no

Di­bromido­[N-(1-di­ethyl­amino-1-oxo-3-phenyl­propan-2-yl)-N'-(pyridin-2-yl)imidazol-2-yl­idene]palladium(II) di­chloro­methane monosolvate

In the mol­ecule of the title N,N'-disubstituted imidazol-2-yl­idene palladium(II) complex, [PdBr2(C21H24N4O)]·CH2Cl2, the palladium(II) atom adopts a slightly distorted square-planar coordination (r.m.s. deviation = 0.0145 Å), and the five-membered chelate ring is almost planar [maximum displacement = 0.015 (8) Å]. The mol­ecular conformation is enforced by intra­molecular C—H⋯Br hydrogen bonds. In the crystal, complex mol­ecules and di­chloro­methane mol­ecules are linked into a three-dimensional network by C—H⋯O and C—H⋯Br hydrogen bonds.




no

(2S,3S,4R,4a'R,5R,5a'R,11a'R,12'S,12a'R)-5-(Acet­oxy­meth­yl)-2',2',10',10'-tetra­methyl­octa­hydro-3H,8'H-spiro­[furan-2,7'-[1,3]dioxino[4',5':5,6]pyrano[3,2-d][1,3,6]trioxocine]-3,4,12'-triyl tri­a

While the crystal structure analysis of the title compound, C26H38O15, a synthetic derivative of sucrose, was originally reported 40 years ago [Drew et al. (1979). Carbohydr. Res. 71, 35–42], the present work has allowed for the determination of its absolute configuration through the application of resonant scattering techniques.




no

1,2,4,5-Tetra­chloro-3,6-di­iodo­benzene benzene monosolvate

The title compound, C6Cl4I2·C6H6, crystallizes from benzene solution as cube-shaped crystals in the triclinic space group Poverline{1} with Z = 1. The asymmetric unit of the crystal structure contains one half of each mol­ecule. In the crystal, the benzene ring is almost orthogonal to the perhalo­benzene ring and the mol­ecules are linked by C—I⋯π inter­actions, with a close contact between the iodine atom and the benzene ring of 3.412 (1) Å.




no

(1Z,2Z)-1,2-Bis{2-[3,5-bis­(tri­fluoro­meth­yl)phen­yl]hydrazinyl­idene}-1,2-bis­(4-meth­oxy­phen­yl)ethane including an unknown solvate

The complete mol­ecule of the title compound, C32H22F12N4O2, is generated by a crystallographic twofold axis aligned parallel to [010]. The F atoms of one of the CF3 groups are disordered over three orientations in a 0.6: 0.2: 0.2 ratio. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds, forming zigzag chains propagating along the a-axis direction. In addition, weak C—H⋯O and C—H⋯F bonds are observed. The contribution of the disordered solvent to the scattering was removed using the SQUEEZE routine [Spek (2015). Acta Cryst. C71, 9–18] of PLATON. The solvent contribution is not included in the reported mol­ecular weight and density.




no

1-(2-Amino-5-chloro­phen­yl)-2,2,2-tri­fluoro­ethan-1-one

In the title compound, C8H5ClF3NO, the F—C—C=O grouping shows a syn conformation [torsion angle = 1.1 (3)°] and an intra­molecular N—H⋯O hydrogen bond generates an S(6) ring. In the crystal, N—H⋯F and N—H⋯O hydrogen bonds link the mol­ecules into [010] chains.




no

(1,4,8,11-Tetra­aza­cyclo­tetra­deca­ne)palladium(II) diiodide monohydrate

In the title compound, [Pd(C10H24N4)]I2·H2O, the PdII ion is four-coordinated in a slightly distorted square-planar coordination environment defined by four N atoms from a 1,4,8,11-tetra­aza­cyclo­tetra­decane ligand. The cationic complex, two I− anions and the solvent water mol­ecule are linked through inter­molecular hydrogen bonds into a three-dimensional network structure.




no

(Pyridine-2,6-di­carboxyl­ato-κ3O,N,O')(2,2':6',2''- terpyridine-κ3N,N',N'')nickel(II) di­methyl­formamide monosolvate monohydrate

In the title complex, [Ni(C7H3NO4)(C15H11N3)]·C3H7NO·H2O, the NiII ion is six-coordinated within an octa­hedral geometry defined by three N atoms of the 2,2':6',2''-terpyridine ligand, and two O atoms and the N atom of the pyridine-2,6-di­carboxyl­ate di-anion. In the crystal, the complex mol­ecules are stacked in columns parallel to the a axis being connected by π–π stacking [closest inter-centroid separation between pyridyl rings = 3.669 (3) Å]. The connections between columns and solvent mol­ecules to sustain a three-dimensional architecture are of the type water-O—H⋯O(carbon­yl) and pyridyl-, methyl-C—H⋯O(carbon­yl).




no

S-Di­ethyl­amino-S-(3-methyl­benzoyl­imino)-S,S-di­phenyl­sulfonium tetra­fluoro­borate

The title salt, C24H27N2OS+·BF4−, was prepared by an alkyl­ation at the amino N atom attached to the sulfur atom of the corresponding sulfodi­imide. The configuration around the sulfur atom is a slightly distorted tetra­hedral geometry with two S—N bonds and two S—C bonds. The lengths of the S—N(di­ethyl­amine) and S=N(m-methyl­benzoyl­imine) bonds are 1.619 (2) and 1.551 (2) Å, respectively. The two N—S—N—C(eth­yl) and the N—S—N—C(m-methyl­benzoyl­imine) torsion angles are −85.43 (3), 58.94 (17) and 62.03 (16)°, respectively. The dihedral angle between the two phenyl rings is 84.03 (14)°. In the crystal, C—H⋯F hydrogen bonds link the cation and anion, forming a three-dimensional network.




no

Bis(μ2-4-nitro­phenolato)bis­(4-nitro­phenolato)di-μ3-oxido-octaphenyltetra­tin chloro­form sesquisolvate [+ solvate]: a tetra­nuclear stannoxane

The title tetra­nuclear stannoxane, [Sn4(C6H5)8(C6H4NO3)4O2]·1.5CHCl3·solvent, crystallized with two independent complex mol­ecules, A and B, in the asymmetric unit together with 1.5 mol­ecules of chloro­form. There is also a region of disordered electron density, which was corrected for using the SQUEEZE routine [Spek (2015). Acta Cryst. C71, 9–18]. The oxo-tin core of each complex is in a planar `ladder' arrangement and each Sn atom is fivefold SnO3C2 coordinated, with one tin centre having an almost perfect square-pyramidal coordination geometry, while the other three Sn centres have distorted shapes. In the crystal, the complex mol­ecules are arranged in layers, composed of A or B complexes, lying parallel to the bc plane. The complex mol­ecules are linked by a number of C—H⋯O hydrogen bonds within the layers and between the layers, forming a supra­molecular three-dimensional structure.




no

5,10-Di­hydro­indeno­[2,1-a]indene

The title compound, C16H12, crystallizes with four half mol­ecules in the asymmetric unit, each of which is located on a crystallographic centre of inversion. The mol­ecules are essentially planar. The crystal studied was a non-merohedral twin.




no

Bis(μ2-benzoato-κ2O,O')bis­(benzoato-κO)bis(ethanol-κO)bis­(μ3-hydroxido)hexa­kis­(μ-pyrazol­ato-κ2N,N')hexa­copper(II) ethanol disolvate

Trinuclear copper–pyrazolate entities are present in various Cu-based enzymes and nanojar supra­molecular arrangements. The reaction of copper(II) chloride with pyrazole (pzH) and sodium benzoate (benzNa) assisted by microwave radiation afforded a neutral centrosymmetric hexa­nuclear copper(II) complex, [Cu6(C7H5O2)4(OH)2(C3H3N2)6(C2H5OH)2]·2C2H5OH. Half a mol­ecule is present in the asymmetric unit that comprises a [Cu3(μ3-OH)(pz)3]2+ core with the copper(II) atoms arranged in an irregular triangle. The three copper(II) atoms are bridged by an O atom of the central hydroxyl group and by three bridging pyrazolate ligands on each of the sides. The carboxyl­ate groups show a chelating mode to one and a bridging syn,syn mode to the other two CuII atoms. The coordination environment of one CuII atom is square-planar while it is distorted square-pyramidal for the other two. Two ethanol mol­ecules are present in the asymmetric unit, one binding to one of the CuII atoms, one as a solvent mol­ecule. In the crystal, stabilization arises from inter­molecular O—H⋯O hydrogen-bonding inter­actions.




no

Bis(quinolinium) tetra­bromido­manganate(II)

The title compound, (C9H8N)2[MnBr4], consists of two quinolinium cations and a [MnBr4]2− anion. The manganese(II) atom, which lies on a twofold rotation axis, is coordinated by four bromide ligands and exhibits a tetra­hedral coordination geometry. The [MnBr4]2− anion and the quinolinium cations are linked by N—H⋯Br hydrogen bonds. π–π stacking inter­actions are observed between the quinolinium cations.




no

Poly[di(μ2-2-hy­droxy­propano­ato)cadmium]

The asymmetric unit of the title inorganic–organic salt, poly[di(μ2-2-hy­droxy­propano­ato)cadmium], [Cd(C3H5O3)2]n or [Cd(Hlac)2]n (H2lac = 2-hy­droxy­propanoic acid), comprises of a cadmium cation and two 2-hy­droxy­propano­ate anions. The cadmium cation exhibits a distorted penta­gonal–bipyramidal coordination environment defined by the hy­droxy and carbonyl O atoms of the 2-hy­droxy­propano­ate anions. The coordination mode leads to the formation of layers extending parallel to (010). O—H⋯O hydrogen bonding between the hy­droxy and carbonyl groups stabilizes the structure packing.




no

1,1',3,3'-Tetra­mesitylquinobis(imidazole)-2,2'-di­thione

The solid-state structural analysis of the title compound [systematic name: 5,11-disulfanylidene-4,6,10,12-tetrakis(2,4,6-trimethylphenyl)-4,6,10,12-tetraazatricyclo[7.3.0.03,7]dodeca-1(9),3(7)-diene-2,8-dione], C44H44N4O2S2 [+solvent], reveals that the mol­ecule crystallizes in a highly symmetric cubic space group so that one quarter of the mol­ecule is crystallographically unique, the mol­ecule lying on special positions (two mirror planes, two twofold axes and a center of inversion). The crystal structure exhibits large cavities of 193 Å3 accounting for 7.3% of the total unit-cell volume. These cavities contain residual density peaks but it was not possible to unambiguously identify the solvent therein. The contribution of the disordered solvent mol­ecules to the scattering was removed using a solvent mask and is not included in the reported mol­ecular weight. No classical hydrogen bonds are observed between the main mol­ecules.




no

4-Amino-5-{[cyclo­hex­yl(meth­yl)amino]­meth­yl}iso­phthalo­nitrile

The title compound, C16H20N4, was synthesized by cyanation of brom­hexine. The compound crystallizes with two unique mol­ecules in the asymmetric unit. The substituted aniline and cyclo­hexane rings are inclined to one another by 37.26 (6)° in one mol­ecule and by 22.84 (7)° in the other. In the crystal packing, intra- and inter­molecular N—H⋯N hydrogen bonds and an inter­molecular C—H⋯N contact were observed.




no

Decacarbon­yl(μ-ethyl­idenimino-1κN:2κC)-μ-hydrido-triangulo-triosmium(3 Os–Os)

The title complex, [Os3(C2H4N)H(CO)10] or [Os3(CO)10(μ-H)(μ-HN=C—CH3-1κN:2κC)], was synthesized in 41.6% yield by reactions between Os3(CO)11(CH3CN) and 2,4,6-tri­methyl­hexa­hydro-1,3,5-triazine. The central osmium triangle has two OsI atoms bridged by a hydride ligand and a μ-HN= C—CH3-1κN:2κC triazine fragment. Three CO ligands complete the coordination sphere around each OsI atom, while the remaining Os0 atom has four CO ligands. Each Os atom exhibits a pseudo-octa­hedral coordination environment, discounting the bridging Os—Os bond.




no

1-Isobutyl-8,9-dimeth­oxy-3-phenyl-5,6-dihidro­imidazo[5,1-a]isoquinolin-2-ium chloride

The molecular salt, C23H26N2O2+·Cl−, was obtained from 1-isobutyl-8,9-dimeth­oxy-3-phenyl-5,6-di­hydro­imidazo[5,1-a]iso­quinoline, which was synthesized by cyclo­condensation of α-benzoyl­amino-γ-methyl-N-[2-(3,4-di­meth­oxy­phen­yl)eth­yl]valeramide in the presence of phosphoryl chloride. The tetra­hydro­pyridine ring adopts a twist–boat conformation. In the crystal structure, centrosymmetric dimers are formed by N—H⋯Cl and C—H⋯Cl hydrogen bonds.




no

2,4-Di­chloro-6-[(2-hy­droxy-5-methyl­anilino)methyl­idene]cyclo­hexa-2,4-dienone

The title compound, C14H11Cl2NO2, has been prepared by the condensation of 3,5-di­chloro­salicyl­aldehyde and 2-amino-4-methyl­phenol. The asymmetric unit consists of two independent mol­ecules, both of which are almost planar; the dihedral angle between the two benzene rings is 10.61 (8)° for one mol­ecule and 2.46 (8)° for the other. There is an intra­molecular N—H⋯O hydrogen bond that generates S(6) ring motifs in each mol­ecule. In the crystal, the two independent mol­ecules are linked by O—H⋯O and C—H⋯Cl hydrogen bonds, forming a pseudo-inversion dimer. A π–π inter­action, with a centroid–centroid distance of 3.6065 (12) Å, is also observed.




no

9α-Hy­droxy-4,8-dimethyl-3'-phenyl-3,14-dioxatri­cyclo­[9.3.0.02,4]tetra­dec-7-en-13-one-12-spiro-5'-isoxazole monohydrate

In the title compound, C22H25NO5·H2O, the ten-membered ring displays an approximate chair–chair conformation, whereas the five-membered furan ring has an envelope conformation, with the C atom of the methine group adjacent to the spiro C atom as the flap. The isoxazole ring is almost planar and its plane is slightly inclined to the plane of the attached phenyl ring. The mean plane of the furan ring is nearly perpendicular to that of the isoxazole ring, as indicated by the dihedral angle between them of 89.39 (12)°. In the crystal, the organic mol­ecules are linked into [010] chains by O—H⋯O hydrogen bonds. The water mol­ecule forms O—H⋯O and O—H⋯N hydrogen bonds and a weak C—H⋯O inter­action is also observed. Together, these lead to a three-dimensional network.




no

Bis[2-(di­methyl­amino-κN)-α,α-di­phenyl­benzene­methano­lato-κO](tetra­hydro­furan-κO)magnesium(II)

The title magnesium complex, [Mg(C21H20NO2)2(C4H8O)]n, exhibits two N,O-bidentate 2-(di­methyl­amino)-α,α-di­phenyl­benzene­methano­late ligands, form­ing two six-membered chelate rings. The distorted square-pyramidal coordination sphere of the MgII atom is completed by the O atom of a tetra­hydro­furan ligand, with its O atom in the apical position. The O and N atoms are in a mutual trans arrangement. Except for two C—H⋯π inter­actions, no significant inter­molecular inter­actions are observed in the crystal.




no

(4-Carb­oxy­benz­yl)tri­phenyl­phospho­nium hexa­fluorido­phosphate tetra­hydro­furan monosolvate

The title compound, C26H22O2P+·PF6−·C4H7O, crystallizes as a cation-anion pair with a single solvent mol­ecule in the asymmetric unit. Hydrogen bonding occurs between the carb­oxy­lic acid group on the cation and the oxygen atom of the solvent mol­ecule. Longer hydrogen-bonding inter­actions are observed between fluorine atoms of the anion and H atoms on the phenyl rings of the cation.




no

Ethyl 5-[(eth­oxy­carbon­yl)­oxy]-5,5-di­phenyl­pent-2-ynoate

The title compound, C22H22O5, crystallizes with two mol­ecules in the asymmetric unit, one of which shows disorder of its ethyl acetate group over two sets of sites in a 0.880 (2):0.120 (2) ratio. The C≡C distances in the two mol­ecules are almost the same [1.1939 (16) and 1.199 (2) Å], but the Csp3—C≡C angles differ somewhat [175.92 (12) and 172.53 (16)°]. In the crystal, several weak C—H⋯O inter­actions are seen.




no

μ2-Methanol-κ2O:O-bis­[(1,10-phenanthroline-κ2N,N')bis­(2,3,4,5-tetra­fluoro­benzoato)-κO;κ2O,O'-copper(II)]

In the title compound, [Cu2(C7HF4O2)4(C12H8N2)2(CH3OH)], the mol­ecule lies on a twofold rotation axis in space group C2/c. The Cu2+ ion exhibits a distorted octa­hedral sphere with two N atoms from the phenanthroline ligand, three O atoms from the 2,3,4,5-tetra­fluoro­benzoate ligands and one O atom from a methanol mol­ecule. The distortion from an octa­hedral shape is a consequence of the Jahn–Teller effect of CuII and the small bite angle for the bidentate fluoro­benzoate ligand [54.50 (11)°]. The methanol mol­ecule bridges two symmetry-related CuII atoms to form the complete mol­ecule. In the bidentate fluoro­benzoate ligand, one F atom is disordered over two positions of equal occupancy. In the crystal structure, only weak inter­molecular inter­actions are observed.




no

Tetra­kis(2,3,5,6-tetra­fluoro­benzene­thiol­ato-κS)(tri­phenyl­phosphane-κP)osmium(IV): a monoclinic polymorph

The structure of the title compound, [Os(C6HF4S)4{P(C6H5)3}], has been previously reported [Arroyo et al. (1994). J. Chem. Soc. Dalton Trans. pp. 1819–1824], in the space group Poverline{1}. We have now obtained a monoclinic polymorph for this compound, crystallized from ethanol, while the previous form was obtained from a hexa­ne/chloro­form mixture. The mol­ecular structure is based on a trigonal–bipyramidal OsIV coordination geometry, close to that observed previously in the triclinic form.




no

(2,2'-Bi­pyridine-κ2N,N')(pyridine-2,6-di­carboxyl­ato-κ2N,O)palladium(II) monohydrate

In the title compound, [Pd(C7H3NO4)(C10H8N2)]·H2O, the PdII cation is four-coordinated in a distorted square-planar coordination geometry defined by the two N atoms of the 2,2'-bi­pyridine ligand, one O atom and one N atom from the pyridine-2,6-di­carboxyl­ate anion. The complex and solvent water mol­ecule are linked by inter­molecular hydrogen bonds. In the crystal, the complex mol­ecules are stacked in columns along the a axis.




no

6,6'-[(3,3'-Di-tert-butyl-5,5'-dimeth­oxy-1,1'-biphenyl-2,2'-di­yl)bis(oxy)]bis­(dibenzo[d,f][1,3,2]dioxaphosphepine) benzene monosolvate

The crystal structure of the benzene monosolvate of the well known organic diphosphite ligand BIPHEPHOS, C46H44O8P2·C6H6, is reported for the first time. Single crystals of BIPHEPHOS were obtained from a benzene solution after layering with n-heptane at room temperature. One specific property of this type of diphosphite structure is the twisting of the biphenyl units. In the crystal, C—H⋯π contacts and π–π stacking inter­actions [centroid-to-centroid distance = 3.8941 (15) Å] are observed.




no

2-[4,5-Bis(4-bromo­phen­yl)-1-(4-tert-but­ylphen­yl)-1H-imidazol-2-yl]-4,6-di­chloro­phenol

In the title compound, C31H24Br2Cl2N2O, the dihedral angles subtended by the tert-butyl-phenyl, 4,6-di­chloro­phenol and 4-bromo­phenyl (×2) rings are 70.7 (3), 8.1 (3), 28.1 (3) and 84.2 (3)°, respectively. The orientations of the pendant rings may be related to intra­molecular O—H⋯N and C—H⋯π inter­actions. One of the tert-butyl methyl groups is disordered over two sets of sites in a 0.54 (3):0.46 (3) ratio. In the crystal, a weak C—H⋯π inter­action generates inversion dimers.




no

Bis{2,6-bis­[(E)-(4-fluoro­benzyl­imino)­meth­yl]pyridine}­nickel(II) dinitrate dihydrate

In the title hydrated salt, [Ni(C21H17F2N3)2](NO3)2·2H2O, the central NiII ion is coordinated by six N atoms from two tridentate chelating 2,6-bis­[(E)-(4-fluoro­benzyl­imino)­meth­yl]pyridine ligands. While the central NiII ion is six-coordinate, its environment is distorted from an octa­hedral structure because of the unequal Ni—N distances. The Ni—N bond lengths vary from 1.8642 (14) to 2.2131 (15) Å, while the N—Ni—N angles range from 79.98 (6) to 104.44 (6)°. Three coordinating sites of each chelating agent are almost coplanar with respect to the pyridine ring, and two pyridine moieties are perpendicular to each other. Two non-coordinating nitrate anions within the asymmetric unit balance the charges of the central metal ion, and are linked with two crystal water mol­ecules, forming a water–nitrate cyclic tetra­meric unit [O⋯O = 2.813 (2) to 3.062 (2) Å]. In an isolated mol­ecule, the fluoro­phenyl rings of one ligand are stacked with the central ring of the other ligand via π–π inter­actions, with the closest centroid-to-plane distances being 3.359 (6), 3.408 (5), 3.757 (6) and 3.659 (5) Å.




no

4-Chloro-2-[1-(4-ethyl­phen­yl)-4,5-diphenyl-1H-imidazol-2-yl]phenol

In the title compound, C29H23ClN2O, the 5-chloro­phenol ring and the imidazole ring are nearly coplanar, with a dihedral angle of 15.76 (9)° between them. The ethyl­phenyl ring and the two phenyl rings subtend angles of 71.09 (7), 43.95 (5) and 36.53 (9)°, respectively, with the imidazole plane. An intra­molecular O—H⋯N hydrogen bond supports the mol­ecular conformation, and an inter­molecular C—H⋯O inter­action, originating from an ortho-phenyl H atom, stabilizes the packing arrangement. In addition, a weak C—H⋯π inter­action, also involving an ortho-phenyl H atom, is observed.




no

N'-(2-Hy­droxy-3-meth­oxy­benzyl­idene)pyrazine-2-carbohydrazide monohydrate

In the title hydrated Schiff base, C13H12N4O3·H2O, the dihedral angle between the aromatic rings is 5.06 (11)° and an intra­molecular O—H⋯N hydrogen bond closes an S(6) ring. In the crystal, Ow—H⋯O and Ow—H⋯N (w = water) hydrogen bonds link the components into centrosymmetric tetra­mers (two Schiff bases and two water mol­ecules). Longer N—H⋯O hydrogen bonds link the tetra­mers into [010] chains. A weak C—H⋯O hydrogen bond and aromatic π–π stacking between the pyrazine and phenyl rings [centroid–centroid separations = 3.604 (2) and 3.715 (2) Å] are also observed.




no

2-[(5-Chloro­pyridin-2-yl­imino)­meth­yl]phenol

In the title compound, C12H9ClN2O, the dihedral angle between the aromatic rings is 1.78 (4)° and an intra­molecular O—H⋯N hydrogen bond closes an S(6) ring. In the crystal, C—H⋯O and C—H⋯N hydrogen bonds connect the mol­ecules into [001] chains.




no

Di­chlorido­bis­[2-(pyridin-2-yl-κN)-1H-benzimidazole-κN3]nickel(II) monohydrate

In the title complex, [NiCl2(C12H9N3)2]·H2O, a divalent nickel atom is coordinated by two 2-(pyridin-2-yl)-1H-benzimidazole ligands in a slightly distorted octa­hedral environment defined by four N donors of two N,N'-chelating ligands, along with two cis-oriented anionic chloride donors. The title complex crystallized with a water mol­ecule disordered over two positions. In the crystal, a combination of O—H⋯Cl, O—H.·O and N—H⋯Cl hydrogen bonds, together with C—H⋯O, C—H⋯Cl and C—H⋯π inter­actions, links the complex mol­ecules and the water mol­ecules to form a supra­molecular three-dimensional framework. The title complex is isostructural with the cobalt(II) dichloride complex reported previously [Das et al. (2011). Org. Biomol. Chem. 9, 7097–7107].




no

N-[(E)-Quinolin-2-yl­methyl­idene]-1,2,4-triazol-4-amine hemihydrate

The title hemihydrate, C12H9N5·0.5H2O, was isolated from the condensation reaction of quinoline-2-carbaldehyde with 4-amino-4H-1,2,4-triazole. The Schiff base mol­ecule adopts an E configuration about the C=N bond and is approximately planar, with a dihedral angle between the quinoline ring system and the 1,2,4-triazole ring of 12.2 (1)°. In the crystal, one water mol­ecule bridges two Schiff base mol­ecules via O—H⋯N hydrogen bonds. The Schiff base mol­ecules are inter­connected by π–π stacking inter­actions [centroid-centroid distances of 3.7486 (7) and 3.9003 (7) Å] into columns along [1overline{1}0].




no

5-Nitro-2,3-bis­(thio­phen-2-yl)quinoxaline

The title compound, C16H9N3O2S2, was synthesized via a condensation reaction in refluxing acetic acid. The dihedral angles between the mean plane of the quinoxaline unit and the thienyl rings are 35.16 (5)° and 24.94 (3)°.




no

6-Nitro-2,3-bis­(thio­phen-2-yl)quinoxaline

The title compound, C16H9N3O2S2, was synthesized via a condensation reaction in refluxing acetic acid. One thienyl ring is nearly coplanar with the quinoxaline unit [dihedral angle = 3.29 (9)°], the other makes an angle of 83.96 (4)°.




no

2-Amino­anilinium 4-methyl­benzene­sulfonate

In the extended structure of the title mol­ecular salt, C6H9N2+·C7H7O3S−, the cations and anions are linked by N—H⋯O hydrogen bonds to generate [010] chains.




no

Tris(1H-benzimidazol-2-ylmeth­yl)amine methanol tris­olvate

The structure of the tertiary amine tris­(1H-benzimidazol-2-ylmeth­yl)amine (C24H21N7, abbreviated ntb) has been previously reported twice as solvates, namely the monohydrate and the aceto­nitrile–methanol–water (1/0.5/1.5) solvate, both with the tripodal conformation formed via multiple hydrogen bonds. Now, we report the tri­methanol adduct, ntb·3CH3OH, where the amine has the stair conformation featuring one benzimidazole group oriented in the opposite direction from the other two. The asymmetric unit contains one-half amine, completed through the mirror plane m in space group Pmn21 to form the ntb mol­ecule, with the H atom for each imidazole moiety equally disordered between both N sites available in the imidazole ring. The asymmetric unit also contains one and a half methanol mol­ecules, one being placed in general position with the hy­droxy H atom disordered over two sites with occupancy ratio 1:1, while the other lies on the m mirror plane, and has thus its hy­droxy H atom disordered by symmetry. As in the previously reported solvates, all imine and amine groups of the ntb mol­ecules and the methanol mol­ecules are involved in N—H⋯O and O—H⋯N hydrogen bonds. In the title compound, however, the involved H atom is systematically a disordered H atom provided by an imidazole group or a methanol mol­ecule.




no

The head-to-head photodimer of indeno­indene

Irradiation of 1-(1-benzo­cyclo­butenyl­idene)benzo­cyclo­butene gives indeno­indene and its head-to-head photodimer nona­cyclo­[9.7.7.72,10.01,11.02,10.03,8.012,17.019,24.026,31]dotriaconta-3,5,7,12,14,16,19,21,23,26,28,30-dodeca­ene, C32H24. The mol­ecule is built from four essentially planar indane units attached to an elongated cyclo­butane ring. In the crystal, C—H⋯π inter­actions connect mol­ecules into layers parallel to the bc plane.




no

[1–9-NαC]-Linusorb B3 (Cyclo­linopeptide A) dimethyl sulfoxide monosolvate

Crystals of the dimethyl sulfoxide (DMSO) solvate of [1–9-NαC]-linusorb B3 (Cyclo­linopeptide A; CLP-A; C57H84N9O9·C2H6OS), a cyclic polypeptide were obtained following peptide extraction and purification from flaxseed oil. There are four intramolecular N—H⋯O hydrogen bonds. In the crystal, the mol­ecules are linked in chains along the a axis by N—H⋯O hydrogen bonds. Each DMSO O atom accepts a hydrogen bond from an NH group at the Phe6 location in the CLP-A mol­ecule.




no

4-Amino-6-(piperidin-1-yl)pyrimidine-5-carbo­nitrile

In the title compound, C10H13N5, the piperidine ring adopts a chair conformation with the exocyclic N—C bond in an axial orientation, and the dihedral angle between the mean planes of piperidine and pyrimidine rings is 49.57 (11)°. A short intra­molecular C—H⋯N contact generates an S(7) ring. In the crystal, N—H⋯N hydrogen bonds link the mol­ecules into (100) sheets and a weak aromatic π-π stacking inter­action is observed [centroid–centroid separation = 3.5559 (11) Å] between inversion-related pyrimidine rings.




no

Poly[(μ4-5,7-di­hydro-1H,3H-dithieno[3,4-b:3',4'-e]pyrazine-κ4N:N':S:S')tetra-μ3-iodido-tetra­copper]: a three-dimensional copper(I) coordination polymer

The reaction of ligand 5,7-di­hydro-1H,3H-dithieno[3,4-b:3',4'-e]pyrazine (L) with CuI lead to the formation of a three-dimensional coordination polymer, incorporating the well known [CuxIx]n staircase motif (x = 4). These polymer [Cu4I4]n chains are linked via the N and S atoms of the ligand to form the three-dimensional coordination polymer poly[(μ4-5,7-di­hydro-1H,3H-dithieno[3,4-b:3',4'-e]pyrazine-κ4N:N':S:S')tetra-μ3-iodido-tetra­copper], [Cu4I4(C8H8N2S2)]n (I). The asymmetric unit is composed of half a ligand mol­ecule, with the pyrazine ring located about a center of symmetry, and two independent copper(I) atoms and two independent I− ions forming the staircase motif via centers of inversion symmetry. The framework is consolidated by C—H⋯I hydrogen bonds.




no

Tris­(4,4'-di-tert-butyl-2,2'-bi­pyridine)(trans-4-tert-butyl­cyclo­hexa­nolato)­deca-μ-oxido-hepta­oxido­hepta­vanadium aceto­nitrile monosolvate including another unknown solvent mol­ecule

The title hepta­nuclear alkoxido(oxido)vanadium(V) oxide cluster complex, [V7(C10H19O)O17(C18H24N2)3]·CH3CN, was obtained by the reaction of [V8O20(C18H24N2)4] with 4-tert-butyl­cyclo­hexa­nol (mixture of cis and trans) in a mixed CHCl3/CH3CN solvent. The complex has a V7O18N6 core with approximately Cs symmetry, which is composed of two VO4 tetra­hedra, two VO6 octa­hedra and three VO4N2 octa­hedra. In the crystal, these complexes are linked together by weak inter­molecular C—H⋯O hydrogen bonds between the 4,4'-di-tert-butyl-2,2'-bi­pyridine ligand and the V7O18N6 core, forming a one-dimensional network along the c-axis direction. Besides the complex, the asymmetric unit contains one CH3CN solvent mol­ecule. The contribution of other disordered solvent mol­ecules to the scattering was removed using the SQUEEZE option in PLATON [Spek (2015). Acta Cryst. C71, 9–18]. The unknown solvent mol­ecules are not considered in the chemical formula and other crystal data.




no

2,3-Di­ethyl­benzo[g]quinoxaline

The title compound, C16H16N2, was synthesized by dispersing 3,4-hexa­nedione in a methanol–water solution containing the acid catalyst NH4HF2, then adding 1,2-di­aminona­phthalene. The fused-ring system of the title compound is close to planar (r.m.s. deviation = 0.028 Å); one of the pendant methyl C atoms lies close to the ring plane [deviation = 0.071 (2) Å; N—C—C—C = −0.27 (18)°] whereas the other is significantly displaced [–1.7136 (18) Å; 91.64 (16)°]. The mol­ecules pack in space group Ioverline{4} in a distinctive criss-cross motif supported by numerous aromatic π–π stacking inter­actions [shortest centroid–centroid separation = 3.5805 (6) Å].




no

Poly[[μ4-3,4,8,10,11,13-hexa­hydro-1H,6H-bis­([1,4]di­thio­cino)[6,7-b:6',7'-e]pyrazine]di-μ-iodido-dicopper(I)]: a two-dimensional copper(I) coordination polymer

The reaction of ligand 3,4,8,10,11,13-hexa­hydro-1H,6H-bis­([1,4]di­thio­cino)[6,7-b:6',7'-e]pyrazine (L) with CuI led to the formation of a two-dimensional coordination polymer, incorporating a [Cu2I2] motif. These units are linked via the four S atoms of the ligand to form the title two-dimensional coordination poly­mer, poly[[μ4-3,4,8,10,11,13-hexa­hydro-1H,6H-bis­([1,4]di­thio­cino)[6,7-b:6',7'-e]pyrazine]di-μ-iodido-dicopper(I)], [Cu2I2(C12H16N2S4)]n, (I). The asymmetric unit is composed of a ligand mol­ecule, two copper(I) atoms and two I− ions. Both copper(I) atoms are fourfold S2I2 coordinate with almost regular trigonal-pyramidal environments. In the crystal, the layers, lying parallel to (102), are linked by C—H⋯I hydrogen bonds, forming a supra­molecular framework.




no

2,4,6-Triphenyl-N-{(3E)-3-[(2,4,6-tri­phenyl­phen­yl)imino]­butan-2-yl­idene}aniline

The title compound, C52H40N2, is disposed about a centre of inversion and the conformation about the imine bond [1.268 (3) Å] is E. The terminal benzene ring is approximately perpendicular to the central 1,4-di­aza­butadiene mean plane, forming a dihedral angle of 81.2 (3)°. Weak C—H⋯π and π–π [inter-centroid distance = 4.021 (5) Å] inter­actions help to consolidate the packing.




no

Crystal structure and DFT study of (E)-2-chloro-4-{[2-(2,4-di­nitro­phen­yl)hydrazin-1-yl­idene]meth­yl}phenol aceto­nitrile hemisolvate

The title Schiff base compound, C13H9ClN4O5·0.5CH3CN, crystallizes as an aceto­nitrile hemisolvate; the solvent mol­ecule being located on a twofold rotation axis. The mol­ecule is nearly planar, with a dihedral angle between the two benzene rings of 3.7 (2)°. The configuration about the C=N bond is E, and there is an intra­molecular N—H⋯Onitro hydrogen bond present forming an S(6) ring motif. In the crystal, mol­ecules are linked by O—H⋯O and N—H⋯O hydrogen bonds, forming layers lying parallel to (10overline{1}). The layers are linked by C—H⋯Cl hydrogen bonds, forming a supra­molecular framework. Within the framework there are offset π–π stacking inter­actions [inter­centroid distance = 3.833 (2) Å] present involving inversion-related mol­ecules. The DFT study shows that the HOMO and LUMO are localized in the plane extending from the phenol ring to the 2,4-di­nitro­benzene ring, and the HOMO–LUMO gap is found to be 0.13061 a.u.




no

Crystal structure and Hirshfeld surface analysis of 4-[4-(1H-benzo[d]imidazol-2-yl)phen­oxy]phthalo­nitrile dimethyl sulfoxide monosolvate

This work presents the synthesis and structural characterization of [4-(1H-benzo[d]imidazol-2-yl)phen­oxy]phthalo­nitrile, a phthalo­nitrile derivative carrying a benzimidazole moiety. The compound crystallizes as its dimethyl sulfoxide monosolvate, C21H12N4O·(CH3)2SO. The dihedral angle between the two fused rings in the heterocyclic ring system is 2.11 (1)°, while the phenyl ring attached to the imidazole moiety is inclined by 20.7 (1)° to the latter. In the crystal structure, adjacent mol­ecules are connected by pairs of weak inter­molecular C—H⋯N hydrogen bonds into inversion dimers. N—H⋯O and C—H⋯O hydrogen bonds with R21(7) graph-set motifs are also formed between the organic mol­ecule and the disordered dimethyl sulfoxide solvent [occupancy ratio of 0.623 (5):0.377 (5) for the two sites of the sulfur atom]. Hirshfeld surface analysis and fingerprint plots were used to investigate the inter­molecular inter­actions in the crystalline state.




no

Crystal structure, Hirshfeld surface analysis and HOMO–LUMO analysis of (E)-N'-(3-hy­droxy-4-meth­oxy­benzyl­idene)nicotinohydrazide monohydrate

The mol­ecule of the title Schiff base compound, C14H13N3O3·H2O, displays a trans configuration with respect to the C=N bond. The dihedral angle between the benzene and pyridine rings is 29.63 (7)°. The crystal structure features inter­molecular N—H⋯O, C—H⋯O, O—H⋯O and O—H⋯N hydrogen-bonding inter­actions, leading to the formation of a supramolecular framework. A Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H⋯H (37.0%), O⋯H/H⋯O (23.7%)), C⋯H/H⋯C (17.6%) and N⋯H/H⋯N (11.9%) inter­actions. The title compound has also been characterized by frontier mol­ecular orbital analysis.




no

Crystal structure and Hirshfeld surface analysis of (Z)-6-[(2-hy­droxy-4-methyl­anilino)­methyl­idene]-4-methyl­cyclo­hexa-2,4-dien-1-one

The title compound, C15H15NO2, is a Schiff base that exists in the keto–enamine tautomeric form and adopts a Z configuration. The mol­ecule is almost planar, with the two phenyl rings twisted relative to each other by 9.60 (18)°. There is an intra­molecular N—H⋯O hydrogen bond present forming an S(6) ring motif. In the crystal, pairs of O—H⋯O hydrogen bonds link adjacent mol­ecules into inversion dimers with an R22(18) ring motif. The dimers are linked by very weak π–π inter­actions, forming layers parallel to (overline{2}01). Hirshfeld surface analysis, two-dimensional fingerprint plots and the mol­ecular electrostatic potential surfaces were used to analyse the inter­molecular inter­actions, indicating that the most important contributions for the crystal packing are from H⋯H (55.2%), C⋯H/H⋯C (22.3%) and O⋯H/H⋯O (13.6%) inter­actions.




no

Crystal structure and Hirshfeld surface analysis of (Z)-6-[(2-hy­droxy-5-nitro­anilino)methyl­idene]-4-methyl­cyclo­hexa-2,4-dien-1-one

The title compound, C14H12N2O4, is a Schiff base that exists in the keto–enamine tautomeric form and adopts a Z configuration. The mol­ecule is almost planar, the rings making a dihedral angle of 4.99 (7)°. The mol­ecular structure is stabilized by an intra­molecular N—H⋯O hydrogen bond forming an S(6) ring motif. In the crystal, inversion-related mol­ecules are linked by pairs of O—H⋯O hydrogen bonds, forming dimers with an R22(18) ring motif. The dimers are linked by pairs of C—H⋯O contacts with an R22(10) ring motif, forming ribbons extended along the [2overline{1}0] direction. Hirshfeld surface analysis, two-dimensional fingerprint plots and the mol­ecular electrostatic potential surfaces were used to analyse the inter­molecular inter­actions present in the crystal, indicating that the most important contributions for the crystal packing are from H⋯H (33.9%), O⋯H/H⋯O (29.8%) and C⋯H/H⋯C (17.3%) inter­actions.