a small-molecule test sample. To allow inter-comparison of different measurements, radiation-damage metrics (diffraction-intensity decline, resolution fall-off, scaling B-factor increase) are plotted against the absorbed dose. For ease-of-dose calculations, the software developed for protein crystallography, RADDOSE-3D, has been modified for use in small-molecule crystallography. It is intended that these initial experiments will assist in establishing protocols for small-molecule crystallographers to optimize the diffraction signal from their samples prior to the onset of the deleterious effects of radiation damage.




no

Energetics of interactions in the solid state of 2-hydroxy-8-X-quinoline derivatives (X = Cl, Br, I, S-Ph): comparison of Hirshfeld atom, X-ray wavefunction and multipole refinements

In this work, two methods of high-resolution X-ray data refinement: multipole refinement (MM) and Hirshfeld atom refinement (HAR) – together with X-ray wavefunction refinement (XWR) – are applied to investigate the refinement of positions and anisotropic thermal motion of hydrogen atoms, experiment-based reconstruction of electron density, refinement of anharmonic thermal vibrations, as well as the effects of excluding the weakest reflections in the refinement. The study is based on X-ray data sets of varying quality collected for the crystals of four quinoline derivatives with Cl, Br, I atoms and the -S-Ph group as substituents. Energetic investigations are performed, comprising the calculation of the energy of intermolecular interactions, cohesive and geometrical relaxation energy. The results obtained for experimentally derived structures are verified against the values calculated for structures optimized using dispersion-corrected periodic density functional theory. For the high-quality data sets (the Cl and -S-Ph compounds), both MM and XWR could be successfully used to refine the atomic displacement parameters and the positions of hydrogen atoms; however, the bond lengths obtained with XWR were more precise and closer to the theoretical values. In the application to the more challenging data sets (the Br and I compounds), only XWR enabled free refinement of hydrogen atom geometrical parameters, nevertheless, the results clearly showed poor data quality. For both refinement methods, the energy values (intermolecular interactions, cohesive and relaxation) calculated for the experimental structures were in similar agreement with the values associated with the optimized structures – the most significant divergences were observed when experimental geometries were biased by poor data quality. XWR was found to be more robust in avoiding incorrect distortions of the reconstructed electron density as a result of data quality issues. Based on the problem of anharmonic thermal motion refinement, this study reveals that for the most correct interpretation of the obtained results, it is necessary to use the complete data set, including the weak reflections in order to draw conclusions.




no

1 kHz fixed-target serial crystallography using a multilayer monochromator and an integrating pixel detector

Reliable sample delivery and efficient use of limited beam time have remained bottlenecks for serial crystallography (SX). Using a high-intensity polychromatic X-ray beam in combination with a newly developed charge-integrating JUNGFRAU detector, we have applied the method of fixed-target SX to collect data at a rate of 1 kHz at a synchrotron-radiation facility. According to our data analysis for the given experimental conditions, only about 3 000 diffraction patterns are required for a high-quality diffraction dataset. With indexing rates of up to 25%, recording of such a dataset takes less than 30 s.




no

Crystal structure of the putative cyclase IdmH from the indanomycin nonribosomal peptide synthase/polyketide synthase

Indanomycin is biosynthesized by a hybrid nonribosomal peptide synthase/polyketide synthase (NRPS/PKS) followed by a number of `tailoring' steps to form the two ring systems that are present in the mature product. It had previously been hypothesized that the indane ring of indanomycin was formed by the action of IdmH using a Diels–Alder reaction. Here, the crystal structure of a selenomethionine-labelled truncated form of IdmH (IdmH-Δ99–107) was solved using single-wavelength anomalous dispersion (SAD) phasing. This truncated variant allows consistent and easy crystallization, but importantly the structure was used as a search model in molecular replacement, allowing the full-length IdmH structure to be determined to 2.7 Å resolution. IdmH is a homodimer, with the individual protomers consisting of an α+β barrel. Each protomer contains a deep hydrophobic pocket which is proposed to constitute the active site of the enzyme. To investigate the reaction catalysed by IdmH, 88% of the backbone NMR resonances were assigned, and using chemical shift perturbation of [15N]-labelled IdmH it was demonstrated that indanomycin binds in the active-site pocket. Finally, combined quantum mechanical/molecular mechanical (QM/MM) modelling of the IdmH reaction shows that the active site of the enzyme provides an appropriate environment to promote indane-ring formation, supporting the assignment of IdmH as the key Diels–Alderase catalysing the final step in the biosynthesis of indanomycin through a similar mechanism to other recently characterized Diels–Alderases involved in polyketide-tailoring reactions. An animated Interactive 3D Complement (I3DC) is available in Proteopedia at https://proteopedia.org/w/Journal:IUCrJ:S2052252519012399.




no

Refinement for single-nanoparticle structure determination from low-quality single-shot coherent diffraction data

With the emergence of X-ray free-electron lasers, it is possible to investigate the structure of nanoscale samples by employing coherent diffractive imaging in the X-ray spectral regime. In this work, we developed a refinement method for structure reconstruction applicable to low-quality coherent diffraction data. The method is based on the gradient search method and considers the missing region of a diffraction pattern and the small number of detected photons. We introduced an initial estimate of the structure in the method to improve the convergence. The present method is applied to an experimental diffraction pattern of an Xe cluster obtained in an X-ray scattering experiment at the SPring-8 Angstrom Compact free-electron LAser (SACLA) facility. It is found that the electron density is successfully reconstructed from the diffraction pattern with a large missing region, with a good initial estimate of the structure. The diffraction pattern calculated from the reconstructed electron density reproduced the observed diffraction pattern well, including the characteristic intensity modulation in each ring. Our refinement method enables structure reconstruction from diffraction patterns under difficulties such as missing areas and low diffraction intensity, and it is potentially applicable to the structure determination of samples that have low scattering power.




no

Charge density view on bicalutamide molecular interactions in the monoclinic polymorph and androgen receptor binding pocket

High-resolution single-crystal X-ray measurements of the monoclinic polymorph of bicalutamide and the aspherical atom databank approach have served as a basis for a reconstruction of the charge density distribution of the drug and its androgen receptor (AR) and albumin complexes. The contributions of various types of intermolecular interactions to the total crystal energy or ligand:AR energy were estimated. The cyan and amide groups secured the ligand placement in the albumin (Lys-137) and the AR binding pocket (Leu-704, Asn-705, Arg-752), and also determined the packing of the small-molecule crystals. The total electrostatic interaction energy on average was −230 kJ mol−1, comparable with the electrostatic lattice energy of the monoclinic bicalutamide polymorph. This is the result of similar distributions of electropositive and electronegative regions on the experimental and theoretical molecular electrostatic potential maps despite differences in molecular conformations. In general, bicalutamide interacted with the studied proteins with similar electrostatic interaction energies and adjusted its conformation and electrostatic potential to fit the binding pocket in such a way as to enhance the interactions, e.g. hydrogen bonds and π⋯π stacking.




no

Structural and kinetic insights into flavin-containing monooxygenase and calponin-homology domains in human MICAL3

MICAL is an oxidoreductase that participates in cytoskeleton reorganization via actin disassembly in the presence of NADPH. Although three MICALs (MICAL1, MICAL2 and MICAL3) have been identified in mammals, only the structure of mouse MICAL1 has been reported. Here, the first crystal structure of human MICAL3, which contains the flavin-containing monooxygenase (FMO) and calponin-homology (CH) domains, is reported. MICAL3 has an FAD/NADP-binding Rossmann-fold domain for mono­oxygenase activity like MICAL1. The FMO and CH domains of both MICAL3 and MICAL1 are highly similar in structure, but superimposition of the two structures shows a different relative position of the CH domain in the asymmetric unit. Based on kinetic analyses, the catalytic efficiency of MICAL3 dramatically increased on adding F-actin only when the CH domain was available. However, this did not occur when two residues, Glu213 and Arg530, were mutated in the FMO and CH domains, respectively. Overall, MICAL3 is structurally highly similar to MICAL1, which suggests that they may adopt the same catalytic mechanism, but the difference in the relative position of the CH domain produces a difference in F-actin substrate specificity.




no

Distinguishing contributions of ceramic matrix and binder metal to the plasticity of nanocrystalline cermets

Using the typical WC–Co cemented carbide as an example, the interactions of dislocations within the ceramic matrix and the binder metal, as well as the possible cooperation and competition between the matrix and binder during deformation of the nanocrystalline cermets, were studied by molecular dynamics simulations. It was found that at the same level of strain, the dislocations in Co have more complex configurations in the cermet with higher Co content. With loading, the ratio between mobile and sessile dislocations in Co becomes stable earlier in the high-Co cermet. The strain threshold for the nucleation of dislocations in WC increases with Co content. At the later stage of deformation, the growth rate of WC dislocation density increases more rapidly in the cermet with lower Co content, which exhibits an opposite tendency compared with Co dislocation density. The relative contribution of Co and WC to the plasticity of the cermet varies in the deformation process. With a low Co content, the density of WC dislocations becomes higher than that of Co dislocations at larger strains, indicating that WC may contribute more than Co to the plasticity of the nanocrystalline cermet at the final deformation stage. The findings in the present work will be applicable to a large variety of ceramic–metal composite materials.




no

Cascading transitions toward unconventional charge density wave states in the quasi-two-dimensional monophosphate tungsten bronze P4W16O56

Single crystals of the m = 8 member of the low-dimensional monophosphate tungsten bronzes (PO2)4(WO3)2m family were grown by chemical vapour transport technique and the high crystalline quality obtained allowed a reinvestigation of the physical and structural properties. Resistivity measurements revealed three anomalies at TC1 = 258 K, TC2 = 245 K and TC3 = 140 K, never observed until now. Parallel X-ray diffraction investigations showed a specific signature associated with three structural transitions, i.e. the appearance of different sets of satellite reflections below TC1, TC2 and TC3. Several harmonics of intense satellite reflections were observed, reflecting the non-sinusoidal nature of the structural modulations and a strong electron–phonon coupling in the material. These transitions could be associated with the formation of three successive unconventional charge density wave states.




no

On the mechanism of solid-state phase transitions in molecular crystals – the role of cooperative motion in (quasi)racemic linear amino acids

During single-crystal-to-single-crystal (SCSC) phase transitions, a polymorph of a compound can transform to a more stable form while remaining in the solid state. By understanding the mechanism of these transitions, strategies can be developed to control this phenomenon. This is particularly important in the pharmaceutical industry, but also relevant for other industries such as the food and agrochemical industries. Although extensive literature exists on SCSC phase transitions in inorganic crystals, it is unclear whether their classications and mechanisms translate to molecular crystals, with weaker interactions and more steric hindrance. A comparitive study of SCSC phase transitions in aliphatic linear-chain amino acid crystals, both racemates and quasi-racemates, is presented. A total of 34 transitions are considered and most are classified according to their structural change during the transition. Transitions without torsional changes show very different characteristics, such as transition temperature, enthalpy and free energy, compared with transitions that involve torsional changes. These differences can be rationalized using classical nucleation theory and in terms of a difference in mechanism; torsional changes occur in a molecule-by-molecule fashion, whereas transitions without torsional changes involve cooperative motion with multiple molecules at the same time.




no

Characterizing crystalline defects in single nanoparticles from angular correlations of single-shot diffracted X-rays

Characterizing and controlling the uniformity of nanoparticles is crucial for their application in science and technology because crystalline defects in the nanoparticles strongly affect their unique properties. Recently, ultra-short and ultra-bright X-ray pulses provided by X-ray free-electron lasers (XFELs) opened up the possibility of structure determination of nanometre-scale matter with Å spatial resolution. However, it is often difficult to reconstruct the 3D structural information from single-shot X-ray diffraction patterns owing to the random orientation of the particles. This report proposes an analysis approach for characterizing defects in nanoparticles using wide-angle X-ray scattering (WAXS) data from free-flying single nanoparticles. The analysis method is based on the concept of correlated X-ray scattering, in which correlations of scattered X-ray are used to recover detailed structural information. WAXS experiments of xenon nanoparticles, or clusters, were conducted at an XFEL facility in Japan by using the SPring-8 Ångstrom compact free-electron laser (SACLA). Bragg spots in the recorded single-shot X-ray diffraction patterns showed clear angular correlations, which offered significant structural information on the nanoparticles. The experimental angular correlations were reproduced by numerical simulation in which kinematical theory of diffraction was combined with geometric calculations. We also explain the diffuse scattering intensity as being due to the stacking faults in the xenon clusters.




no

The active form of quinol-dependent nitric oxide reductase from Neisseria meningitidis is a dimer

Neisseria meningitidis is carried by nearly a billion humans, causing developmental impairment and over 100 000 deaths a year. A quinol-dependent nitric oxide reductase (qNOR) plays a critical role in the survival of the bacterium in the human host. X-ray crystallographic analyses of qNOR, including that from N. meningitidis (NmqNOR) reported here at 3.15 Å resolution, show monomeric assemblies, despite the more active dimeric sample being used for crystallization. Cryo-electron microscopic analysis of the same chromatographic fraction of NmqNOR, however, revealed a dimeric assembly at 3.06 Å resolution. It is shown that zinc (which is used in crystallization) binding near the dimer-stabilizing TMII region contributes to the disruption of the dimer. A similar destabilization is observed in the monomeric (∼85 kDa) cryo-EM structure of a mutant (Glu494Ala) qNOR from the opportunistic pathogen Alcaligenes (Achromobacter) xylosoxidans, which primarily migrates as a monomer. The monomer–dimer transition of qNORs seen in the cryo-EM and crystallographic structures has wider implications for structural studies of multimeric membrane proteins. X-ray crystallographic and cryo-EM structural analyses have been performed on the same chromatographic fraction of NmqNOR to high resolution. This represents one of the first examples in which the two approaches have been used to reveal a monomeric assembly in crystallo and a dimeric assembly in vitrified cryo-EM grids. A number of factors have been identified that may trigger the destabilization of helices that are necessary to preserve the integrity of the dimer. These include zinc binding near the entry of the putative proton-transfer channel and the preservation of the conformational integrity of the active site. The mutation near the active site results in disruption of the active site, causing an additional destabilization of helices (TMIX and TMX) that flank the proton-transfer channel helices, creating an inert monomeric enzyme.




no

Atomic structures determined from digitally defined nanocrystalline regions

Nanocrystallography has transformed our ability to interrogate the atomic structures of proteins, peptides, organic molecules and materials. By probing atomic level details in ordered sub-10 nm regions of nanocrystals, scanning nanobeam electron diffraction extends the reach of nanocrystallography and in principle obviates the need for diffraction from large portions of one or more crystals. Scanning nanobeam electron diffraction is now applied to determine atomic structures from digitally defined regions of beam-sensitive peptide nanocrystals. Using a direct electron detector, thousands of sparse diffraction patterns over multiple orientations of a given crystal are recorded. Each pattern is assigned to a specific location on a single nanocrystal with axial, lateral and angular coordinates. This approach yields a collection of patterns that represent a tilt series across an angular wedge of reciprocal space: a scanning nanobeam diffraction tomogram. Using this diffraction tomogram, intensities can be digitally extracted from any desired region of a scan in real or diffraction space, exclusive of all other scanned points. Intensities from multiple regions of a crystal or from multiple crystals can be merged to increase data completeness and mitigate missing wedges. It is demonstrated that merged intensities from digitally defined regions of two crystals of a segment from the OsPYL/RCAR5 protein produce fragment-based ab initio solutions that can be refined to atomic resolution, analogous to structures determined by selected-area electron diffraction. In allowing atomic structures to now be determined from digitally outlined regions of a nanocrystal, scanning nanobeam diffraction tomography breaks new ground in nanocrystallography.




no

Non-merohedral twinning: from minerals to proteins

In contrast to twinning by merohedry, the reciprocal lattices of the different domains of non-merohedral twins do not overlap exactly. This leads to three kinds of reflections: reflections with no overlap, reflections with an exact overlap and reflections with a partial overlap of a reflection from a second domain. This complicates the unit-cell determination, indexing, data integration and scaling of X-ray diffraction data. However, with hindsight it is possible to detwin the data because there are reflections that are not affected by the twinning. In this article, the successful solution and refinement of one mineral, one organometallic and two protein non-merohedral twins using a common strategy are described. The unit-cell constants and the orientation matrices were determined by the program CELL_NOW. The data were then integrated with SAINT. TWINABS was used for scaling, empirical absorption corrections and the generation of two different data files, one with detwinned data for structure solution and refinement and a second one for (usually more accurate) structure refinement against total integrated intensities. The structures were solved by experimental phasing using SHELXT for the first two structures and SHELXC/D/E for the two protein structures; all models were refined with SHELXL.




no

The flavin mononucleotide cofactor in α-hydroxyacid oxidases exerts its electrophilic/nucleophilic duality in control of the substrate-oxidation level

The Y128F single mutant of p-hydroxymandelate oxidase (Hmo) is capable of oxidizing mandelate to benzoate via a four-electron oxidative decarboxylation reaction. When benzoylformate (the product of the first two-electron oxidation) and hydrogen peroxide (an oxidant) were used as substrates the reaction did not proceed, suggesting that free hydrogen peroxide is not the committed oxidant in the second two-electron oxidation. How the flavin mononucleotide (FMN)-dependent four-electron oxidation reaction takes place remains elusive. Structural and biochemical explorations have shed new light on this issue. 15 high-resolution crystal structures of Hmo and its mutants liganded with or without a substrate reveal that oxidized FMN (FMNox) possesses a previously unknown electrophilic/nucleophilic duality. In the Y128F mutant the active-site perturbation ensemble facilitates the polarization of FMNox to a nucleophilic ylide, which is in a position to act on an α-ketoacid, forming an N5-acyl-FMNred dead-end adduct. In four-electron oxidation, an intramolecular disproportion­ation reaction via an N5-alkanol-FMNred C'α carbanion intermediate may account for the ThDP/PLP/NADPH-independent oxidative decarboxylation reaction. A synthetic 5-deaza-FMNox cofactor in combination with an α-hydroxyamide or α-ketoamide biochemically and structurally supports the proposed mechanism.




no

Identifying dynamic, partially occupied residues using anomalous scattering

Although often presented as taking single `snapshots' of the conformation of a protein, X-ray crystallography provides an averaged structure over time and space within the crystal. The important but difficult task of characterizing structural ensembles in crystals is typically limited to small conformational changes, such as multiple side-chain conformations. A crystallographic method was recently introduced that utilizes residual electron and anomalous density (READ) to characterize structural ensembles encompassing large-scale structural changes. Key to this method is an ability to accurately measure anomalous signals and distinguish them from noise or other anomalous scatterers. This report presents an optimized data-collection and analysis strategy for partially occupied iodine anomalous signals. Using the long-wavelength-optimized beamline I23 at Diamond Light Source, the ability to accurately distinguish the positions of anomalous scatterers with occupancies as low as ∼12% is demonstrated. The number and positions of these anomalous scatterers are consistent with previous biophysical, kinetic and structural data that suggest that the protein Im7 binds to the chaperone Spy in multiple partially occupied conformations. Finally, READ selections demonstrate that re-measured data using the new protocols are consistent with the previously characterized structural ensemble of the chaperone Spy with its client Im7. This study shows that a long-wavelength beamline results in easily validated anomalous signals that are strong enough to be used to detect and characterize highly disordered sections of crystal structures.




no

Noncrystallographic symmetry-constrained map obtained by direct density optimization

Noncrystallographic symmetry (NCS) averaging following molecular-replacement phasing is generally the major technique used to solve a structure with several molecules in one asymmetric unit, such as a spherical icosahedral viral particle. As an alternative method to NCS averaging, a new approach to optimize or to refine the electron density directly under NCS constraints is proposed. This method has the same effect as the conventional NCS-averaging method but does not include the process of Fourier synthesis to generate the electron density from amplitudes and the corresponding phases. It has great merit for the solution of structures with limited data that are either twinned or incomplete at low resolution. This method was applied to the case of the T = 1 shell-domain subviral particle of Penaeus vannamei nodavirus with data affected by twinning using the REFMAC5 refinement software.




no

Pressure-induced transformation of CH3NH3PbI3: the role of the noble-gas pressure transmitting media

The photovoltaic perovskite, methyl­ammonium lead triiodide [CH3NH3PbI3 (MAPbI3)], is one of the most efficient materials for solar energy conversion. Various kinds of chemical and physical modifications have been applied to MAPbI3 towards better understanding of the relation between composition, structure, electronic properties and energy conversion efficiency of this material. Pressure is a particularly useful tool, as it can substantially reduce the interatomic spacing in this relatively soft material and cause significant modifications to the electronic structure. Application of high pressure induces changes in the crystal symmetry up to a threshold level above which it leads to amorphization. Here, a detailed structural study of MAPbI3 at high hydro­static pressures using Ne and Ar as pressure transmitting media is reported. Single-crystal X-ray diffraction experiments with synchrotron radiation at room temperature in the 0–20 GPa pressure range show that atoms of both gaseous media, Ne and Ar, are gradually incorporated into MAPbI3, thus leading to marked structural changes of the material. Specifically, Ne stabilizes the high-pressure phase of NexMAPbI3 and prevents amorphization up to 20 GPa. After releasing the pressure, the crystal has the composition of Ne0.97MAPbI3, which remains stable under ambient conditions. In contrast, above 2.4 GPa, Ar accelerates an irreversible amorphization. The distinct impacts of Ne and Ar are attributed to differences in their chemical reactivity under pressure inside the restricted space between the PbI6 octahedra.




no

Structural elucidation of triclinic and monoclinic SFCA-III – killing two birds with one stone

A part of the system CaO-SiO2–Al2O3–Fe2O3–MgO which is of relevance to iron-ore sintering has been studied in detail. For a bulk composition corresponding to 10.45 wt% CaO, 5.49 wt% MgO, 69.15 wt% Fe2O3, 13.37 wt% Al2O3 and 1.55 wt% SiO2 synthesis runs have been performed in air in the range between 1100 and 1300°C. Products have been characterized using reflected-light microscopy, electron microprobe analysis and diffraction techniques. At 1250°C, an almost phase-pure material with composition Ca2.99Mg2.67Fe3+14.58Fe2+0.77Al4.56Si0.43O36 has been obtained. The compound corresponds to the first Si-containing representative of the M14+6nO20+8n polysomatic series of so-called SFCA phases (Silico-Ferrites of Calcium and Aluminum) with n = 2 and is denoted as SFCA-III. Single-crystal diffraction investigations using synchrotron radiation at the X06DA beamline of the Swiss Light Source revealed that the chemically homogenous sample contained both a triclinic and monoclinic polytype. Basic crystallographic data are as follows: triclinic form: a = 10.3279 (2) Å, b = 10.4340 (2) Å, c = 14.3794 (2) Å, α = 93.4888 (12)°, β = 107.3209 (14)° and γ = 109.6626 (14)°, V = 1370.49 (5) Å3, Z = 2, space group P{overline 1}; monoclinic form: a = 10.3277 (2) Å, b = 27.0134 (4) Å, c = 10.4344 (2) Å, β = 109.668 (2)°, V = 2741.22 (9) Å3, Z = 4, space group P21/n. Structure determination of both modifications was successful using diffraction data from the same allotwinned crystal. A description of the observed polytypism within the framework of OD-theory is presented. Triclinic and monoclinic SFCA-III actually correspond to the two possible maximum degree of order structures based on OD-layers containing three spinel (S) and one pyroxene (P) modules (〈S3P〉). The existence of SFCA-III in industrial iron-ore sinters has yet to be confirmed. Polytypism is likely to occur in other SFCA-members (SFCA, SFCA-I) relevant to sintering as well, but has so far been neglected in the characterization of industrial samples. Our results shed light on this phenomenon and may therefore be also helpful for better interpretation of the powder diffraction patterns that are used for phase analysis of iron-ore sinters.




no

Quantitative three-dimensional nondestructive imaging of whole anaerobic ammonium-oxidizing bacteria

Anaerobic ammonium-oxidizing (anammox) bacteria play a key role in the global nitrogen cycle and in nitrogenous wastewater treatment. The anammox bacteria ultrastructure is unique and distinctly different from that of other prokaryotic cells. The morphological structure of an organism is related to its function; however, research on the ultrastructure of intact anammox bacteria is lacking. In this study, in situ three-dimensional nondestructive ultrastructure imaging of a whole anammox cell was performed using synchrotron soft X-ray tomography (SXT) and the total variation-based simultaneous algebraic reconstruction technique (TV-SART). Statistical and quantitative analyses of the intact anammox bacteria were performed. High soft X-ray absorption composition inside anammoxosome was detected and verified to be relevant to iron-binding protein. On this basis, the shape adaptation of the anammox bacteria response to iron was explored.




no

Versatile compact heater design for in situ nano-tomography by transmission X-ray microscopy

A versatile, compact heater designed at National Synchrotron Light Source-II for in situ X-ray nano-imaging in a full-field transmission X-ray microscope is presented. Heater design for nano-imaging is challenging, combining tight spatial constraints with stringent design requirements for the temperature range and stability. Finite-element modeling and analytical calculations were used to determine the heater design parameters. Performance tests demonstrated reliable and stable performance, including maintaining the exterior casing close to room temperature while the heater is operating at above 1100°C, a homogenous heating zone and small temperature fluctuations. Two scientific experiments are presented to demonstrate the heater capabilities: (i) in situ 3D nano-tomography including a study of metal dealloying in a liquid molten salt extreme environment, and (ii) a study of pore formation in icosahedral quasicrystals. The progression of structural changes in both studies were clearly resolved in 3D, showing that the new heater enables powerful capabilities to directly visualize and quantify 3D morphological evolution of materials under real conditions by X-ray nano-imaging at elevated temperature during synthesis, fabrication and operation processes. This heater design concept can be applied to other applications where a precise, compact heater design is required.




no

LamNI – an instrument for X-ray scanning microscopy in laminography geometry

Across all branches of science, medicine and engineering, high-resolution microscopy is required to understand functionality. Although optical methods have been developed to `defeat' the diffraction limit and produce 3D images, and electrons have proven ever more useful in creating pictures of small objects or thin sections, so far there is no substitute for X-ray microscopy in providing multiscale 3D images of objects with a single instrument and minimal labeling and preparation. A powerful technique proven to continuously access length scales from 10 nm to 10 µm is ptychographic X-ray computed tomography, which, on account of the orthogonality of the tomographic rotation axis to the illuminating beam, still has the limitation of necessitating pillar-shaped samples of small (ca 10 µm) diameter. Large-area planar samples are common in science and engineering, and it is therefore highly desirable to create an X-ray microscope that can examine such samples without the extraction of pillars. Computed laminography, where the axis of rotation is not perpendicular to the illumination direction, solves this problem. This entailed the development of a new instrument, LamNI, dedicated to high-resolution 3D scanning X-ray microscopy via hard X-ray ptychographic laminography. Scanning precision is achieved by a dedicated interferometry scheme and the instrument covers a scan range of 12 mm × 12 mm with a position stability of 2 nm and positioning errors below 5 nm. A new feature of LamNI is a pair of counter-rotating stages carrying the sample and interferometric mirrors, respectively.




no

Laser-induced metastable mixed phase of AuNi nanoparticles: a coherent X-ray diffraction imaging study

The laser annealing process for AuNi nanoparticles has been visualized using coherent X-ray diffraction imaging (CXDI). AuNi bimetallic alloy nanoparticles, originally phase separated due to the miscibility gap, transform to metastable mixed alloy particles with rounded surface as they are irradiated by laser pulses. A three-dimensional CXDI shows that the internal part of the AuNi particles is in the mixed phase with preferred compositions at ∼29 at% of Au and ∼90 at% of Au.




no

Estimating signal and noise of time-resolved X-ray solution scattering data at synchrotrons and XFELs

Elucidating the structural dynamics of small molecules and proteins in the liquid solution phase is essential to ensure a fundamental understanding of their reaction mechanisms. In this regard, time-resolved X-ray solution scattering (TRXSS), also known as time-resolved X-ray liquidography (TRXL), has been established as a powerful technique for obtaining the structural information of reaction intermediates and products in the liquid solution phase and is expected to be applied to a wider range of molecules in the future. A TRXL experiment is generally performed at the beamline of a synchrotron or an X-ray free-electron laser (XFEL) to provide intense and short X-ray pulses. Considering the limited opportunities to use these facilities, it is necessary to verify the plausibility of a target experiment prior to the actual experiment. For this purpose, a program has been developed, referred to as S-cube, which is short for a Solution Scattering Simulator. This code allows the routine estimation of the shape and signal-to-noise ratio (SNR) of TRXL data from known experimental parameters. Specifically, S-cube calculates the difference scattering curve and the associated quantum noise on the basis of the molecular structure of the target reactant and product, the target solvent, the energy of the pump laser pulse and the specifications of the beamline to be used. Employing a simplified form for the pair-distribution function required to calculate the solute–solvent cross term greatly increases the calculation speed as compared with a typical TRXL data analysis. Demonstrative applications of S-cube are presented, including the estimation of the expected TRXL data and SNR level for the future LCLS-II HE beamlines.




no

Comment on the article The nanodiffraction problem




no

Response to Zbigniew Kaszkur's comment on the article The nanodiffraction problem




no

A novel methodology to study nanoporous alumina by small-angle neutron scattering

Nanoporous anodic aluminium oxide (AAO) membranes are promising host systems for confinement of condensed matter. Characterizing their structure and composition is thus of primary importance for studying the behavior of confined objects. Here a novel methodology to extract quantitative information on the structure and composition of well defined AAO membranes by combining small-angle neutron scattering (SANS) measurements and scanning electron microscopy (SEM) imaging is reported. In particular, (i) information about the pore hexagonal arrangement is extracted from SEM analysis, (ii) the best SANS experimental conditions to perform reliable measurements are determined and (iii) a detailed fitting method is proposed, in which the probed length in the fitting model is a critical parameter related to the longitudinal pore ordering. Finally, to validate this strategy, it is applied to characterize AAOs prepared under different conditions and it is shown that the experimental SANS data can be fully reproduced by a core/shell model, indicating the existence of a contaminated shell. This original approach, based on a detailed and complete description of the SANS data, can be applied to a variety of confining media and will allow the further investigation of condensed matter under confinement.




no

Crystallography at the nanoscale: planar defects in ZnO nanospikes

The examination of anisotropic nanostructures, such as wires, platelets or spikes, inside a transmission electron microscope is normally performed only in plan view. However, intrinsic defects such as growth twin interfaces could occasionally be concealed from direct observation for geometric reasons, leading to superposition. This article presents the shadow-focused ion-beam technique to prepare multiple electron-beam-transparent cross-section specimens of ZnO nanospikes, via a procedure which could be readily extended to other anisotropic structures. In contrast with plan-view data of the same nanospikes, here the viewing direction allows the examination of defects without superposition. By this method, the coexistence of two twin configurations inside the wurtzite-type structure is observed, namely [2 {overline 1} {overline 1} 0]^{ m W}/(0 1 {overline 1} 1) and [2 {overline 1} {overline 1} 0]^{ m W}/(0 1 {overline 1} 3), which were not identified during the plan-view observations owing to superposition of the domains. The defect arrangement could be the result of coalescence twinning of crystalline nuclei formed on the partially molten Zn substrate during the flame-transport synthesis. Three-dimensional defect models of the twin interface structures have been derived and are correlated with the plan-view investigations by simulation.




no

Recent developments in the Inorganic Crystal Structure Database: theoretical crystal structure data and related features

The Inorganic Crystal Structure Database (ICSD) is the world's largest database of fully evaluated and published crystal structure data, mostly obtained from experimental results. However, the purely experimental approach is no longer the only route to discover new compounds and structures. In the past few decades, numerous computational methods for simulating and predicting structures of inorganic solids have emerged, creating large numbers of theoretical crystal data. In order to take account of these new developments the scope of the ICSD was extended in 2017 to include theoretical structures which are published in peer-reviewed journals. Each theoretical structure has been carefully evaluated, and the resulting CIF has been extended and standardized. Furthermore, a first classification of theoretical data in the ICSD is presented, including additional categories used for comparison of experimental and theoretical information.




no

Real- and Q-space travelling: multi-dimensional distribution maps of crystal-lattice strain (∊044) and tilt of suspended monolithic silicon nanowire structures

Silicon nanowire-based sensors find many applications in micro- and nano-electromechanical systems, thanks to their unique characteristics of flexibility and strength that emerge at the nanoscale. This work is the first study of this class of micro- and nano-fabricated silicon-based structures adopting the scanning X-ray diffraction microscopy technique for mapping the in-plane crystalline strain (∊044) and tilt of a device which includes pillars with suspended nanowires on a substrate. It is shown how the micro- and nanostructures of this new type of nanowire system are influenced by critical steps of the fabrication process, such as electron-beam lithography and deep reactive ion etching. X-ray analysis performed on the 044 reflection shows a very low level of lattice strain (<0.00025 Δd/d) but a significant degree of lattice tilt (up to 0.214°). This work imparts new insights into the crystal structure of micro- and nanomaterial-based sensors, and their relationship with critical steps of the fabrication process.




no

The nondestructive measurement of strain distributions in air plasma sprayed thermal barrier coatings as a function of depth from entire Debye–Scherrer rings

The residual strain distribution has been measured as a function of depth in both top coat and bond coat in as-received and heat-treated air plasma sprayed thermal barrier coating samples. High-energy synchrotron X-ray beams were used in transmission to produce full Debye–Scherrer rings whose non-circular aspect ratio gave the in-plane and out-of-plane strains far more efficiently than the sin2ψ method. The residual strain in the bond coat is found to be tensile and the strain in the β phase of the as-received sample was measured. The residual strains observed in the top coat were generally compressive (increasing towards the interface), with two kinds of nonlinear trend. These was a `jump' feature near the interface, and in some cases there was another `jump' feature near the surface. It is shown how these trend differences can be correlated to cracks in the coating.




no

Quantifying nanoparticles in clays and soils with a small-angle X-ray scattering method

Clays and soils produce strong small-angle X-ray scattering (SAXS) because they contain large numbers of nanoparticles, namely allophane and ferrihydrite. These nanoparticles are amorphous and have approximately spherical shape with a size of around 3–10 nm. The weight ratios of these nanoparticles will affect the properties of the clays and soils. However, the nanoparticles in clays and soils are not generally quantified and are sometimes ignored because there is no standard method to quantify them. This paper describes a method to quantify nanoparticles in clays and soils with SAXS. This is achieved by deriving normalized SAXS intensities from unit weight of the sample, which are not affected by absorption. By integrating the normalized SAXS intensities over the reciprocal space, one obtains a value that is proportional to the weight ratio of the nanoparticles, proportional to the square of the difference of density between the nanoparticles and the liquid surrounding the nanoparticles, and inversely proportional to the density of the nanoparticles. If the density of the nanoparticles is known, the weight ratio of the nanoparticles can be calculated from the SAXS intensities. The density of nanoparticles was estimated from the chemical composition of the sample. Nanoparticles in colloidal silica, silica gels, mixtures of silica gel and α-aluminium oxide, and synthetic clays have been quantified with the integral SAXS method. The results show that the errors of the weight ratios of nanoparticles are around 25% of the weight ratio. It is also shown that some natural clays contain large fractions of nanoparticles; montmorillonite clay from the Mikawa deposit, pyrophillite clay from the Shokozan deposit and kaolinite clay from the Kanpaku deposit contain 25 (7), 10 (2) and 19 (5) wt% nanoparticles, respectively, where errors are shown in parentheses.




no

Shape-fitting analyses of two-dimensional X-ray diffraction spots for strain-distribution evaluation in a β-FeSi2 nanofilm

New fitting analyses of two-dimensional diffraction-spot shapes are demonstrated to evaluate strain, strain distribution and domain size in a crystalline ultra-thin film. The evaluations are displayed as residual and population maps as a function of strain or domain size.




no

Local orientational order in self-assembled nanoparticle films: the role of ligand composition and salt

An X-ray cross-correlation study of the impact of ligand composition and salt content on the self-assembly of soft-shell nanoparticles is presented, indicating symmetry-selective formation of order.




no

High-resolution phonon energy shift measurements with the inelastic neutron spin echo technique

An energy resolution of <10 µeV for the measurement of phonon energy change is achieved with the inelastic neutron spin echo technique on a conventional neutron triple-axis spectrometer.