sh

Input shaft lubrication for gear pump

A shaft assembly includes a gear with a gear bore having a splined bore section adjacent to an oil dam. A shaft includes a first splined end section and a second splined end section, the first splined end section engageable with the splined inner diameter, the shaft having a bore with a bore diameter greater than a diameter of the oil dam, a first set of radial apertures axially inboard of the first splined end section in communication with the shaft inner bore and a second set of radial apertures axially inboard of the second splined end section in communication with the shaft inner bore that altogether provide lubrication of the splined end sections.




sh

Sole for a golf shoe

An outer sole for a golf shoe includes a plurality of cleats distributed along a forefoot area and a heel area. The cleats are integrated with the outer sole and extend from a surface of the outer sole that faces away from the shoe. The plurality of cleats includes at least a larger sized set of cleats and a smaller sized set of cleats. Such outer sole for a golf shoe gives good traction on the golf course but is also useable as a casual shoe off the golf course.




sh

Golf club shoe device

A golf ball kicking device having hands-free interchangeability of golf club heads comprising a mounting plate secured to the shoe and a retaining member affixed to the mounting plate and having a pivoting lever with a release member in communication with a rear face of a club head. The mounting plate has a magnet and the rear face of the club head is constructed of a magnetic material so as to releasably mount the club head onto the mounting plate. When the club head is secured against the magnet, the club head impacts upon the release member so as to pivot the pivoting lever to a first position. When sufficient force is applied to the pivoting lever, the pivoting lever pivots to a second position thereby directing the release member to impact upon the club head and dislodge the club head from the mounting plate.




sh

Breathable waterproof sole for shoes

A waterproof breathable sole for shoes, which comprises, for at least part of its extension, at least two structural layers, a lower one provided with a supporting structure so as to form the tread, and an upper one that is permeable to water vapor. The lower layer has portions that are open onto the upper layer. A coating obtained by means of a plasma deposition treatment for waterproofing is provided on the upper layer. A layer is thus obtained that has structural functions and characteristics of resistance to damage and is at the same time waterproof and breathable.




sh

Inlay sole for shoes

An inlay sole for shoes is made up of sole pieces of varying Shore hardness which engage with each other on abutting edges, the width of which corresponds to the thickness of the sole pieces, with matching sinuous projections and matching recesses. The projections form extensions which engage in backcuts in the recesses, the inlay sole being made of several layers of sole pieces assembled as above. The abutting edges are offset with relation to each other from layer to layer.




sh

Flexible shoe sole

A sole for dance footwear such as a dance sneaker includes an outsole having forefoot, arch and heel portions and which contains openings in the forefoot and arch portions. The bottom surface of the outsole further includes a plurality of laterally extending spaced grooves. The grooves and openings provide increased flexure of the outsole from heel to toe and from side to side about a longitudinal axis of the outsole. A shank between the openings in the arch portion of the outsole supports the foot during dance movements, maintains the integrity of the shoe, and improves the aesthetics and ergonomic movement of the footwear.




sh

Shoe having removable and interchangeable heel assemblies with kit

A removable heel assembly, a shoe having a removable shoe assembly and kit containing a shoe body having a heel base and a plurality a assorted removable and interchangeable heels. The heel assembly includes the heel base and a removable and interchangeable heel. The removability relies upon at least one tapered groove ending in a dimple. The heel utilizes a locking connector which contains components which fit within a cavity within the heel base and which locks in place upon engagement thereof when the components engage the at least one tapered, groove and dimple.




sh

Shoe ornament structure and method for making the same

A shoe ornament structure, comprises: a base layer, a sub-base layer, a ground color layer, a ornamental layer, a blocking wall and a transparent layer. The ground color layer has a predetermined thickness and is formed on the sub-base layer. The ornamental layer is formed with different grains or color or materials and located on the ground color layer. The blocking wall of a height 0.5-0.7 mm is formed on ornamental layer, and the transparent layer is formed in the area defined by the blocking wall.




sh

Shoe with ventilation system obtained by direct injection method on upper and mould therefor

A shoe (1) is disclosed comprising: an insole (1) fixed to the upper (T) and comprising a slot (10) in the heel area and a plurality of holes (11) in the plantar surface area. A ventilation system (2) comprises: a pump (4) disposed in the slot (10) of the insole, a membrane (3) fixed in the lower surface of the insole (1) under the holes (11), a connection pipe (20) connecting the chamber (40) of the pump with the spaces (32) of the membrane and an outlet conduit (21) connecting the chamber of the pump (40) with the outside to exhaust air. An outsole (9) obtained by directly injecting expandable material in a mold covers the ventilation system, insole and lower part of the upper (T). A mold (S) for performing said direct injection is also disclosed.




sh

Removable shoe wedge

A shoe wedge includes a support structure. The support structure includes two longitudinally extending wall portions that are biased towards one another such that the wall portions define a channel extending between the wall portions and an opening that extends from an upper surface of the support structure to a lower surface of the support structure. The opening has a larger cross sectional area at the upper surface than at the lower surface. The shoe wedge further includes a body portion that extends from the support structure. The body portion is configured with a surface that substantially conforms to a portion of a sole of a shoe.




sh

Shoe heel support device

A shoe heel support device including a ground contacting base portion and a resilient shoe heel engagement portion attached to the ground contacting base portion, the resilient shoe heel engagement portion including at least three lobe portions each having an inner surface together defining a bore for receiving a shoe heel therein, the dimension of the bore smaller than the cross-sectional dimension of the shoe heel.




sh

Shoe spring and shock absorbing system

Footwear with a powerful arch spring made with spring boards that can be utilized by the heel and ball of the foot areas during impact for efficient energy storage and return during walking, running and other forms of self-propelled locomotion. The spring boards can extend into the toe area of the footwear to create a toe spring with efficient energy storage and return. Embodiments of the present invention combine the spring boards which are excellent for storing and returning energy with a shock absorbing material which can also function as a secondary spring in order to achieve high efficiency energy returns while maintaining comfort and stability with the footwear.




sh

Sole for a golf shoe

An outer sole for a golf shoe includes a plurality of cleats distributed along a forefoot area and a heel area. The cleats are integrated with the outer sole and extend from a surface of the outer sole that faces away from the shoe. The plurality of cleats includes at least a larger sized set of cleats and a smaller sized set of cleats. Such outer sole for a golf shoe gives good traction on the golf course but is also useable as a casual shoe off the golf course.




sh

Shoe with integral pump

A shoe, such as an athletic shoe, includes a pump assembly integral therewith. The pump assembly includes a pump which produces a stream of pressurized air and a delivery assembly which operates to deliver the stream of pressurized air to an end use location exterior of the shoe. The shoe may comprise an athletic shoe and may be utilized to inflate sports balls such as basketballs, footballs, and volleyballs.




sh

Anti-slip shoe accessory for court sports

A traction-enhancing cleaning kit for allowing sports players to clean and dry the soles of their court shoes while in-play. The cleaning kit comprises a gellified shoe cleaning fluid (3), and a shoe-attachable cleaning and drying device (1) comprising a gel-absorbent cleaning/drying cartridge (2) removably secured by hook-and-loop to a carrier platform (4), which is in turn secured along the forefoot of the sneaker by its laces. The cartridge (2) includes an encapsulated viscose rayon microfiber panel (20) backed by a moisture-impermeable layer (30), and held captive in a plastic frame (10). The frame (10) includes a raised wiping lip (114) surrounding the panel (20). In use, the player need only swipe one foot over the top of the cleaning and drying device (1) attached to the other foot, brushing the sole. One swipe wets and squeegees dry, and the process is repeated for the other foot.




sh

Shoe and shoe-making process using an insert piece

A shoe includes a sole having an insert piece and a layer of material disposed on a top surface of the insert piece; and an upper extending above the sole. The insert piece extends from at least one of a front or middle portion of the shoe to a rear of the shoe, with the top surface of the insert piece inclined upwardly toward the rear of the shoe and then leveling off at a rear portion of the shoe. A top surface of the layer of material is inclined upwardly from the at least one of the front or middle portion of the shoe to the rear of the shoe, such that at the rear portion of the shoe an angle of inclination is significantly greater for the top surface of the layer of material than for the top surface of the insert piece.




sh

Energy-return shoe system

An energy return shoe system has a shoe portion, a flexible lower sole portion and a toe mechanism. The toe mechanism has an upper toe plate, a lower toe plate, and at least two toe arms. The upper toe plate is affixed to the shoe portion, the lower toe plate is affixed to the lower sole, and the toe arms are pivotally affixed at ends to the upper toe plate and the lower toe plate and are substantially parallel to each other. The lower sole is made of a flexible material and there is at least one spring mechanism that urges the shoe portion away from the lower sole. As the wearer steps down, energy of the wearer's mass is stored in one or more spring devices and as the wearer begins to lift their foot, the stored energy is returned to help push that foot off the ground.




sh

Shoe housing

The invention relates to a shoe with a sole unit, where the sole unit includes a recess for removably receiving a housing of an electronic assembly, for example, an electronic pedometer, an accelerometer, or a speed sensor. Further, the invention relates to a housing for receiving an electronic assembly, for example, a pedometer, an accelerometer, or a speed sensor, where the housing has an outer shape corresponding to the shape of a recess formed in a shoe sole.




sh

Compositions comprising refrigerant and lubricant and methods for replacing CFC and HCFC refrigerants without flushing

A composition comprising a refrigerant and a lubricant is disclosed, wherein the refrigerant comprises (i) a fluorocarbon selected from the group consisting of R125, R134a, R32, R152a, R143a, R218 and mixtures thereof, and (ii) a hydrocarbon selected from the group consisting of propane, n-butane, isobutane, n-pentane, isopentane, dimethyl ether, and mixtures thereof; the lubricant comprises (iii) a hydrocarbon-based lubricant component; and (iv) a synthetic lubricant component; and the synthetic lubricant component is less than 30% by weight of the total lubricant. Also disclosed are methods of replacing refrigerants in refrigeration or air conditioning systems containing a refrigerant comprising a CFC or HCFC and a lubricant. The methods involve adding to the system (a) a replacement refrigerant comprising (i) a fluorocarbon selected from the group consisting of R125, R134a, R152a, R32, R143a, R218 and mixtures thereof, and (ii) a hydrocarbon selected from the group consisting of propane, n-butane, isobutane, n-pentane, isopentane, dimethyl ether, and mixtures thereof; and (b) a synthetic lubricant component; wherein after refrigerant replacement the synthetic lubricant component is less than 30% by weight of the total amount of lubricant in the system.




sh

Electronics cooling using lubricant return for a shell-and-tube style evaporator

A refrigeration system that induces lubricant-liquid refrigerant mixture flow from a flooded or falling film evaporator by means of the lubricant-liquid refrigerant mixture flow adsorbing heat from an electronic component.




sh

Electronics cooling using lubricant return for a shell-and-tube evaporator

A refrigeration system that induces lubricant-liquid refrigerant mixture flow from a flooded or falling film evaporator by means of the lubricant-liquid refrigerant mixture flow adsorbing heat from an electronic component.




sh

Block ice maker with mold body and method of forming fan shaped ice with mold body

An ice maker has an ice-making vessel having a cylindrical shape, a cooling means, a block ice making mold which is placed inside, and an agitator. The mold includes a main mold body having a plurality of connected L-shaped plates projected radially outward from the central axis; a base plate which is joined to each L-shaped plate, and the top side of the L-shaped plates form a screw insertion part of the mold body such that the agitator fits between the L-shaped plates at a second end of the central axis.




sh

DRAM DATA PATH SHARING VIA A SEGMENTED GLOBAL DATA BUS

Provided are a memory device and a memory bank comprised of a local data bus, a segmented global data bus coupled to the local data bus, and a section select switch that is configurable to direct a signal from the local data bus to either end of the segmented global data bus. Provided also is a computational device comprising a processor and the memory device and optionally a display. Provided also is a method in which a signal is received from a local data bus, and a section select switch is configured to direct the signal from the local data bus to either end of a segmented global data bus.




sh

DRAM DATA PATH SHARING VIA A SPLIT LOCAL DATA BUS

Provided is memory device and a memory bank, comprising a global data bus, and a local data bus split into two parts, wherein the local data bus is configurable to direct signals to the global data bus. Provided also is a method in which signals are received in a local data bus that is split into two parts, and the signals are directed from the local data bus to the global data bus. Provided also is a computational device comprised of a processor and the memory device.




sh

METHOD AND SYSTEM FOR SYNCHRONIZING AN INDEX OF DATA BLOCKS STORED IN A STORAGE SYSTEM USING A SHARED STORAGE MODULE

A storage system includes a first and second control modules (CMs) connected to a client and a storage module over a communication fabric. In response to a data fragment written to the storage module, the first CM is to create a table of contents (TOC) entry in a TOC page maintained in a first storage partition of the storage module, update its FTL map, determine whether the TOC page contains a predetermined number of TOC entries, and in response to determining that the TOC page contains the predetermined number of TOC entries, send a control signal to the second CM via an inter-processor link. In response to the control signal received from the first CM via the inter-processor link, the second CM is to copy the TOC page from the first storage partition to a memory associated with the second CM to allow the second CM to update its FTL map.




sh

METHOD AND SYSTEM FOR PROVIDING ACCESS OF A STORAGE SYSTEM USING A SHARED STORAGE MODULE AS A TRANSPORT MECHANISM

According to one embodiment, a first control module (CM) of a storage system receives a first request from a client device to read first data stored in a second storage location of a storage module, where the second storage location is associated with a second CM. The first CM includes a first processor and the second CM includes a second processor. The first CM transmits a first control signal the second CM via the inter-processor link to request the second CM to copy the first data from the second storage location to a first memory location associated with the first CM. The first CM initiates a first data transaction to transmit the first data from the first memory location to the client device through a communication fabric without having to go through the second CM.




sh

Configuration arbiter for multiple controllers sharing a link interface

In a system where multiple controllers share a link interface but are not all (1) compatible with the same configuration of the physical layer or (2) using the same clocking, a configuration arbitration subsystem intercepts, organizes, and re-clocks configuration-access requests from the various controller agents. Priorities are assigned according to stored policies. The configuration arbiter grants configuration access to the top-priority agent, synchronizing the agent's message with the arbiter's clock. Lower-priority agents' messages are stored in command queues until they ascend to top priority. Besides preventing timing conflicts and streamlining the coordination of clocks, the configuration arbiter may provide access to physical-layer registers beyond the controllers' built-in capabilities to further optimize configuration.




sh

METHOD FOR USING SHARED DEVICE AND RESOURCE SHARING SYSTEM

A method for using a shared device and a resource sharing system are provided. An arbitrator node sets an initial weight of each of processors based on identification information. The arbitrator node calculates a priority score for each processor based on an initial weight of each of the processors and state diagnostic codes recorded by each processor to establish a priority sequence. When the arbitrator node simultaneously receives a request for requesting an access right of the shared device transmitted by each of two or more processors, the arbitrator node determines one of the processors having the access right of the shared device based on the priority sequence.




sh

Flush-mounted fireplace assembly

A flush-mounted fireplace assembly comprising a surround structure configured to encompass a perimeter of an opening in a mounting wall and a bezel structure configured to fit within the outer surround structure. An inner edge of the surround structure and an outer edge of the bezel structure oppose each other and define a gap between inner edge and outer edge such that air can flow through the gap. An outside major surface of the surround structure and an outside major surface of the bezel structure are substantially co-planar with each other and with an exterior surface of the mounting wall.




sh

Shell destruction technique

An explosive assembly adapted to destruction of artillery and other large ordnance shells; said explosive assembly comprising a pair of hollow half shells; each of said half shells formed with an internal cavity conforming to at least a portion of external surfaces of an ordnance shell to be destroyed.




sh

Method of making shaped charges and explosively formed projectiles

A method of making a liner for a shaped charge or an explosively formed projectile may include making a liner substrate using a 3D additive manufacturing process. At least a portion of the surface of the liner substrate may be surface finished. The surface finished portion may be electroplated with a metal to form a multi-layer liner.




sh

Method of manufacturing colored shot for shot shells

A method for providing permanently colored steel shot for shot shells through anodizing and shells manufactured utilizing the shot.




sh

Heated or cooled dishware and drinkware

An actively heated mug, travel mug, baby bottle, water bottle or liquid container is provided. The mug, travel mug, baby bottle, water bottle or liquid container can include a body that receives a liquid therein and a heating or cooling system at least partially disposed in the body. The heating or cooling system can include one or more heating or cooling elements that heat a surface of the receiving portion of the body and one or more energy storage devices. The mug, travel mug, baby bottle, water bottle or liquid container can include a wireless power receiver that wirelessly receives power from a power source and control circuitry configured to charge one or more power storage elements and to control the delivery of electricity from the one or more power storage elements to the one or more heating or cooling elements. The mug, travel mug, baby bottle, water bottle or liquid container also can have one or more sensors that sense a parameter of the liquid or sense a parameter of the heating or cooling system and communicates the sensed information to the control circuitry. The control circuitry can turn on, turn off, and/or operate the heating or cooling element to actively heat or cool at least a portion of the body to maintain the liquid in a heated or cooled state generally at a user selected temperature setting based at least in part on the sensed parameter information. The mug, travel mug, baby bottle, water bottle or liquid container can also be paired with a remote device or mobile electronic device to send or receive communications or commands.




sh

Near net shape fabrication of high temperature components using high pressure combustion driven compaction process

New net shape strength retaining high temperature alloy parts are formed from fine metallurgical powders by mechanically blending the powders and placing them in die, placing a piston in the die, extending the piston into a driving chamber, filling the chamber with CH4 and air and compressing the powders with the filling pressure. Igniting gas in the chamber drives the piston into the cavity, producing pressures of about 85 to 150 tsi, compacting the powders into a near net shape alloy part, ready for sintering at 2300° C. without shrinking. The alloy parts are Re, Mo—Re, W—Re, Re—Hf—HfC, Re—Ta—Hf—HfC, Re—Mo—Hf—HfC, Mo—Re—Ta, Mo—Re-f-HfC, W—Re—Hf—HfC, W—Re—Ta—Hf—HfC or W—Re—Mo—Hf alloys.




sh

Platinum-coated non-noble metal-noble metal core-shell electrocatalysts

Core-shell particles encapsulated by a thin film of a catalytically active metal are described. The particles are preferably nanoparticles comprising a non-noble core with a noble metal shell which preferably do not include Pt. The non-noble metal-noble metal core-shell nanoparticles are encapsulated by a catalytically active metal which is preferably Pt. The core-shell nanoparticles are preferably formed by prolonged elevated-temperature annealing of nanoparticle alloys in an inert environment. This causes the noble metal component to surface segregate and form an atomically thin shell. The Pt overlayer is formed by a process involving the underpotential deposition of a monolayer of a non-noble metal followed by immersion in a solution comprising a Pt salt. A thin Pt layer forms via the galvanic displacement of non-noble surface atoms by more noble Pt atoms in the salt. The overall process is a robust and cost-efficient method for forming Pt-coated non-noble metal-noble metal core-shell nanoparticles.




sh

Pump for delivering flux to molten metal through a shaft sleeve

A pump for pumping molten metal and delivering flux includes a refractory base that can be submerged in molten metal including an impeller chamber, an inlet and an outlet. A refractory shaft sleeve has upper and lower end portions and is fastened to the base at the lower end portion. A motor is disposed near the upper end portion of the shaft sleeve. A refractory shaft extends in the shaft sleeve and is connected to the motor near the upper end portion of the shaft sleeve. A refractory impeller is connected to the shaft and is rotatable in the impeller chamber. A flux feeding device feeds flux into the shaft sleeve. Also featured is a method for delivering flux in the shaft sleeve of the pump and a method for cleaning flux accretions in the shaft sleeve.




sh

Highly aromatic compounds and polymers as precursors to carbon nanotube and metal nanoparticle compositions in shaped solids

A method of making metal nanoparticles and carbon nanotubes is disclosed. A mixture of a transition metal compound and an aromatic polymer, a precursor of an aromatic polymer, or an aromatic monomer is heated to form a metal nanoparticle composition, optionally containing carbon nanotubes.




sh

Method for surface inclusions detection, enhancement of endothelial and osteoblast cells adhesion and proliferation, sterilization of electropolished and magnetoelectropolished nitinol surfaces

The method for surface inclusions detection, enhancement of endothelial and osteoblast cells adhesion and proliferation and sterilization of electropolished and magnetoelectropolished Nitinol implantable medical device surfaces uses an aqueous solution of chemical compounds containing halogenous oxyanions as hypochlorite (ClO−) and hypobromite (BrO−) preferentially 6% sodium hypochlorite (NaClO).




sh

Thin gauge steel sheet excellent in surface conditions, formability, and workability and method for producing the same

The present invention provides ultralow carbon thin gauge steel sheet and a method for producing the same where coalescence and growth of inclusions in the molten steel are prevented and the inclusions are finely dispersed in the steel sheet, whereby surface defects and cracks at the time of press forming are prevented, growth of recrystallized grains at the time of continuous annealing is promoted, and a high r value (r value≧2.0) and elongation (total elongation≧50%) are exhibited, that is, ultralow carbon thin gauge steel sheet excellent in surface conditions, formability, and workability comprised of, by mass %, 0.00030.003%≦C≦0.003%, Si≦0.01%, Mn≦0.1%, P≦0.02%, S≦0.01%, 0.0005%≦N≦0.0025%, 0.01%≦acid soluble Ti≦0.07%, acid soluble Al≦0.003%, and 0.002%≦La+Ce+Nd≦0.02% and a balance of iron and unavoidable impurities, said steel sheet characterized by containing at least cerium oxysulfite, lanthanum oxysulfite, and neodymium oxysulfite.




sh

High Al-content steel sheet excellent in workability and method of production of same

The present invention provides a high Al-content steel sheet having an excellent workability and a method of production of the same at a low cost by mass production, a high Al-content metal foil and a method of production of the same, and a metal substrate using a high Al-content metal foil, that is, a high Al-content steel sheet having an Al content of 6.5 mass % to 10 mass %, the high Al-content steel sheet characterized by having one or both of a {222} plane integration of an α-Fe crystal with respect to the surface of the steel sheet of 60% to 95% or a {200} plane integration of 0.01% to 15% and a method of production of the same, a high Al-content metal foil and a method of production of the same, and a metal substrate using a high Al-content metal foil.




sh

Method for manufacturing high strength galvanized steel sheet with excellent formability

A method of manufacturing a high-strength galvanized steel sheet includes hot-rolling a slab to form a steel sheet; during continuous annealing, heating the steel sheet to a temperature of 750° C. to 900° C. at an average heating rate of at least 10° C./s at a temperature of 500° C. to an A1 transformation point; holding that temperature for at least 10 seconds; cooling the steel sheet from 750° C. to a temperature of (Ms point—100° C.) to (Ms point—200° C.) at an average cooling rate of at least 10° C./s; reheating the steel sheet to a temperature of 350° C. to 600° C.; holding that temperature for 10 to 600 seconds; and galvanizing the steel sheet.




sh

Method for manufacturing hot-rolled sheet having fine-grained ferrite, and hot-rolled sheet

A method for manufacturing a hot-rolled sheet attains grain refinement of the steel sheet whose grain size is extremely fine. In particular, a ferrite grain size of less than average 2 μm is obtained, which is not laminar but has ferrite grains with equiaxed morphology and exhibits high formability in forming. The method comprises the steps of rolling and cooling, wherein the rolling reductions, cooling steps, and temperature are closely regulated. A hot rolled sheet made from the method of manufacturing has a controlled ferrite grain in different regions of sheet thickness.




sh

Steel sheet for cans with excellent surface properties after drawing and ironing and method for producing the same

A component composition contains, by % by mass, 0.0016 to 0.01% of C, 0.05 to 0.60% of Mn, and 0.020 to 0.080% of Nb so that the C and Nb contents satisfy the expression, 0.4≦(Nb/C)×(12/93)≦2.5. In addition, the amount of Nb-based precipitates is 20 to 500 ppm by mass, the average grain diameter of the Nb-based precipitates is 10 to 100 nm, and the average crystal grain diameter of ferrite is 6 to 10 μm. Nb is added to ultra-low-carbon steel used as a base, and the amount and grain diameter of the Nb-based precipitates are controlled to optimize the pinning effect. Grain refinement of ferrite is achieved by specifying the Mn amount, thereby achieving softening and excellent resistance to surface roughness of steel.




sh

Cu—Ni—Si-based copper alloy sheet material and method of manufacturing same

This invention provides a copper alloy sheet material containing, in mass %, Ni: 0.7%-4.2% and Si: 0.2%-1.0%, optionally containing one or more of Sn: 1.2% or less, Zn: 2.0% or less, Mg: 1.0% or less, Co: 2.0% or less, and Fe: 1.0% or less, and a total of 3% or less of one or more of Cr, B, P, Zr, Ti, Mn and V, the balance being substantially Cu, and having a crystal orientation satisfying Expression (1): I{420}/I0{420}>1.0 (1), where I{420} is the x-ray diffraction intensity from the {420} crystal plane in the sheet plane of the copper alloy sheet material and I0{420} is the x-ray diffraction intensity from the {420} crystal plane of standard pure copper powder. The copper alloy sheet material has highly improved strength, post-notching bending workability, and stress relaxation resistance property.




sh

Cold-rolled aluminum killed steel sheet and method of manufacturing packaging from said sheet

The invention concerns a cold-rolled aluminum killed steel sheet, which includes by weight between 0.003 and 0.130% of carbon, between 0.10 and 1% of manganese, between 0.010 and 0.100% of aluminum, between 0.0015 and 0.0140% nitrogen, the remainder being of iron and impurities resulting from the manufacturing, and which has a content of carbon in solid solution (Css) of at least 50 ppm, as well as a method of manufacturing packaging from said sheet.




sh

High strength cold rolled steel sheet and method for manufacturing the same

A multiphase steel sheet has a steel composition containing, in percent by mass, more than 0.015% to less than 0.100% of carbon, less than 0.40% of silicon, 1.0% to 1.9% of manganese, more than 0.015% to 0.05% of phosphorus, 0.03% or less of sulfur, 0.01% to 0.3% of soluble aluminum, 0.005% or less of nitrogen, less than 0.30% of chromium, 0.0050% or less of boron, less than 0.15% of molybdenum, 0.4% or less of vanadium, 0.02% or less of titanium, wherein [Mneq] is 2.0 to 2.8, the balance being iron and incidental impurities.




sh

Steel for induction hardening, roughly shaped material for induction hardening, producing method thereof, and induction hardening steel part

A steel for an induction hardening including, by mass %, C: more than 0.75% to 1.20%, Si: 0.002 to 3.00%, Mn: 0.20 to 2.00%, S: 0.002 to 0.100%, Al: more than 0.050% to 3.00%, P: limited to 0.050% or less, N: limited to 0.0200% or less, O: limited to: 0.0030% or less, and the balance composing of iron and unavoidable impurities, wherein an Al content and a N content satisfy, by mass %, Al−(27/14)×N>0.050%.




sh

Galvannealed steel sheet having excellent formability and exfoliation resistance after adhesion and production method thereof

The galvannealed steel sheet includes: a galvannealed layer formed on at least one surface of a steel sheet and contains includes an amount of 0.05 mass % to 0.5 mass % of Al, an amount of 6 mass % of 12 mass % of Fe, and the balance composed of Zn and inevitable impurities; and a mixed layer formed on a surface of the galvannealed layer and includes a composite oxide of Mn, Zn, and P and an aqueous P compound, wherein the composite oxide includes 0.1 mg/m2 to 100 mg/m2 of Mn, an amount of 1 mg/m2 to 100 mg/m2 of P, and Zn, and a P/Mn ratio is 0.3 to 50, and wherein the total size of an area of the mixed layer in which an attached amount of P is equal to or more than 20 mg/m2 is 20% to 80% of a surface area of the mixed layer.




sh

Hot-rolled steel sheet and method for producing same

Provided is a hot-rolled steel sheet that has a chemical composition including, by mass %: C: 0.060% to 0.150%; Si: 0.15% to 0.70%; Mn: 1.00% to 1.90%; P: 0.10% or less; S: 0.010% or less; Al: 0.01% to 0.10%; N: 0.010% or less; Nb: 0.010% to 0.100%; and the balance including Fe and incidental impurities. The hot-rolled steel sheet has a microstructure containing ferrite of 18 μm or less in average grain size by a volume fraction of at least 75% and pearlite of at least 2 μm in average grain size by a volume fraction of at least 5%, the balance being low-temperature-induced phases, the pearlite having a mean free path of at least 5.0 μm.




sh

Manufacturing method of grain-oriented electrical steel sheet

A predetermined steel containing Te: 0.0005 mass % to 0.0050 mass % is heated to 1320° C. or lower to be subjected to hot rolling, and is subjected to annealing, cold rolling, decarburization annealing, and nitridation annealing, and thereby a decarburized nitrided steel sheet is obtained. Further, an annealing separating agent is applied on the surface of the decarburized nitrided steel sheet and finish annealing is performed, and thereby a glass coating film is formed. The N content of the decarburized nitrided steel sheet is set to 0.0150 mass % to 0.0250 mass % and the relationship of 2×[Te]+[N]≦0.0300 mass % is set to be established. Note that [Te] represents the Te content and [N] represents the N content.