bi TBCRC 032 IB/II Multicenter Study: Molecular Insights to AR Antagonist and PI3K Inhibitor Efficacy in Patients with AR+ Metastatic Triple-Negative Breast Cancer By clincancerres.aacrjournals.org Published On :: 2020-05-01T00:05:36-07:00 Purpose: Preclinical data demonstrating androgen receptor (AR)–positive (AR+) triple-negative breast cancer (TNBC) cells are sensitive to AR antagonists, and PI3K inhibition catalyzed an investigator-initiated, multi-institutional phase Ib/II study TBCRC032. The trial investigated the safety and efficacy of the AR-antagonist enzalutamide alone or in combination with the PI3K inhibitor taselisib in patients with metastatic AR+ (≥10%) breast cancer. Patients and Methods: Phase Ib patients [estrogen receptor positive (ER+) or TNBC] with AR+ breast cancer received 160 mg enzalutamide in combination with taselisib to determine dose-limiting toxicities and the maximum tolerated dose (MTD). Phase II TNBC patients were randomized to receive either enzalutamide alone or in combination with 4 mg taselisib until disease progression. Primary endpoint was clinical benefit rate (CBR) at 16 weeks. Results: The combination was tolerated, and the MTD was not reached. The adverse events were hyperglycemia and skin rash. Overall, CBR for evaluable patients receiving the combination was 35.7%, and median progression-free survival (PFS) was 3.4 months. Luminal AR (LAR) TNBC subtype patients trended toward better response compared with non-LAR (75.0% vs. 12.5%, P = 0.06), and increased PFS (4.6 vs. 2.0 months, P = 0.082). Genomic analyses revealed subtype-specific treatment response, and novel FGFR2 fusions and AR splice variants. Conclusions: The combination of enzalutamide and taselisib increased CBR in TNBC patients with AR+ tumors. Correlative analyses suggest AR protein expression alone is insufficient for identifying patients with AR-dependent tumors and knowledge of tumor LAR subtype and AR splice variants may identify patients more or less likely to benefit from AR antagonists. Full Article
bi Targeting PD-1 or PD-L1 in Metastatic Kidney Cancer: Combination Therapy in the First-Line Setting By clincancerres.aacrjournals.org Published On :: 2020-05-01T00:05:36-07:00 Recent FDA approvals of regimens targeting programmed death 1 (PD-1) in combination with anti-CTLA-4 or with VEGF tyrosine kinase inhibitors are reshaping front-line therapy for metastatic kidney cancer. In parallel, therapeutics specific for programmed death ligand 1 (PD-L1), one of the two major ligands for PD-1, are under continued investigation. Surprisingly, not all PD-1 and PD-L1 agents lead to similar clinical outcomes, potentially due to biological differences in the cellular expression and regulation of these targets. Here, we review current clinical data on combination immune checkpoint inhibitor therapy in metastatic kidney cancer and discuss the relevant biology of PD-1 and PD-L1. The design of future rational combination therapy trials in metastatic renal cell carcinoma will rely upon an understanding of this biology, along with an evolving understanding of immune cell populations and their functional states in the tumor microenvironment. Full Article
bi TNF{alpha} Blockade in Checkpoint Inhibition: The Good, the Bad, or the Ugly? By clincancerres.aacrjournals.org Published On :: 2020-05-01T00:05:36-07:00 The impact on survival of steroids and TNFα blockade to treat immune-related toxicity from checkpoint blockade with ipilimumab, nivolumab/pembrolizumab, or combined ipilimumab and nivolumab was assessed using data from a large national database. Using steroids was associated with better survival than the use of TNFα-blocking antibodies such as infliximab. See related article by Verheijden et al., p. 2268 Full Article
bi Importation of Extensively Drug-Resistant Salmonella enterica Serovar Typhi Cases in Ontario, Canada [Susceptibility] By aac.asm.org Published On :: 2020-04-21T08:01:10-07:00 A strain of extensively drug-resistant (XDR) Salmonella enterica serovar Typhi has caused a large ongoing outbreak in Pakistan since 2016. In Ontario, Canada, 10 cases of mainly bloodstream infections (n = 9) were identified in patients who traveled to Pakistan. Whole-genome sequencing showed that Canadian cases were genetically related to the Pakistan outbreak strain. The appearance of XDR typhoid cases in Ontario prompted a provincial wide alert to physicians to recommend treatment with carbapenems or azithromycin in suspected typhoid cases with travel history to Pakistan. Full Article
bi Systematic Review of Whole-Genome Sequencing Data To Predict Phenotypic Drug Resistance and Susceptibility in Swedish Mycobacterium tuberculosis Isolates, 2016 to 2018 [Mechanisms of Resistance] By aac.asm.org Published On :: 2020-04-21T08:01:10-07:00 In this retrospective study, whole-genome sequencing (WGS) data generated on an Ion Torrent platform was used to predict phenotypic drug resistance profiles for first- and second-line drugs among Swedish clinical Mycobacterium tuberculosis isolates from 2016 to 2018. The accuracy was ~99% for all first-line drugs and 100% for four second-line drugs. Our analysis supports the introduction of WGS into routine diagnostics, which might, at least in Sweden, replace phenotypic drug susceptibility testing in the future. Full Article
bi Novel Endochin-Like Quinolones Exhibit Potent In Vitro Activity against Plasmodium knowlesi but Do Not Synergize with Proguanil [Susceptibility] By aac.asm.org Published On :: 2020-04-21T08:01:10-07:00 Quinolones, such as the antimalarial atovaquone, are inhibitors of the malarial mitochondrial cytochrome bc1 complex, a target critical to the survival of both liver- and blood-stage parasites, making these drugs useful as both prophylaxis and treatment. Recently, several derivatives of endochin have been optimized to produce novel quinolones that are active in vitro and in animal models. While these quinolones exhibit potent ex vivo activity against Plasmodium falciparum and Plasmodium vivax, their activity against the zoonotic agent Plasmodium knowlesi is unknown. We screened several of these novel endochin-like quinolones (ELQs) for their activity against P. knowlesi in vitro and compared this with their activity against P. falciparum tested under identical conditions. We demonstrated that ELQs are potent against P. knowlesi (50% effective concentration, <117 nM) and equally effective against P. falciparum. We then screened selected quinolones and partner drugs using a longer exposure (2.5 life cycles) and found that proguanil is 10-fold less potent against P. knowlesi than P. falciparum, while the quinolones demonstrate similar potency. Finally, we used isobologram analysis to compare combinations of the ELQs with either proguanil or atovaquone. We show that all quinolone combinations with proguanil are synergistic against P. falciparum. However, against P. knowlesi, no evidence of synergy between proguanil and the quinolones was found. Importantly, the combination of the novel quinolone ELQ-300 with atovaquone was synergistic against both species. Our data identify potentially important species differences in proguanil susceptibility and in the interaction of proguanil with quinolones and support the ongoing development of novel quinolones as potent antimalarials that target multiple species. Full Article
bi Synergistic Interactions of Indole-2-Carboxamides and {beta}-Lactam Antibiotics against Mycobacterium abscessus [Mechanisms of Action] By aac.asm.org Published On :: 2020-04-21T08:01:10-07:00 New drugs or therapeutic combinations are urgently needed against Mycobacterium abscessus. Previously, we demonstrated the potent activity of indole-2-carboxamides 6 and 12 against M. abscessus. We show here that these compounds act synergistically with imipenem and cefoxitin in vitro and increase the bactericidal activity of the β-lactams against M. abscessus. In addition, compound 12 also displays synergism with imipenem and cefoxitin within infected macrophages. The clinical potential of these new drug combinations requires further evaluation. Full Article
bi Surveillance of Omadacycline Activity Tested against Clinical Isolates from the United States and Europe: Report from the SENTRY Antimicrobial Surveillance Program, 2016 to 2018 [Epidemiology and Surveillance] By aac.asm.org Published On :: 2020-04-21T08:01:10-07:00 Omadacycline is a broad-spectrum aminomethylcycline approved in October 2018 by the U.S. Food and Drug Administration for treating acute bacterial skin and skin structure infections and community-acquired pneumonia as both an oral and intravenous once-daily formulation. In this report, the activities of omadacycline and comparators were tested against 49,000 nonduplicate bacterial isolates collected prospectively during 2016 to 2018 from medical centers in Europe (24,500 isolates, 40 medical centers [19 countries]) and the United States (24,500 isolates, 33 medical centers [23 states and all 9 U.S. census divisions]). Omadacycline was tested by broth microdilution following the methods in Clinical and Laboratory Standards Institute document M07 (Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard, 11th ed., 2018). Omadacycline (MIC50/90, 0.12/0.25 mg/liter) inhibited 98.6% of Staphylococcus aureus isolates at ≤0.5 mg/liter, including 96.3% of methicillin-resistant S. aureus isolates and 99.8% of methicillin-susceptible S. aureus isolates. Omadacycline potency was comparable for Streptococcus pneumoniae (MIC50/90, 0.06/0.12 mg/liter), viridans group streptococci (MIC50/90, 0.06/0.12 mg/liter), and beta-hemolytic streptococci (MIC50/90, 0.12/0.25 mg/liter), regardless of species and susceptibility to penicillin, macrolides, or tetracycline. Omadacycline was active against all Enterobacterales tested (MIC50/90, 1/8 mg/liter; 87.5% of isolates were inhibited at ≤4 mg/liter) except Proteus mirabilis (MIC50/90, 16/>32 mg/liter) and indole-positive Proteus spp. (MIC50/90, 8/32 mg/liter) and was most active against Escherichia coli (MIC50/90, 0.5/2 mg/liter), Klebsiella oxytoca (MIC50/90, 1/2 mg/liter), and Citrobacter spp. (MIC50/90, 1/4 mg/liter). Omadacycline inhibited 92.4% of Enterobacter cloacae species complex and 88.5% of Klebsiella pneumoniae isolates at ≤4 mg/liter. Omadacycline was active against Haemophilus influenzae (MIC50/90, 0.5/1 mg/liter), regardless of β-lactamase status, and against Moraxella catarrhalis (MIC50/90, ≤0.12/0.25 mg/liter). The potent activity of omadacycline against Gram-positive and -negative bacteria indicates that omadacycline merits further study in serious infections in which multidrug resistance and mixed Gram-positive and Gram-negative bacterial infections may be a concern. Full Article
bi Scope and Predictive Genetic/Phenotypic Signatures of Bicarbonate (NaHCO3) Responsiveness and {beta}-Lactam Sensitization in Methicillin-Resistant Staphylococcus aureus [Susceptibility] By aac.asm.org Published On :: 2020-04-21T08:01:10-07:00 Addition of sodium bicarbonate (NaHCO3) to standard antimicrobial susceptibility testing medium reveals certain methicillin-resistant Staphylococcus aureus (MRSA) strains to be highly susceptible to β-lactams. We investigated the prevalence of this phenotype (NaHCO3 responsiveness) to two β-lactams among 58 clinical MRSA bloodstream isolates. Of note, ~75% and ~36% of isolates displayed the NaHCO3 responsiveness phenotype to cefazolin (CFZ) and oxacillin (OXA), respectively. Neither intrinsic β-lactam MICs in standard Mueller-Hinton broth (MHB) nor population analysis profiles were predictive of this phenotype. Several genotypic markers (clonal complex 8 [CC8]; agr I and spa t008) were associated with NaHCO3 responsiveness for OXA. Full Article
bi Genomic Characterization of Neisseria gonorrhoeae Strains from 2016 U.S. Sentinel Surveillance Displaying Reduced Susceptibility to Azithromycin [Epidemiology and Surveillance] By aac.asm.org Published On :: 2020-04-21T08:01:10-07:00 In 2016, the proportion of Neisseria gonorrhoeae isolates with reduced susceptibility to azithromycin rose to 3.6%. A phylogenetic analysis of 334 N. gonorrhoeae isolates collected in 2016 revealed a single, geographically diverse lineage of isolates with MICs of 2 to 16 μg/ml that carried a mosaic-like mtr locus, whereas the majority of isolates with MICs of ≥16 μg/ml appeared sporadically and carried 23S rRNA mutations. Continued molecular surveillance of N. gonorrhoeae isolates will identify new resistance mechanisms. Full Article
bi Activity of Plazomicin Tested against Enterobacterales Isolates Collected from U.S. Hospitals in 2016-2017: Effect of Different Breakpoint Criteria on Susceptibility Rates among Aminoglycosides [Susceptibility] By aac.asm.org Published On :: 2020-04-21T08:01:10-07:00 Plazomicin was active against 97.0% of 8,783 Enterobacterales isolates collected in the United States (2016 and 2017), and only 6 isolates carried 16S rRNA methyltransferases conferring resistance to virtually all aminoglycosides. Plazomicin (89.2% to 95.9% susceptible) displayed greater activity than amikacin (72.5% to 78.6%), gentamicin (30.4% to 45.9%), and tobramycin (7.8% to 22.4%) against carbapenem-resistant and extensively drug-resistant isolates. The discrepancies among the susceptibility rates for these agents was greater when applying breakpoints generated using the same stringent contemporary methods applied to determine plazomicin breakpoints. Full Article
bi Using Genetic Distance from Archived Samples for the Prediction of Antibiotic Resistance in Escherichia coli [Epidemiology and Surveillance] By aac.asm.org Published On :: 2020-04-21T08:01:10-07:00 The rising rates of antibiotic resistance increasingly compromise empirical treatment. Knowing the antibiotic susceptibility of a pathogen’s close genetic relative(s) may improve empirical antibiotic selection. Using genomic and phenotypic data for Escherichia coli isolates from three separate clinically derived databases, we evaluated multiple genomic methods and statistical models for predicting antibiotic susceptibility, focusing on potentially rapidly available information, such as lineage or genetic distance from archived isolates. We applied these methods to derive and validate the prediction of antibiotic susceptibility to common antibiotics. We evaluated 968 separate episodes of suspected and confirmed infection with Escherichia coli from three geographically and temporally separated databases in Ontario, Canada, from 2010 to 2018. Across all approaches, model performance (area under the curve [AUC]) ranges for predicting antibiotic susceptibility were the greatest for ciprofloxacin (AUC, 0.76 to 0.97) and the lowest for trimethoprim-sulfamethoxazole (AUC, 0.51 to 0.80). When a model predicted that an isolate was susceptible, the resulting (posttest) probabilities of susceptibility were sufficient to warrant empirical therapy for most antibiotics (mean, 92%). An approach combining multiple models could permit the use of narrower-spectrum oral agents in 2 out of every 3 patients while maintaining high treatment adequacy (~90%). Methods based on genetic relatedness to archived samples of E. coli could be used to predict antibiotic resistance and improve antibiotic selection. Full Article
bi Investigating the Effects of Osmolytes and Environmental pH on Bacterial Persisters [Susceptibility] By aac.asm.org Published On :: 2020-04-21T08:01:10-07:00 Bacterial persisters are phenotypic variants that temporarily demonstrate an extraordinary tolerance toward antibiotics. Persisters have been linked to the recalcitrance of biofilm-related infections; hence, a complete understanding of their physiology can lead to improvement of therapeutic strategies for such infections. Mechanisms pertaining to persister formation are thought to be associated with stress response pathways triggered by intra- or extracellular stress factors. Unfortunately, studies demonstrating the effects of osmolyte- and/or pH-induced stresses on bacterial persistence are largely missing. To fill this knowledge gap within the field, we studied the effects of various osmolytes and pH conditions on Escherichia coli persistence with the use of phenotype microarrays and antibiotic tolerance assays. Although we found that a number of chemicals and pH environments, including urea, sodium nitrite, and acidic pH, significantly reduced persister formation in E. coli compared to no-osmolyte/no-buffer controls, this reduction in persister levels was less pronounced in late-stationary-phase cultures. Our results further demonstrated a positive correlation between cell growth and persister formation, which challenges the general notion in the field that slow-growing cultures have more persister cells than fast-growing cultures. Full Article
bi In Vitro Activity of KBP-7072, a Novel Third-Generation Tetracycline, against 531 Recent Geographically Diverse and Molecularly Characterized Acinetobacter baumannii Species Complex Isolates [Susceptibility] By aac.asm.org Published On :: 2020-04-21T08:01:10-07:00 KBP-7072 is a novel third-generation tetracycline (aminomethylcycline) antibacterial that overcomes common efflux and ribosomal protection resistance mechanisms that cause resistance in older-generation tetracyclines. KBP-7072 completed phase 1 clinical development studies for safety, tolerability, and pharmacokinetics (ClinicalTrials.gov identifier NCT02454361) and multiple ascending doses in healthy subjects (ClinicalTrials.gov identifier NCT02654626) in December 2015. Both oral and intravenous formulations of KBP-7072 are being developed. In this study, we evaluated the in vitro activities of KBP-7072 and comparator agents by CLSI document M07 (2018) broth microdilution against 531 recent geographically diverse and/or molecularly characterized Acinetobacter baumannii-A. calcoaceticus species complex (A. baumannii) isolates from the United States, Europe, Asia-Pacific (excluding China), and Latin America. A. baumannii isolates included carbapenem-resistant, colistin-resistant, tetracycline-resistant, and extended-spectrum-β-lactamase (ESBL)- and metallo-β-lactamase (MBL)-producing isolates. Overall, KBP-7072 (MIC50/90, 0.25/1 mg/liter) was comparable in activity to colistin (92.8%/92.8% susceptible [S] [CLSI/EUCAST]) against A. baumannii isolates, inhibiting 99.2% of isolates at ≤2 mg/liter and 97.6% of isolates at ≤1 mg/liter. KBP-7072 was equally active against A. baumannii isolates, including carbapenem-resistant, colistin-resistant, and tetracycline-resistant isolates, regardless of geographic location, and maintained activity against ESBL- and MBL-producing isolates. KBP-7072 outperformed comparator agents, including ceftazidime (40.3% S [CLSI]), gentamicin (48.2%/48.2% S [CLSI/EUCAST]), levofloxacin (39.5%/37.9% S [CLSI/EUCAST]), meropenem (42.0%/42.0% S [CLSI/EUCAST]), piperacillin-tazobactam (33.3% S [CLSI]), and all tetracycline-class comparator agents, which include doxycycline (67.3% S [CLSI]), minocycline (73.8% S [CLSI]), tetracycline (37.2% S [CLSI]), and tigecycline (79.5% inhibited by ≤2 mg/liter). The potent in vitro activity of KBP-7072 against recent geographically diverse, molecularly characterized, and drug-resistant A. baumannii isolates supports continued clinical development for the treatment of serious infections, including those caused by A. baumannii. Full Article
bi In Vitro Activity of Ceftazidime-Avibactam against Isolates from Respiratory and Blood Specimens from Patients with Nosocomial Pneumonia, Including Ventilator-Associated Pneumonia, in a Phase 3 Clinical Trial [Susceptibility] By aac.asm.org Published On :: 2020-04-21T08:01:10-07:00 Nosocomial pneumonia (NP), including ventilator-associated pneumonia (VAP), is increasingly associated with multidrug-resistant Gram-negative pathogens. This study describes the in vitro activity of ceftazidime-avibactam, ceftazidime, and relevant comparator agents against bacterial pathogens isolated from patients with NP, including VAP, enrolled in a ceftazidime-avibactam phase 3 trial. Gram-positive pathogens were included if coisolated with a Gram-negative pathogen. In vitro susceptibility was determined at a central laboratory using Clinical and Laboratory Standards Institute broth microdilution methods. Of 817 randomized patients, 457 (55.9%) had ≥1 Gram-negative bacterial pathogen(s) isolated at baseline, and 149 (18.2%) had ≥1 Gram-positive pathogen(s) coisolated. The most common isolated pathogens were Klebsiella pneumoniae (18.8%), Pseudomonas aeruginosa (15.8%), and Staphylococcus aureus (11.5%). Ceftazidime-avibactam was highly active in vitro against 370 isolates of Enterobacteriaceae, with 98.6% susceptible (MIC90, 0.5 μg/ml) compared with 73.2% susceptible for ceftazidime (MIC90, >64 μg/ml). The percent susceptibility values for ceftazidime-avibactam and ceftazidime against 129 P. aeruginosa isolates were 88.4% and 72.9% (MIC90 values of 16 μg/ml and 64 μg/ml), respectively. Among ceftazidime-nonsusceptible Gram-negative isolates, ceftazidime-avibactam percent susceptibility values were 94.9% for 99 Enterobacteriaceae and 60.0% for 35 P. aeruginosa. MIC90 values for linezolid and vancomycin (permitted per protocol for Gram-positive coverage) were within their respective MIC susceptibility breakpoints against the Gram-positive pathogens isolated. This analysis demonstrates that ceftazidime-avibactam was active in vitro against the majority of Enterobacteriaceae and P. aeruginosa isolates from patients with NP, including VAP, in a phase 3 trial. (This study has been registered at ClinicalTrials.gov under identifier NCT01808092.) Full Article
bi Antibacterial Monoclonal Antibodies Do Not Disrupt the Intestinal Microbiome or Its Function [Experimental Therapeutics] By aac.asm.org Published On :: 2020-04-21T08:01:10-07:00 Antibiotics revolutionized the treatment of infectious diseases; however, it is now clear that broad-spectrum antibiotics alter the composition and function of the host’s microbiome. The microbiome plays a key role in human health, and its perturbation is increasingly recognized as contributing to many human diseases. Widespread broad-spectrum antibiotic use has also resulted in the emergence of multidrug-resistant pathogens, spurring the development of pathogen-specific strategies such as monoclonal antibodies (MAbs) to combat bacterial infection. Not only are pathogen-specific approaches not expected to induce resistance in nontargeted bacteria, but they are hypothesized to have minimal impact on the gut microbiome. Here, we compare the effects of antibiotics, pathogen-specific MAbs, and their controls (saline or control IgG [c-IgG]) on the gut microbiome of 7-week-old, female, C57BL/6 mice. The magnitude of change in taxonomic abundance, bacterial diversity, and bacterial metabolites, including short-chain fatty acids (SCFA) and bile acids in the fecal pellets from mice treated with pathogen-specific MAbs, was no different from that with animals treated with saline or an IgG control. Conversely, dramatic changes were observed in the relative abundance, as well as alpha and beta diversity, of the fecal microbiome and bacterial metabolites in the feces of all antibiotic-treated mice. Taken together, these results indicate that pathogen-specific MAbs do not alter the fecal microbiome like broad-spectrum antibiotics and may represent a safer, more-targeted approach to antibacterial therapy. Full Article
bi Lactoferrin Is Broadly Active against Yeasts and Highly Synergistic with Amphotericin B [Susceptibility] By aac.asm.org Published On :: 2020-04-21T08:01:10-07:00 Lactoferrin (LF) is a multifunctional milk protein with antimicrobial activity against a range of pathogens. While numerous studies report that LF is active against fungi, there are considerable differences in the level of antifungal activity and the capacity of LF to interact with other drugs. Here we undertook a comprehensive evaluation of the antifungal spectrum of activity of three defined sources of LF across 22 yeast and 24 mold species and assessed its interactions with six widely used antifungal drugs. LF was broadly and consistently active against all yeast species tested (MICs, 8 to 64 μg/ml), with the extent of activity being strongly affected by iron saturation. LF was synergistic with amphotericin B (AMB) against 19 out of 22 yeast species tested, and synergy was unaffected by iron saturation but was affected by the extent of LF digestion. LF-AMB combination therapy significantly prolonged the survival of Galleria mellonella wax moth larvae infected with Candida albicans or Cryptococcus neoformans and decreased the fungal burden 12- to 25-fold. Evidence that LF directly interacts with the fungal cell surface was seen via scanning electron microscopy, which showed pore formation, hyphal thinning, and major cell collapse in response to LF-AMB synergy. Important virulence mechanisms were disrupted by LF-AMB treatment, which significantly prevented biofilms in C. albicans and C. glabrata, inhibited hyphal development in C. albicans, and reduced cell and capsule size and phenotypic diversity in Cryptococcus. Our results demonstrate the potential of LF-AMB as an antifungal treatment that is broadly synergistic against important yeast pathogens, with the synergy being attributed to the presence of one or more LF peptides. Full Article
bi In Vitro Screening of the Open-Source Medicines for Malaria Venture Malaria and Pathogen Boxes To Discover Novel Compounds with Activity against Balamuthia mandrillaris [Susceptibility] By aac.asm.org Published On :: 2020-04-21T08:01:10-07:00 Balamuthia mandrillaris is an under-reported, pathogenic free-living amoeba that causes Balamuthia amoebic encephalitis (BAE) and cutaneous skin infections. Although cutaneous infections are not typically lethal, BAE with or without cutaneous involvement is usually fatal. This is due to the lack of drugs that are both efficacious and can cross the blood-brain barrier. We aimed to discover new leads for drug discovery by screening the open-source Medicines for Malaria Venture (MMV) Malaria Box and MMV Pathogen Box, with 800 compounds total. From an initial single point screen at 1 and 10 μM, we identified 54 hits that significantly inhibited the growth of B. mandrillaris in vitro. Hits were reconfirmed in quantitative dose-response assays and 23 compounds (42.6%) were confirmed with activity greater than miltefosine, the current standard of care. Full Article
bi Safety and Pharmacokinetic Characterization of Nacubactam, a Novel {beta}-Lactamase Inhibitor, Alone and in Combination with Meropenem, in Healthy Volunteers [Clinical Therapeutics] By aac.asm.org Published On :: 2020-04-21T08:01:10-07:00 Nacubactam is a novel β-lactamase inhibitor with dual mechanisms of action as an inhibitor of serine β-lactamases (classes A and C and some class D) and an inhibitor of penicillin binding protein 2 in Enterobacteriaceae. The safety, tolerability, and pharmacokinetics of intravenous nacubactam were evaluated in single- and multiple-ascending-dose, placebo-controlled studies. Healthy participants received single ascending doses of nacubactam of 50 to 8,000 mg, multiple ascending doses of nacubactam of 1,000 to 4,000 mg every 8 h (q8h) for up to 7 days, or nacubactam of 2,000 mg plus meropenem of 2,000 mg q8h for 6 days after a 3-day lead-in period. Nacubactam was generally well tolerated, with the most frequently reported adverse events (AEs) being mild to moderate complications associated with intravenous access and headache. There was no apparent relationship between drug dose and the pattern, incidence, or severity of AEs. No clinically relevant dose-related trends were observed in laboratory safety test results. No serious AEs, dose-limiting AEs, or deaths were reported. After single or multiple doses, nacubactam pharmacokinetics appeared linear, and exposure increased in an approximately dose-proportional manner across the dose range investigated. Nacubactam was excreted largely unchanged into urine. Coadministration of nacubactam with meropenem did not significantly alter the pharmacokinetics of either drug. These findings support the continued clinical development of nacubactam and demonstrate the suitability of meropenem as a potential β-lactam partner for nacubactam. (The studies described in this paper have been registered at ClinicalTrials.gov under NCT02134834 [single ascending dose study] and NCT02972255 [multiple ascending dose study].) Full Article
bi The Antifungal Drug Isavuconazole Is both Amebicidal and Cysticidal against Acanthamoeba castellanii [Experimental Therapeutics] By aac.asm.org Published On :: 2020-04-21T08:01:10-07:00 Current treatments for Acanthamoeba keratitis rely on a combination of chlorhexidine gluconate, propamidine isethionate, and polyhexamethylene biguanide. These disinfectants are nonspecific and inherently toxic, which limits their effectiveness. Furthermore, in 10% of cases, recurrent infection ensues due to the difficulty in killing both trophozoites and double-walled cysts. Therefore, development of efficient, safe, and target-specific drugs which are capable of preventing recurrent Acanthamoeba infection is a critical unmet need for averting blindness. Since both trophozoites and cysts contain specific sets of membrane sterols, we hypothesized that antifungal drugs targeting sterol 14-demethylase (CYP51), known as conazoles, would have deleterious effects on A. castellanii trophozoites and cysts. To test this hypothesis, we first performed a systematic screen of the FDA-approved conazoles against A. castellanii trophozoites using a bioluminescence-based viability assay adapted and optimized for Acanthamoeba. The most potent drugs were then evaluated against cysts. Isavuconazole and posaconazole demonstrated low nanomolar potency against trophozoites of three clinical strains of A. castellanii. Furthermore, isavuconazole killed trophozoites within 24 h and suppressed excystment of preformed Acanthamoeba cysts into trophozoites. The rapid action of isavuconazole was also evident from the morphological changes at nanomolar drug concentrations causing rounding of trophozoites within 24 h of exposure. Given that isavuconazole has an excellent safety profile, is well tolerated in humans, and blocks A. castellanii excystation, this opens an opportunity for the cost-effective repurposing of isavuconazole for the treatment of primary and recurring Acanthamoeba keratitis. Full Article
bi A Biosynthetic Platform for Antimalarial Drug Discovery [Chemistry; Biosynthesis] By aac.asm.org Published On :: 2020-04-21T08:01:09-07:00 Advances in synthetic biology have enabled the production of a variety of compounds using bacteria as a vehicle for complex compound biosynthesis. Violacein, a naturally occurring indole pigment with antibiotic properties, can be biosynthetically engineered in Escherichia coli expressing its nonnative synthesis pathway. To explore whether this synthetic biosynthesis platform could be used for drug discovery, here we have screened bacterially derived violacein against the main causative agent of human malaria, Plasmodium falciparum. We show the antiparasitic activity of bacterially derived violacein against the P. falciparum 3D7 laboratory reference strain as well as drug-sensitive and -resistant patient isolates, confirming the potential utility of this drug as an antimalarial agent. We then screen a biosynthetic series of violacein derivatives against P. falciparum growth. The varied activity of each derivative against asexual parasite growth points to the need to further develop violacein as an antimalarial. Towards defining its mode of action, we show that biosynthetic violacein affects the parasite actin cytoskeleton, resulting in an accumulation of actin signal that is independent of actin polymerization. This activity points to a target that modulates actin behavior in the cell either in terms of its regulation or its folding. More broadly, our data show that bacterial synthetic biosynthesis could become a suitable platform for antimalarial drug discovery, with potential applications in future high-throughput drug screening with otherwise chemically intractable natural products. Full Article
bi In Vitro Activity of Beauvericin against All Developmental Stages of Sarcoptes scabiei [Susceptibility] By aac.asm.org Published On :: 2020-04-21T08:01:09-07:00 Scabies is a frequent cutaneous infection caused by the mite Sarcoptes scabiei in a large number of mammals, including humans. As the resistance of S. scabiei against several chemical acaricides has been previously documented, the establishment of alternative and effective control molecules is required. In this study, the potential acaricidal activity of beauvericin was assessed against different life stages of S. scabiei var. suis and in comparison with dimpylate and ivermectin, two commercially available molecules used for the treatment of S. scabiei infection in animals and/or humans. The toxicity of beauvericin against cultured human fibroblast skin cells was evaluated using an MTT proliferation assay. In our in vitro model, developmental stages of S. scabiei were placed in petri dishes filled with Columbia agar supplemented with pig serum and different concentrations of the drugs. Cell sensitivity assays demonstrated low toxicity of beauvericin against primary human fibroblast skin cells. At 0.5 and 5 mM, beauvericin showed higher activity against adults and eggs of S. scabiei compared to dimpylate and ivermectin. These results revealed that the use of beauvericin is promising and might be considered for the treatment of S. scabiei infection. Full Article
bi Impact of Daptomycin Dose Exposure Alone or in Combination with {beta}-Lactams or Rifampin against Vancomycin-Resistant Enterococci in an In Vitro Biofilm Model [Susceptibility] By aac.asm.org Published On :: 2020-04-21T08:01:09-07:00 Enterococcus faecium strains are commonly resistant to vancomycin and β-lactams. In addition, E. faecium often causes biofilm-associated infections and these infections are difficult to treat. In this context, we investigated the activity of dosing regimens using daptomycin (DAP) (8, 10, 12, and 14 mg/kg of body weight/day) alone and in combination with ceftaroline (CPT), ampicillin (AMP), ertapenem (ERT), and rifampin (RIF) against 2 clinical strains of biofilm-producing vancomycin-resistant Enterococcus faecium (VREfm), namely, strains S447 and HOU503, in an in vitro biofilm model. HOU503 harbors common LiaS and LiaR substitutions, whereas S447 lacks mutations associated with the LiaFSR pathway. MIC results demonstrated that both strains were susceptible to DAP and resistant to CPT, AMP, ERT, and RIF. The 168-h pharmacokinetic/pharmacodynamic (PK/PD) CDC biofilm reactor models (simulating human antibiotic exposures) were used with titanium and polyurethane coupons to evaluate the efficacy of antibiotic combinations. DAP 12 and 14 achieved bactericidal activity against S447 but lacked such effect against HOU503. Addition of ERT and RIF enhanced DAP activity, allowing DAP 8 and 10 plus ERT or RIF to produce bactericidal activity against both strains at 168 h. While DAP 8 and 10 plus CPT improved killing, they did not reach bactericidal reduction against S447. Combination of AMP, CPT, ERT, or RIF resulted in enhanced and bactericidal activity for DAP against HOU503 at 168 h. Our data provide further support for the use of combinations of DAP with AMP, ERT, CPT, and RIF in infections caused by biofilm producing VREfm. Further research involving DAP combinations against biofilm-producing enterococci is warranted. Full Article
bi Antimicrobial Activity of the Quinoline Derivative HT61 against Staphylococcus aureus Biofilms [Susceptibility] By aac.asm.org Published On :: 2020-04-21T08:01:09-07:00 Staphylococcus aureus biofilms are a significant problem in health care settings, partly due to the presence of a nondividing, antibiotic-tolerant subpopulation. Here we evaluated treatment of S. aureus UAMS-1 biofilms with HT61, a quinoline derivative shown to be effective against nondividing Staphylococcus spp. HT61 was effective at reducing biofilm viability and was associated with increased expression of cell wall stress and division proteins, confirming its potential as a treatment for S. aureus biofilm infections. Full Article
bi Synthesis and Biological Activity of Novel Zinc-Itraconazole Complexes in Protozoan Parasites and Sporothrix spp. [Susceptibility] By aac.asm.org Published On :: 2020-04-21T08:01:09-07:00 The new complexes Zn(ITZ)2Cl2 (1) and Zn(ITZ)2(OH)2 (2) were synthetized by a reaction of itraconazole with their respective zinc salts under reflux. These Zn-ITZ complexes were characterized by elemental analyses, molar conductivity, mass spectrometry, 1H and 13C{1H} nuclear magnetic resonance, and UV-vis and infrared spectroscopies. The antiparasitic and antifungal activity of Zn-ITZ complexes was evaluated against three protozoans of medical importance, namely, Leishmania amazonensis, Trypanosoma cruzi, and Toxoplasma gondii, and two fungi, namely, Sporothrix brasiliensis and Sporothrix schenckii. The Zn-ITZ complexes exhibited a broad spectrum of action, with antiparasitic and antifungal activity in low concentrations. The strategy of combining zinc with ITZ was efficient to enhance ITZ activity since Zn-ITZ-complexes were more active than the azole alone. This study opens perspectives for future applications of these Zn-ITZ complexes in the treatment of parasitic diseases and sporotrichosis. Full Article
bi In Vitro and Intracellular Activities of Omadacycline against Legionella pneumophila [Susceptibility] By aac.asm.org Published On :: 2020-04-21T08:01:09-07:00 Omadacycline is an aminomethylcycline antibiotic with in vitro activity against pathogens causing community-acquired bacterial pneumonia (CABP). This study investigated the activity of omadacycline against Legionella pneumophila strains isolated between 1995 and 2014 from nosocomial or community-acquired respiratory infections. Omadacycline exhibited extracellular activity similar to comparator antibiotics; intracellular penetrance was found by day 3 of omadacycline exposure. These results support the utility of omadacycline as an effective antibiotic for the treatment of CABP caused by L. pneumophila. Full Article
bi Activity of Cefiderocol and Comparators against Isolates from Cancer Patients [Susceptibility] By aac.asm.org Published On :: 2020-04-21T08:01:09-07:00 Cefiderocol inhibited 97.5% of 478 Gram-negative isolates from cancer patients at ≤4 mg/liter. It had potent activity against extended-spectrum β-lactamase-positive Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae (CRE), and nonfermenting Gram-negative bacilli, including Pseudomonas aeruginosa, Stenotrophomonas maltophilia, and Acinetobacter species isolates. Amikacin, ceftazidime-avibactam, and meropenem had appreciable activity against non-CRE Enterobacteriaceae. No comparators were active against multidrug-resistant P. aeruginosa isolates. Only trimethoprim-sulfamethoxazole had appreciable activity against S. maltophilia isolates. Overall, cefiderocol was associated with the lowest level of resistance. Full Article
bi Whole-Cell Phenotypic Screening of Medicines for Malaria Venture Pathogen Box Identifies Specific Inhibitors of Plasmodium falciparum Late-Stage Development and Egress [Experimental Therapeutics] By aac.asm.org Published On :: 2020-04-21T08:01:09-07:00 We report a systematic, cellular phenotype-based antimalarial screening of the Medicines for Malaria Venture Pathogen Box collection, which facilitated the identification of specific blockers of late-stage intraerythrocytic development of Plasmodium falciparum. First, from standard growth inhibition assays, we identified 173 molecules with antimalarial activity (50% effective concentration [EC50] ≤ 10 μM), which included 62 additional molecules over previously known antimalarial candidates from the Pathogen Box. We identified 90 molecules with EC50 of ≤1 μM, which had significant effect on the ring-trophozoite transition, while 9 molecules inhibited the trophozoite-schizont transition and 21 molecules inhibited the schizont-ring transition (with ≥50% parasites failing to proceed to the next stage) at 1 μM. We therefore rescreened all 173 molecules and validated hits in microscopy to prioritize 12 hits as selective blockers of the schizont-ring transition. Seven of these molecules inhibited the calcium ionophore-induced egress of Toxoplasma gondii, a related apicomplexan parasite, suggesting that the inhibitors may be acting via a conserved mechanism which could be further exploited for target identification studies. We demonstrate that two molecules, MMV020670 and MMV026356, identified as schizont inhibitors in our screens, induce the fragmentation of DNA in merozoites, thereby impairing their ability to egress and invade. Further mechanistic studies would facilitate the therapeutic exploitation of these molecules as broadly active inhibitors targeting late-stage development and egress of apicomplexan parasites relevant to human health. Full Article
bi Erratum for Asempa et al., "In Vitro Activity of Imipenem-Relebactam Alone or in Combination with Amikacin or Colistin against Pseudomonas aeruginosa" [Errata] By aac.asm.org Published On :: 2020-04-21T08:01:09-07:00 Full Article
bi Enhanced Efflux Pump Expression in Candida Mutants Results in Decreased Manogepix Susceptibility [Mechanisms of Resistance] By aac.asm.org Published On :: 2020-04-21T08:01:09-07:00 Manogepix is a broad-spectrum antifungal agent that inhibits glycosylphosphatidylinositol (GPI) anchor biosynthesis. Using whole-genome sequencing, we characterized two efflux-mediated mechanisms in the fungal pathogens Candida albicans and Candida parapsilosis that resulted in decreased manogepix susceptibility. In C. albicans, a gain-of-function mutation in the transcription factor gene ZCF29 activated expression of ATP-binding cassette transporter genes CDR11 and SNQ2. In C. parapsilosis, a mitochondrial deletion activated expression of the major facilitator superfamily transporter gene MDR1. Full Article
bi Antimicrobial Activity of Ceftolozane-Tazobactam and Comparators against Clinical Isolates of Haemophilus influenzae from the United States and Europe [Susceptibility] By aac.asm.org Published On :: 2020-04-21T08:01:09-07:00 Nine hundred Haemophilus influenzae clinical isolates from 83 U.S. and European medical centers were tested for susceptibility by reference broth microdilution methods against ceftolozane-tazobactam and comparators. Results were stratified by β-lactamase production and infection type. Overall, ceftolozane-tazobactam MIC50/90 values were 0.12/0.25 mg/liter, and 99.0% of isolates were inhibited at the susceptible breakpoint of ≤0.5 mg/liter; the highest MIC value was only 2 mg/liter. Our results support using ceftolozane-tazobactam to treat H. influenzae infections. Full Article
bi Unorthodox Parenteral {beta}-Lactam and {beta}-Lactamase Inhibitor Combinations: Flouting Antimicrobial Stewardship and Compromising Patient Care [Commentary] By aac.asm.org Published On :: 2020-04-21T08:01:09-07:00 In India and China, indigenous drug manufacturers market arbitrarily combined parenteral β-lactam and β-lactamase inhibitors (BL-BLIs). In these fixed-dose combinations, sulbactam or tazobactam is indiscriminately combined with parenteral cephalosporins, with BLI doses kept in ratios similar to those for the approved BL-BLIs. Such combinations have been introduced into clinical practice without mandatory drug development studies involving pharmacokinetic/pharmacodynamic, safety, and efficacy assessments being undertaken. Such unorthodox combinations compromise clinical outcomes and also potentially contribute to resistance development. Full Article
bi Structural Insights into Ceftobiprole Inhibition of Pseudomonas aeruginosa Penicillin-Binding Protein 3 [Experimental Therapeutics] By aac.asm.org Published On :: 2020-04-21T08:01:09-07:00 Ceftobiprole is an advanced-generation broad-spectrum cephalosporin antibiotic with potent and rapid bactericidal activity against Gram-positive pathogens, including methicillin-resistant Staphylococcus aureus, as well as susceptible Gram-negative pathogens, including Pseudomonas sp. pathogens. In the case of Pseudomonas aeruginosa, ceftobiprole acts by inhibiting P. aeruginosa penicillin-binding protein 3 (PBP3). Structural studies were pursued to elucidate the molecular details of this PBP inhibition. The crystal structure of the His-tagged PBP3-ceftobiprole complex revealed a covalent bond between the ligand and the catalytic residue S294. Ceftobiprole binding leads to large active site changes near binding sites for the pyrrolidinone and pyrrolidine rings. The S528 to L536 region adopts a conformation previously not observed in PBP3, including partial unwinding of the α11 helix. These molecular insights can lead to a deeper understanding of β-lactam-PBP interactions that result in major changes in protein structure, as well as suggesting how to fine-tune current inhibitors and to develop novel inhibitors of this PBP. Full Article
bi Selective Inhibition of BET Protein Domains Has Functional Relevance [Drug Development] By cancerdiscovery.aacrjournals.org Published On :: 2020-05-01T00:05:26-07:00 Inhibition of BET protein bromodomains BD1 and BD2 produces unique phenotypes in disease models. Full Article
bi New Drug-Discovery Assay Identifies Novel Mutant-EGFR Inhibitors [Drug Discovery] By cancerdiscovery.aacrjournals.org Published On :: 2020-05-01T00:05:26-07:00 The MaMTH-DS assay detected inhibitors of mutant EGFR in non–small cell lung cancer cells. Full Article
bi Colibactin Causes Colorectal Cancer-Associated Mutational Signature [Microbiome] By cancerdiscovery.aacrjournals.org Published On :: 2020-05-01T00:05:26-07:00 The pks+ E. coli metabolite colibactin caused a unique mutational signature in intestinal organoids. Full Article
bi Microbiome Predicts Blood-Cell Transplant Success [News in Brief] By cancerdiscovery.aacrjournals.org Published On :: 2020-05-01T00:05:26-07:00 A large international study found that the composition of the intestinal microbiome can predict clinical outcomes in patients undergoing allogenic hematopoietic-cell transplant (HCT) for blood cancers. The findings may help assess patients' transplantation-related mortality risk and aid in developing interventions to prevent or mitigate microbiome changes that affect HCT outcomes. Full Article
bi Thermo to Buy Qiagen for $11.5 Billion [News in Brief] By cancerdiscovery.aacrjournals.org Published On :: 2020-05-01T00:05:26-07:00 Thermo Fisher Scientific announced plans in March to acquire Qiagen in a $11.5 billion deal that could bring morediagnostic offeringsand sample-preparation technologies to one of the world's leading manufacturers of scientific instruments, research services, and laboratory consumables. Full Article
bi Ubiquitination Causes Fanconi Anemia-Linked ID Complex Ring Formation [Structural Biology] By cancerdiscovery.aacrjournals.org Published On :: 2020-05-01T00:05:26-07:00 Monoubiquitinated FANCI and FANCD2 constitute the ID complex, which forms a sliding clamp on DNA. Full Article
bi Protein Instability Is Targetable in Mismatch Repair-Deficient Tumors [Research Watch] By cancerdiscovery.aacrjournals.org Published On :: 2020-05-01T00:05:26-07:00 Mismatch repair (MMR)–deficient tumors exhibit proteome-wide protein instability and aggregation. Full Article
bi BRAF V600E-mutated metastatic pediatric Wilms tumor with complete response to targeted RAF/MEK inhibition [RESEARCH REPORT] By molecularcasestudies.cshlp.org Published On :: 2020-04-01T06:30:17-07:00 Wilms tumor (WT) is the most common renal malignancy of childhood and accounts for 6% of all childhood malignancies. With current therapies, the 5-yr overall survival (OS) for children with unilateral favorable histology WT is greater than 85%. The prognosis is worse, however, for the roughly 15% of patients who relapse, with only 50%–80% OS reported in those with recurrence. Herein, we describe the extended and detailed clinical course of a rare case of a child with recurrent, pulmonary metastatic, favorable histology WT harboring a BRAF V600E mutation. The BRAF V600E mutation, commonly found in melanoma and other cancers, and previously undescribed in WT, has recently been reported by our group in a subset of epithelial-predominant WT. This patient, who was included in that series, presented with unilateral, stage 1, favorable histology WT and was treated with standard chemotherapy. Following the completion of therapy, the patient relapsed with pulmonary metastatic disease, that then again recurred despite an initial response to salvage chemotherapy and radiation. Next-generation sequencing (NGS) on the metastatic pulmonary nodule revealed a BRAF V600E mutation. After weighing the therapeutic options, a novel approach with dual BRAF/MEK inhibitor combination therapy was initiated. Complete radiographic response was observed following 4 months of therapy with dabrafenib and trametinib. At 12 months following the start of BRAF/MEK combination treatment, the patient continues with a complete response and has experienced minimal treatment-related side effects. This represents the first case, to our knowledge, of effective treatment with BRAF/MEK molecularly targeted therapy in a pediatric Wilms tumor patient. Full Article
bi [Developmental Biology] Reptiles as a Model System to Study Heart Development By cshperspectives.cshlp.org Published On :: 2020-05-01T06:30:17-07:00 A chambered heart is common to all vertebrates, but reptiles show unparalleled variation in ventricular septation, ranging from almost absent in tuataras to full in crocodilians. Because mammals and birds evolved independently from reptile lineages, studies on reptile development may yield insight into the evolution and development of the full ventricular septum. Compared with reptiles, mammals and birds have evolved several other adaptations, including compact chamber walls and a specialized conduction system. These adaptations appear to have evolved from precursor structures that can be studied in present-day reptiles. The increase in the number of studies on reptile heart development has been greatly facilitated by sequencing of several genomes and the availability of good staging systems. Here, we place reptiles in their phylogenetic context with a focus on features that are primitive when compared with the homologous features of mammals. Further, an outline of major developmental events is given, and variation between reptile species is discussed. Full Article
bi [Cell Biology] Recent Insights on Inflammasomes, Gasdermin Pores, and Pyroptosis By cshperspectives.cshlp.org Published On :: 2020-05-01T06:30:17-07:00 Inflammasomes assemble in the cytosol of myeloid and epithelial cells on sensing of cellular stress and pathogen-associated molecular patterns and serve as scaffolds for recruitment and activation of inflammatory caspases. Inflammasomes play beneficial roles in host and immune responses against diverse pathogens but may also promote inflammatory tissue damage if uncontrolled. Gasdermin D (GSDMD) is a recently identified substrate of murine caspase-1 and caspase-11, and human caspases-1, -4, and -5 that mediates a regulated lytic cell death mode termed pyroptosis. Recent studies have identified pyroptosis as a critical inflammasome effector mechanism that controls inflammasome-dependent cytokine secretion and contributes to antimicrobial defense and inflammasome-mediated autoinflammatory diseases. Here, we review recent developments on inflammasome-associated effector functions with an emphasis on the emerging roles of gasdermin pores and pyroptosis. Full Article
bi [Cell Biology] Cracking the Cell Death Code By cshperspectives.cshlp.org Published On :: 2020-05-01T06:30:17-07:00 Cell death is an invariant feature throughout our life span, starting with extensive scheduled cell death during morphogenesis and continuing with death under homeostasis in adult tissues. Additionally, cells become victims of accidental, unscheduled death following injury and infection. Cell death in each of these occasions triggers specific and specialized responses in the living cells that surround them or are attracted to the dying/dead cells. These responses sculpt tissues during morphogenesis, replenish lost cells in homeostasis to maintain tissue/system function, and repair damaged tissues after injury. Wherein lies the information that sets in motion the cascade of effector responses culminating in remodeling, renewal, or repair? Here, we attempt to provide a framework for thinking about cell death in terms of the specific effector responses that accompanies various modalities of cell death. We also propose an integrated threefold "cell death code" consisting of information intrinsic to the dying/dead cell, the surroundings of the dying cell, and the identity of the responder. Full Article
bi [Molecular Pathology] Toward Combined Cell and Gene Therapy for Genodermatoses By cshperspectives.cshlp.org Published On :: 2020-05-01T06:30:17-07:00 To date, more than 200 monogenic, often devastating, skin diseases have been described. Because of unmet medical needs, development of long-lasting and curative therapies has been consistently attempted, with the aim of correcting the underlying molecular defect. In this review, we will specifically address the few combined cell and gene therapy strategies that made it to the clinics. Based on these studies, what can be envisioned for the future is a patient-oriented strategy, built on the specific features of the individual in need. Most likely, a combination of different strategies, approaches, and advanced therapies will be required to reach the finish line at the end of the long and winding road hampering the achievement of definitive treatments for genodermatoses. Full Article
bi Cold Spring Harbor Perspectives in Biology By cshperspectives.cshlp.org Published On :: Full Article
bi A Case of Euglycemic Diabetic Ketoacidosis Triggered by a Ketogenic Diet in a Patient With Type 2 Diabetes Using a Sodium-Glucose Cotransporter 2 Inhibitor By clinical.diabetesjournals.org Published On :: 2020-04-15T12:00:21-07:00 Full Article
bi Genetic and Circulating Biomarker Data Improve Risk Prediction for Pancreatic Cancer in the General Population By cebp.aacrjournals.org Published On :: 2020-05-01T00:05:36-07:00 Background: Pancreatic cancer is the third leading cause of cancer death in the United States, and 80% of patients present with advanced, incurable disease. Risk markers for pancreatic cancer have been characterized, but combined models are not used clinically to identify individuals at high risk for the disease. Methods: Within a nested case–control study of 500 pancreatic cancer cases diagnosed after blood collection and 1,091 matched controls enrolled in four U.S. prospective cohorts, we characterized absolute risk models that included clinical factors (e.g., body mass index, history of diabetes), germline genetic polymorphisms, and circulating biomarkers. Results: Model discrimination showed an area under ROC curve of 0.62 via cross-validation. Our final integrated model identified 3.7% of men and 2.6% of women who had at least 3 times greater than average risk in the ensuing 10 years. Individuals within the top risk percentile had a 4% risk of developing pancreatic cancer by age 80 years and 2% 10-year risk at age 70 years. Conclusions: Risk models that include established clinical, genetic, and circulating factors improved disease discrimination over models using clinical factors alone. Impact: Absolute risk models for pancreatic cancer may help identify individuals in the general population appropriate for disease interception. Full Article
bi Serum PIWI-Interacting RNAs piR-020619 and piR-020450 Are Promising Novel Biomarkers for Early Detection of Colorectal Cancer By cebp.aacrjournals.org Published On :: 2020-05-01T00:05:36-07:00 Background: Early diagnosis can significantly reduce colorectal cancer deaths. We sought to identify serum PIWI-interacting RNAs (piRNAs) that could serve as sensitive and specific noninvasive biomarkers for early colorectal cancer detection. Methods: We screened the piRNA expression profile in sera from 7 patients with colorectal cancer and 7 normal controls using small RNA sequencing. Differentially expressed piRNAs were measured in a training cohort of 140 patients with colorectal cancer and 140 normal controls using reverse transcription quantitative PCR. The identified piRNAs were evaluated in two independent validation cohorts of 180 patients with colorectal cancer and 180 normal controls. Finally, the diagnostic value of the identified piRNAs for colorectal adenoma (CRA) was assessed, and their expression was measured in 50 patients with lung cancer, 50 with breast cancer, and 50 with gastric cancer. Results: The piRNAs piR-020619 and piR-020450 were consistently elevated in sera of patients with colorectal cancer as compared with controls. A predicative panel based on the two piRNAs was established that displayed high diagnostic accuracy for colorectal cancer detection. The two-piRNA panel could detect small-size and early-stage colorectal cancer with an area under the ROC curve of 0.863 and 0.839, respectively. Combined use of the two piRNAs could effectively distinguish CRA from controls. Aberrant elevation of the two piRNAs was not observed in sera of patients with lung, breast, and gastric cancer. Conclusions: Serum piR-020619 and piR-020450 show a strong potential as colorectal cancer-specific early detection biomarkers. Impact: The field of circulating piRNAs could allow for novel tumor biomarker development. Full Article
bi Prospective Association of Energy Balance Scores Based on Metabolic Biomarkers with Colorectal Cancer Risk By cebp.aacrjournals.org Published On :: 2020-05-01T00:05:36-07:00 Background: Energy balance–related factors, such as body mass index (BMI), diet, and physical activity, may influence colorectal cancer etiology through interconnected metabolic pathways, but their combined influence is less clear. Methods: We used reduced rank regression to derive three energy balance scores that associate lifestyle factors with combinations of prediagnostic, circulating levels of high-sensitivity C-reactive protein (hsCRP), C-peptide, and hemoglobin A1c (HbA1c) among 2,498 participants in the Cancer Prevention Study-II Nutrition Cohort. Among 114,989 participants, we verified 2,228 colorectal cancer cases. We assessed associations of each score with colorectal cancer incidence and by tumor molecular phenotypes using Cox proportional hazards regression. Results: The derived scores comprised BMI, physical activity, screen time, and 14 food groups, and explained 5.1% to 10.5% of the variation in biomarkers. The HR and 95% confidence interval (CI) for quartile 4 versus 1 of the HbA1c+C peptide–based score and colorectal cancer was 1.30 (1.15–1.47), the hsCRP-based score was 1.35 (1.19–1.53), and the hsCRP, C-peptide, and HbA1c-based score was 1.35 (1.19–1.52). The latter score was associated with non-CIMP tumors (HRQ4vsQ1: 1.59; 95% CI: 1.17–2.16), but not CIMP-positive tumors (Pheterogeneity = 0.04). Conclusions: These results further support hypotheses that systemic biomarkers of metabolic health—inflammation and abnormal glucose homeostasis—mediate part of the relationship between several energy balance–related modifiable factors and colorectal cancer risk. Impact: Results support cancer prevention guidelines for maintaining a healthful body weight, consuming a healthful diet, and being physically active. More research is needed on these clusters of exposures with molecular phenotypes of tumors. Full Article