bi Seasonal timing adaptation across the geographic range of Arabidopsis thaliana [Evolution] By www.pnas.org Published On :: 2020-05-05T10:31:24-07:00 The most fundamental genetic program of an annual plant defines when to grow and reproduce and when to remain dormant in the soil as a seed. With the right timing, plants can even live in hostile regions with only a few months of growth-favorable abundant rains and mild temperatures. To... Full Article
bi Profile of Xiaowei Zhuang, winner of the 2020 Vilcek Prize in Biomedical Science [Profiles] By www.pnas.org Published On :: 2020-05-05T10:31:24-07:00 In 2006, the New York City-based Vilcek Foundation created an annual prize program for foreign-born biomedical scientists who have made major contributions to their fields while living and working in the United States. The founders, themselves immigrants from Czechoslovakia, established the program to raise public awareness of the indispensable role... Full Article
bi NRF3-POMP-20S Proteasome Assembly Axis Promotes Cancer Development via Ubiquitin-Independent Proteolysis of p53 and Retinoblastoma Protein [Research Article] By mcb.asm.org Published On :: 2020-04-28T08:00:17-07:00 Proteasomes are essential protease complexes that maintain cellular homeostasis, and aberrant proteasomal activity supports cancer development. The regulatory mechanisms and biological function of the ubiquitin-26S proteasome have been studied extensively, while those of the ubiquitin-independent 20S proteasome system remain obscure. Here, we show that the cap ’n’ collar (CNC) family transcription factor NRF3 specifically enhances 20S proteasome assembly in cancer cells and that 20S proteasomes contribute to colorectal cancer development through ubiquitin-independent proteolysis of the tumor suppressor p53 and retinoblastoma (Rb) proteins. The NRF3 gene is highly expressed in many cancer tissues and cell lines and is important for cancer cell growth. In cancer cells, NRF3 upregulates the assembly of the 20S proteasome by directly inducing the gene expression of the 20S proteasome maturation protein POMP. Interestingly, NRF3 knockdown not only increases p53 and Rb protein levels but also increases p53 activities for tumor suppression, including cell cycle arrest and induction of apoptosis. Furthermore, protein stability and cell viability assays using two distinct proteasome inhibitor anticancer drugs, the 20S proteasome inhibitor bortezomib and the ubiquitin-activating enzyme E1 inhibitor TAK-243, show that the upregulation of the NRF3-POMP axis leads to ubiquitin-independent proteolysis of p53 and Rb and to impaired sensitivity to bortezomib but not TAK-243. More importantly, the NRF3-POMP axis supports tumorigenesis and metastasis, with higher NRF3/POMP expression levels correlating with poor prognoses in patients with colorectal or rectal adenocarcinoma. These results suggest that the NRF3-POMP-20S proteasome assembly axis is significant for cancer development via ubiquitin-independent proteolysis of tumor suppressor proteins. Full Article
bi Determining the Bioenergetic Capacity for Fatty Acid Oxidation in the Mammalian Nervous System [Research Article] By mcb.asm.org Published On :: 2020-04-28T08:00:17-07:00 The metabolic state of the brain can greatly impact neurologic function. Evidence of this includes the therapeutic benefit of a ketogenic diet in neurologic diseases, including epilepsy. However, brain lipid bioenergetics remain largely uncharacterized. The existence, capacity, and relevance of mitochondrial fatty acid β-oxidation (FAO) in the brain are highly controversial, with few genetic tools available to evaluate the question. We have provided evidence for the capacity of brain FAO using a pan-brain-specific conditional knockout (KO) mouse incapable of FAO due to the loss of carnitine palmitoyltransferase 2, the product of an obligate gene for FAO (CPT2B–/–). Loss of central nervous system (CNS) FAO did not result in gross neuroanatomical changes or systemic differences in metabolism. Loss of CPT2 in the brain did not result in robustly impaired behavior. We demonstrate by unbiased and targeted metabolomics that the mammalian brain oxidizes a substantial quantity of long-chain fatty acids in vitro and in vivo. Loss of CNS FAO results in robust accumulation of long-chain acylcarnitines in the brain, suggesting that the mammalian brain mobilizes fatty acids for their oxidation, irrespective of diet or metabolic state. Together, these data demonstrate that the mammalian brain oxidizes fatty acids under normal circumstances with little influence from or on peripheral tissues. Full Article
bi Re: Abnormally Low Hemoglobin A1c as Harbinger of Hemoglobinopathy By www.jabfm.org Published On :: 2020-03-16T09:31:37-07:00 Full Article
bi Marketing Messages in Continuing Medical Education (CME) Modules on Binge-Eating Disorder (BED) By www.jabfm.org Published On :: 2020-03-16T09:31:37-07:00 Background: In 2015, Vyvanse (lisdexamfetamine) became the first Food and Drug Administration (FDA)-approved treatment for binge-eating disorder (BED), a condition first recognized by the DSM–V in 2013. Because pharmaceutical companies use continuing medical education (CME) to help sell drugs, we explored possible bias in CME modules on BED. Methods: We utilized a qualitative thematic analysis research approach to identify and classify patterns in CME activities focusing on BED. Results: We identified 27 online CME activities on BED in 2015. All were funded by Shire, which manufactures lisdexamfetamine. Seven of 16 presenters disclosed financial ties with Shire. Twenty-nine slides recurred in at least 2 CME modules, and 12 slides were repeated in 5 or more modules. Diagnosis-related themes included: BED is a real, treatable disease; BED is highly prevalent but often missed; BED can occur in anyone; BED results in poor quality of life; many patients with BED are obese; and BED makes losing weight difficult. Treatment-related themes included: lisdexamfetamine is highly effective; topiramate is limited by substantial adverse effects; and other therapeutic options for BED are inferior to lisdexamfetamine because they do not cause weight loss. Although amphetamines can cause addiction, myocardial infarction, stroke, and death, no module mentioned these serious adverse effects. Conclusions: It seems that CME is being used to promote lisdexamfetamine for weight loss (a contraindicated use) and to highlight benefits of lisdexamfetamine while underplaying the risks. Full Article
bi Increasing Article Visibility: JABFM and Author Responsibilities and Possibilities By www.jabfm.org Published On :: 2020-03-16T09:31:37-07:00 JABFM seeks to widely disseminate its peer-reviewed publications, increasing article visibility for the purpose of advancing scientific knowledge. We describe the journal’s approach to dissemination and recommend a number of strategies for authors to implement, including press releases and social media. Providing the article’s digital object identifier (DOI) is most useful, compared with links that can break, or attaching the article PDF, which will depress reader metrics. All JABFM articles are freely accessible online worldwide. Full Article
bi Experimental facilitation of heat loss affects work rate and innate immune function in a breeding passerine bird [RESEARCH ARTICLE] By jeb.biologists.org Published On :: 2020-04-16T05:19:55-07:00 Fredrik Andreasson, Arne Hegemann, Andreas Nord, and Jan-Ake Nilsson The capacity to get rid of excess heat produced during hard work is a possible constraint on parental effort during reproduction [heat dissipation limit (HDL) theory]. We released hard-working blue tits (Cyanistes caeruleus) from this constraint by experimentally removing ventral plumage. We then assessed whether this changed their reproductive effort (feeding rate and nestling size) and levels of self-maintenance (change in body mass and innate immune function). Feather-clipped females reduced the number of feeding visits and increased levels of constitutive innate immunity compared with unclipped females but did not fledge smaller nestlings. Thus, they increased self-maintenance without compromising current reproductive output. In contrast, feather clipping did not affect the number of feeding visits or innate immune function in males, despite increased heat loss rate. Our results show that analyses of physiological parameters, such as constitutive innate immune function, can be important when trying to understand sources of variation in investment in self-maintenance versus reproductive effort and that risk of overheating can influence innate immune function during reproduction. Full Article
bi Habituation of the cardiovascular response to restraint stress is inhibited by exposure to other stressor stimuli and exercise training [RESEARCH ARTICLE] By jeb.biologists.org Published On :: 2020-04-23T22:21:31-07:00 Ricardo Benini, Leandro A. Oliveira, Lucas Gomes-de-Souza, Bruno Rodrigues, and Carlos C. Crestani This study evaluated the effect of exposure to either a chronic variable stress (CVS) protocol or social isolation, as well as treadmill exercise training, in the habituation of the cardiovascular response upon repeated exposure to restraint stress in rats. The habituation of the corticosterone response to repeated restraint stress was also evaluated. For this, animals were subjected to either acute or 10 daily sessions of 60 min of restraint stress. CVS and social isolation protocols lasted for 10 consecutive days, whereas treadmill training was performed for 1 h per day, 5 days per week for 8 weeks. We observed that the increase in serum corticosterone was reduced during both the stress and the recovery period of the 10th session of restraint. Habituation of the cardiovascular response was identified in terms of a faster return of heart rate to baseline values during the recovery period of the 10th session of restraint. The increase in blood pressure and the decrease in tail skin temperature were similar at the 1st and 10th session of restraint. Exposure to CVS, social isolation or treadmill exercise training inhibited the habituation of the restraint-evoked tachycardia. Additionally, CVS increased the blood pressure response at the 10th session of restraint, whereas social isolation enhanced both the tachycardia during the first session and the drop in skin temperature at the 10th session of restraint. Taken together, these findings provide new evidence that pathologies evoked by stress might be related to impairment in the habituation process to homotypic stressors. Full Article
bi Reduced immune responsiveness contributes to winter energy conservation in an Arctic bird [RESEARCH ARTICLE] By jeb.biologists.org Published On :: 2020-04-27T15:00:22-07:00 Andreas Nord, Arne Hegemann, and Lars P. Folkow Animals in seasonal environments must prudently manage energy expenditure to survive the winter. This may be achieved through reductions in the allocation of energy for various purposes (e.g. thermoregulation, locomotion, etc.). We studied whether such trade-offs also include suppression of the innate immune response, by subjecting captive male Svalbard ptarmigan (Lagopus muta hyperborea) to bacterial lipopolysaccharide (LPS) during exposure to either mild temperature (0°C) or cold snaps (acute exposure to –20°C), in constant winter darkness when birds were in energy-conserving mode, and in constant daylight in spring. The innate immune response was mostly unaffected by temperature. However, energy expenditure was below baseline when birds were immune challenged in winter, but significantly above baseline in spring. This suggests that the energetic component of the innate immune response was reduced in winter, possibly contributing to energy conservation. Immunological parameters decreased (agglutination, lysis, bacteriostatic capacity) or did not change (haptoglobin/PIT54) after the challenge, and behavioural modifications (anorexia, mass loss) were lengthy (9 days). While we did not study the mechanisms explaining these weak, or slow, responses, it is tempting to speculate they may reflect the consequences of having evolved in an environment where pathogen transmission rate is presumably low for most of the year. This is an important consideration if climate change and increased exploitation of the Arctic would alter pathogen communities at a pace outwith counter-adaption in wildlife. Full Article
bi Consequences of being phenotypically mismatched with the environment: no evidence of oxidative stress in cold- and warm-acclimated birds facing a cold spell [RESEARCH ARTICLE] By jeb.biologists.org Published On :: 2020-04-14T02:37:46-07:00 Ana Gabriela Jimenez, Emily Cornelius Ruhs, Kailey J. Tobin, Katie N. Anderson, Audrey Le Pogam, Lyette Regimbald, and Francois Vezina Seasonal changes in maximal thermogenic capacity (Msum) in wild black-capped chickadees suggests that adjustments in metabolic performance are slow and begin to take place before winter peaks. However, when mean minimal ambient temperature (Ta) reaches –10°C, the chickadee phenotype appears to provide enough spare capacity to endure days with colder Ta, down to –20°C or below. This suggests that birds could also maintain a higher antioxidant capacity as part of their cold-acclimated phenotype to deal with sudden decreases in temperature. Here, we tested how environmental mismatch affected oxidative stress by comparing cold-acclimated (–5°C) and transition (20°C) phenotypes in chickadees exposed to an acute 15°C drop in temperature with that of control individuals. We measured superoxide dismutase, catalase and glutathione peroxidase activities, as well as lipid peroxidation damage and antioxidant scavenging capacity in pectoralis muscle, brain, intestine and liver. We generally found differences between seasonal phenotypes and across tissues, but no differences with respect to an acute cold drop treatment. Our data suggest oxidative stress is closely matched to whole-animal physiology in cold-acclimated birds compared with transition birds, implying that changes to the oxidative stress system happen slowly. Full Article
bi Temperature has a causal and plastic effect on timing of breeding in a small songbird [RESEARCH ARTICLE] By jeb.biologists.org Published On :: 2020-04-23T10:58:53-07:00 Irene Verhagen, Barbara M. Tomotani, Phillip Gienapp, and Marcel E. Visser Phenotypic plasticity is an important mechanism by which an individual can adapt its seasonal timing to predictable, short-term environmental changes by using predictive cues. Identification of these cues is crucial to forecast the response of species to long-term environmental change and to study their potential to adapt. Individual great tits (Parus major) start reproduction early under warmer conditions in the wild, but whether this effect is causal is not well known. We housed 36 pairs of great tits in climate-controlled aviaries and 40 pairs in outdoor aviaries, where they bred under artificial contrasting temperature treatments or in semi-natural conditions, respectively, for two consecutive years, using birds from lines selected for early and late egg laying. We thus obtained laying dates in two different thermal environments for each female. Females bred earlier under warmer conditions in climate-controlled aviaries, but not in outdoor aviaries. The latter was inconsistent with laying dates from our wild population. Further, early selection line females initiated egg laying consistently ~9 days earlier than late selection line females in outdoor aviaries, but we found no difference in the degree of plasticity (i.e. the sensitivity to temperature) in laying date between selection lines. Because we found that temperature causally affects laying date, climate change will lead to earlier laying. This advancement is, however, unlikely to be sufficient, thereby leading to selection for earlier laying. Our results suggest that natural selection may lead to a change in mean phenotype, but not to a change in the sensitivity of laying dates to temperature. Full Article
bi Octopamine mobilizes lipids from honey bee (Apis mellifera) hypopharyngeal glands [RESEARCH ARTICLE] By jeb.biologists.org Published On :: 2020-04-16T04:02:51-07:00 Vanessa Corby-Harris, Megan E. Deeter, Lucy Snyder, Charlotte Meador, Ashley C. Welchert, Amelia Hoffman, and Bethany T. Obernesser Recent widespread honey bee (Apis mellifera) colony loss is attributed to a variety of stressors, including parasites, pathogens, pesticides and poor nutrition. In principle, we can reduce stress-induced declines in colony health by either removing the stressor or increasing the bees' tolerance to the stressor. This latter option requires a better understanding than we currently have of how honey bees respond to stress. Here, we investigated how octopamine, a stress-induced hormone that mediates invertebrate physiology and behavior, influences the health of young nurse-aged bees. Specifically, we asked whether octopamine induces abdominal lipid and hypopharyngeal gland (HG) degradation, two physiological traits of stressed nurse bees. Nurse-aged workers were treated topically with octopamine and their abdominal lipid content, HG size and HG autophagic gene expression were measured. Hemolymph lipid titer was measured to determine whether tissue degradation was associated with the release of nutrients from these tissues into the hemolymph. The HGs of octopamine-treated bees were smaller than control bees and had higher levels of HG autophagy gene expression. Octopamine-treated bees also had higher levels of hemolymph lipid compared with control bees. Abdominal lipids did not change in response to octopamine. Our findings support the hypothesis that the HGs are a rich source of stored energy that can be mobilized during periods of stress. Full Article
bi Human recreation decreases antibody titre in bird nestlings: an overlooked transgenerational effect of disturbance [RESEARCH ARTICLE] By jeb.biologists.org Published On :: 2020-04-27T00:18:53-07:00 Yves Bötsch, Zulima Tablado, Bettina Almasi, and Lukas Jenni Outdoor recreational activities are booming and most animals perceive humans as predators, which triggers behavioural and/or physiological reactions [e.g. heart rate increase, activation of the hypothalamic–pituitary–adrenal (HPA) axis]. Physiological stress reactions have been shown to affect the immune system of an animal and therefore may also affect the amount of maternal antibodies a female transmits to her offspring. A few studies have revealed that the presence of predators affects the amount of maternal antibodies deposited into eggs of birds. In this study, using Eurasian blue and great tit offspring (Cyanistes caeruleus and Parus major) as model species, we experimentally tested whether human recreation induces changes in the amount of circulating antibodies in young nestlings and whether this effect is modulated by habitat and competition. Moreover, we investigated whether these variations in antibody titre in turn have an impact on hatching success and offspring growth. Nestlings of great tit females that had been disturbed by experimental human recreation during egg laying had lower antibody titres compared with control nestlings. Antibody titre of nestling blue tits showed a negative correlation with the presence of great tits, rather than with human disturbance. The hatching success was positively correlated with the average amount of antibodies in great tit nestlings, independent of the treatment. Antibody titre in the first days of life in both species was positively correlated with body mass, but this relationship disappeared at fledging and was independent of treatment. We suggest that human recreation may have caused a stress-driven activation of the HPA axis in breeding females, chronically increasing their circulating corticosterone, which is known to have an immunosuppressive function. Either, lower amounts of antibodies are transmitted to nestlings or impaired transfer mechanisms lead to lower amounts of immunoglobulins in the eggs. Human disturbance could, therefore, have negative effects on nestling survival at early life-stages, when nestlings are heavily reliant on maternal antibodies, and in turn lead to lower breeding success and parental fitness. This is a so far overlooked effect of disturbance on early life in birds. Full Article
bi Near equal compressibility of liver oil and seawater minimises buoyancy changes in deep-sea sharks and chimaeras [RESEARCH ARTICLE] By jeb.biologists.org Published On :: 2020-04-14T06:41:13-07:00 Imants G. Priede, Rhoderick W. Burgass, Manolis Mandalakis, Apostolos Spyros, Petros Gikas, Finlay Burns, and Jim DreweryWhereas upper ocean pelagic sharks are negatively buoyant and must swim continuously to generate lift from their fins, deep-sea sharks float or swim slowly buoyed up by large volumes of low-density oils in their livers. Investigation of the Pressure, Volume, Temperature (PVT) relationships for liver oils of 10 species of deep-sea Chondrichthyes shows that the density difference between oil and seawater, remains almost constant with pressure down to full ocean depth (11 km, 1100 bar); theoretically providing buoyancy far beyond the maximum depth of occurrence (3700 m) of sharks. However, , does change significantly with temperature and we show that the combined effects of pressure and temperature can decrease buoyancy of oil by up to 10% between the surface and 3500 m depth across interfaces between warm southern and cold polar waters in the Rockall Trough in the NE Atlantic. This increases drag more than 10 fold compared with neutral buoyancy during horizontal slow swimming (0.1 m s–1) but the effect becomes negligible at high speeds. Chondrichthyes generally experience positive buoyancy change during ascent and negative buoyancy change during descent but contrary effects can occur at interfaces between waters of different densities. During normal vertical migrations buoyancy changes are small, increasing slow-speed drag by no more than 2–3 fold. Equations and tables of density, pressure and temperature are provided for squalene and liver oils of Chimaeriformes (Harriotta raleighana, Chimaera monstrosa, Chimaera monstrosa), Squaliformes (Centrophorus squamosus, Deania calcea, Centroscymnus coelolepis, Centroscyllium fabricii, Etmopterus spinax) and Carcharhiniformes (Apristurus laurussonii, Galeus murinus). Full Article
bi Learning of bimodal vs. unimodal signals in restrained bumble bees [RESEARCH ARTICLE] By jeb.biologists.org Published On :: 2020-04-22T03:44:39-07:00 Andre J. Riveros, Anne S. Leonard, Wulfila Gronenberg, and Daniel R. PapajSimilar to animal communication displays, flowers emit complex signals that attract pollinators. Signal complexity could lead to higher cognitive load, impairing performance, or might benefit pollinators by facilitating learning, memory and decision-making. Here, we evaluate learning and memory in foragers of the bumble bee Bombus impatiens trained to simple (unimodal) vs. complex signals (bimodal) under restrained conditions. Use of a proboscis extension response protocol enabled us to control the timing and duration of stimuli presented during absolute and differential learning tasks. Overall, we observed broad variation in the performance under the two conditions, with bees trained to compound bimodal signals learning and remembering as well as, better, or more poorly than bees trained to unimodal signals. Interestingly, the outcome of training was affected by the specific colour-odour combination. Among unimodal stimuli, the performance with odour stimuli was higher than with colour stimuli, suggesting that olfactory signals played a more significant role in the compound bimodal condition. This was supported by the fact that after 24 h, most bimodal-treatment bees responded to odour but not visual stimuli. We did not observe differences in latency of response, suggesting that signal composition affected decision accuracy, not speed. We conclude that restrained bumble bee workers exhibit broad variation of responses to bimodal stimuli and that components of the bimodal signal may not be used equivalently. The analysis of bee performance under restrained conditions enables accurately control the multimodal stimuli provided to individuals and to study the interaction of individual components within a compound. Full Article
bi Thermo-TRPs and gut microbiota are involved in thermogenesis and energy metabolism during low temperature exposure of obese mice [RESEARCH ARTICLE] By jeb.biologists.org Published On :: 2020-04-27T01:37:03-07:00 Jing Wen, Tingbei Bo, Xueying Zhang, Zuoxin Wang, and Dehua WangAmbient temperature and food composition can affect energy metabolism of the host. Thermal transient receptor potential (thermo-TRPs) ion channels can detect temperature signals and are involved in the regulation of thermogenesis and energy homeostasis. Further, the gut microbiota has also been implicated in thermogenesis and obesity. In the present study, we tested the hypothesis that thermo-TRPs and gut microbiota are involved in reducing diet-induced obesity (DIO) during low temperature exposure. C57BL/6J mice in obese (body mass gain >45%), lean (body mass gain <15%), and control (body mass gain<1%) groups were exposed to high (23±1°C) or low (4±1°C) ambient temperature for 28 days. Our data showed that low temperature exposure attenuated DIO, but enhanced brown adipose tissue (BAT) thermogenesis. Low temperature exposure also resulted in increased norepinephrine (NE) concentrations in the hypothalamus, decreased TRP melastatin 8 (TRPM8) expression in the small intestine, and altered composition and diversity of gut microbiota. In DIO mice, there was a decrease in overall energy intake along with a reduction in TRP ankyrin 1 (TRPA1) expression and an increase in NE concentration in the small intestine. DIO mice also showed increases in Oscillospira, [Ruminococcus], Lactococcus, and Christensenella and decreases in Prevotella, Odoribacter, and Lactobacillus at the genus level in fecal samples. Together, our data suggest that thermos-TRPs and gut microbiota are involved in thermogenesis and energy metabolism during low temperature exposure in DIO mice. Full Article
bi The effect of ambient oxygen on the thermal performance of a cockroach, Nauphoeta cinerea [RESEARCH ARTICLE] By jeb.biologists.org Published On :: 2020-05-04T02:24:22-07:00 Emily J. Lombardi, Candice L. Bywater, and Craig R. WhiteThe Oxygen and Capacity-Limited Thermal Tolerance (OCLTT) hypothesis proposes that the thermal tolerance of an animal is shaped by its capacity to deliver oxygen in relation to oxygen demand. Studies testing this hypothesis have largely focused on measuring short-term performance responses in animals under acute exposure to critical thermal maximums. The OCLTT hypothesis, however, emphasises the importance of sustained animal performance over acute tolerance. The present study tested the effect of chronic hypoxia and hyperoxia during development on medium to long-term performance indicators at temperatures spanning the optimal temperature for growth in the speckled cockroach, Nauphoeta cinerea. In contrast to the predictions of the OCLTT hypothesis, development under hypoxia did not significantly reduce growth rate or running performance, and development under hyperoxia did not significantly increase growth rate or running performance. The effect of developmental temperature and oxygen on tracheal morphology and metabolic rate were also not consistent with OCLTT predictions, suggesting that oxygen delivery capacity is not the primary driver shaping thermal tolerance in this species. Collectively, these findings suggest that the OCLTT hypothesis does not explain moderate-to-long-term thermal performance in Nauphoeta cinerea, which raises further questions about the generality of the hypothesis. Full Article
bi Body temperature stability observed in the whale sharks, the world's largest fish [RESEARCH ARTICLE] By jeb.biologists.org Published On :: 2020-05-04T02:24:22-07:00 Itsumi Nakamura, Rui Matsumoto, and Katsufumi SatoIt is generally assumed that the body temperature of large animals is less likely to change due to their large body size, resulting in a high thermal inertia and a smaller surface area to volume ratio. The goal of this study was to investigate the stability of body temperature in large fish using data from field experiments. We measured the muscle temperatures of free-ranging whale sharks (Rhincodon typus), the largest extant fish globally, and investigated their ectothermic physiology and the stability of their body temperatures. The measured muscle temperature of the whale sharks changed substantially more slowly than the water temperature fluctuations associated with vertical movements, and the whole-body heat-transfer coefficients (HTC) of whale sharks estimated using heat-budget models were lower than those of any other fish species measured to date. The heat-budget models also showed that internal heat production does not contribute to changes in muscle temperature. A comparative analysis showed that the HTC at cooling in various fish species including both ectothermic and endothermic species ranging from 10–4 to 103 kg was proportional to body mass–0.63. This allometry was present regardless of whether the fish were ectothermic or endothermic, and was an extension of the relationship observed in previous studies on small fish. Thus, large fish have the advantage of body temperature stability while moving in environments with large temperature variations. Our results suggest that the large body size of whale sharks aids in preventing a decrease in body temperature during deep excursions to more than 1000 m depths without high metabolic costs of producing heat. Full Article
bi Impact of temperature on bite force and bite endurance in the Leopard Iguana (Diplolaemus leopardinus) in the Andes Mountains [RESEARCH ARTICLE] By jeb.biologists.org Published On :: 2020-05-04T02:24:22-07:00 Nadia Vicenzi, Alejandro Laspiur, Paola L. Sassi, Ruben Massarelli, John Krenz, and Nora R. IbargüengoytiaIn ectotherms, temperature exerts a strong influence on the performance of physiological and ecological traits. One approach to understand the impact of rising temperatures on animals and their ability to cope with climate change is to quantify variation in thermal-sensitive traits. Here, we examined the thermal biology, the temperature dependence and the thermal plasticity of bite force (endurance and magnitude) in Diplolaemus leopardinus, an aggressive and territorial lizard, endemic to Mendoza province, Argentina. Our results indicated that this lizard behaves like a moderate thermoregulator which uses the rocks of its environment as the main heat source. Bite endurance was not influenced by head morphometry and body temperature, whereas bite force was influenced by head length and jaw length, and exhibited thermal dependence. Before thermal acclimation treatments, the maximum bite force for D. leopardinus occured at the lowest body temperature and fell sharply with increasing body temperature. After acclimation treatments, lizards acclimated at higher temperatures exhibited greater bite force. Bite force showed phenotypic plasticity, which reveals that leopard iguanas are able to maintain (and even improve) their bite force under a rising-temperature scenario. Full Article
bi Fish embryo vulnerability to combined acidification and warming coincides with low capacity for homeostatic regulation [RESEARCH ARTICLE] By jeb.biologists.org Published On :: 2020-05-05T05:22:41-07:00 Flemming Dahlke, Magnus Lucassen, Ulf Bickmeyer, Sylke Wohlrab, Velmurugu Puvanendran, Atle Mortensen, Melissa Chierici, Hans-Otto Pörtner, and Daniela StorchThe vulnerability of fish embryos and larvae to environmental factors is often attributed to a lack of adult-like organ systems (gills) and thus insufficient homeostatic capacity. However, experimental data supporting this hypothesis are scarce. Here, by using Atlantic cod (Gadus morhua) as a model, the relationship between embryo vulnerability (to projected ocean acidification and warming) and homeostatic capacity was explored through parallel analyses of stage-specific mortality and in vitro activity and expression of major ion pumps (ATP-Synthase, Na+/K+-ATPase, H+-ATPase) and co-transporters (NBC1, NKCC1). Immunolocalization of these transporters was used to study ionocyte morphology in newly-hatched larvae. Treatment-related embryo mortality until hatch (+20% due to acidification and warming) occurred primarily during an early period (gastrulation) characterized by extremely low ion transport capacities. Thereafter, embryo mortality decreased in parallel with an exponential increase in activity and expression of all investigated ion transporters. Significant changes in transporter activity and expression in response to acidification (+15% activity) and warming (-30% expression) indicate some potential for short-term acclimatization, although likely associated with energetic trade-offs. Interestingly, whole-larvae enzyme capacities (supported by abundant epidermal ionocytes) reached levels similar to those previously measured in gill tissue of adult cod, suggesting that early-life stages without functional gills are better equipped in terms of ion homeostasis than previously thought. This study implies that the gastrulation period represents a critical transition from inherited (maternal) defenses to active homeostatic regulation, which facilitates enhanced resilience of later stages to environmental factors. Full Article
bi Body temperature maintenance acclimates in a winter-tenacious songbird [RESEARCH ARTICLE] By jeb.biologists.org Published On :: 2020-05-06T07:21:49-07:00 Maria Stager, Nathan R. Senner, Bret W. Tobalske, and Zachary A. ChevironFlexibility in heat generation and dissipation mechanisms provides endotherms the ability to match their thermoregulatory strategy with external demands. However, the degree to which these two mechanisms account for seasonal changes in body temperature regulation is little explored. Here we present novel data on the regulation of avian body temperature to investigate how birds alter mechanisms of heat production and heat conservation to deal with variation in ambient conditions. We subjected Dark-eyed Juncos (Junco hyemalis) to chronic cold acclimations of varying duration and subsequently quantified their metabolic rates, thermal conductance, and ability to maintain normothermia. Cold-acclimated birds adjusted traits related to both heat generation (increased summit metabolic rate) and heat conservation (decreased conductance) to improve their body temperature regulation. Increases in summit metabolic rate occurred rapidly, but plateaued after one week of cold exposure. In contrast, changes to conductance occurred only after nine weeks of cold exposure. Thus, the ability to maintain body temperature continued to improve throughout the experiment, but the mechanisms underlying this improvement changed through time. Our results demonstrate the ability of birds to adjust thermoregulatory strategies in response to thermal cues and reveal that birds may combine multiple responses to meet the specific demands of their environments. Full Article
bi Chitotriosidase as a Novel Biomarker for Therapeutic Monitoring of Nephropathic Cystinosis By jasn.asnjournals.org Published On :: 2020-04-30T10:00:30-07:00 Background Nephropathic cystinosis, a hereditary lysosomal storage disorder caused by dysfunction of the lysosomal cotransporter cystinosin, leads to cystine accumulation and cellular damage in various organs, particularly in the kidney. Close therapeutic monitoring of cysteamine, the only available disease-modifying treatment, is recommended. White blood cell cystine concentration is the current gold standard for therapeutic monitoring, but the assay is technically demanding and is available only on a limited basis. Because macrophage-mediated inflammation plays an important role in the pathogenesis of cystinosis, biomarkers of macrophage activation could have potential for the therapeutic monitoring of cystinosis. Methods We conducted a 2-year prospective, longitudinal study in which 61 patients with cystinosis who were receiving cysteamine therapy were recruited from three European reference centers. Each regular care visit included measuring four biomarkers of macrophage activation: IL-1β, IL-6, IL-18, and chitotriosidase enzyme activity. Results A multivariate linear regression analysis of the longitudinal data for 57 analyzable patients found chitotriosidase enzyme activity and IL-6 to be significant independent predictors for white blood cell cystine levels in patients of all ages with cystinosis; a receiver operating characteristic analysis ranked chitotriosidase as superior to IL-6 in distinguishing good from poor therapeutic control (on the basis of white blood cell cystine levels of <2 nmol 1/2 cystine/mg protein or ≥2 nmol 1/2 cystine/mg protein, respectively). Moreover, in patients with at least one extrarenal complication, chitotriosidase significantly correlated with the number of extrarenal complications and was superior to white blood cell cystine levels in predicting the presence of multiple extrarenal complications. Conclusions Chitotriosidase enzyme activity holds promise as a biomarker for use in therapeutic monitoring of nephropathic cystinosis. Full Article
bi Plasma Biomarkers of Tubular Injury and Inflammation Are Associated with CKD Progression in Children By jasn.asnjournals.org Published On :: 2020-04-30T10:00:30-07:00 Background After accounting for known risk factors for CKD progression in children, clinical outcomes among children with CKD still vary substantially. Biomarkers of tubular injury (such as KIM-1), repair (such as YKL-40), or inflammation (such as MCP-1, suPAR, TNF receptor-1 [TNFR-1], and TNFR-2) may identify children with CKD at risk for GFR decline. Methods We investigated whether plasma KIM-1, YKL-40, MCP-1, suPAR, TNFR-1, and TNFR-2 are associated with GFR decline in children with CKD and in subgroups defined by glomerular versus nonglomerular cause of CKD. We studied participants of the prospective CKiD Cohort Study which enrolled children with an eGFR of 30–90 ml/min per 1.73 m2 and then assessed eGFR annually. Biomarkers were measured in plasma collected 5 months after study enrollment. The primary endpoint was CKD progression, defined as a composite of a 50% decline in eGFR or incident ESKD. Results Of the 651 children evaluated (median age 11 years; median baseline eGFR of 53 ml/min per 1.73 m2), 195 (30%) had a glomerular cause of CKD. Over a median follow-up of 5.7 years, 223 children (34%) experienced CKD progression to the composite endpoint. After multivariable adjustment, children with a plasma KIM-1, TNFR-1, or TNFR-2 concentration in the highest quartile were at significantly higher risk of CKD progression compared with children with a concentration for the respective biomarker in the lowest quartile (a 4-fold higher risk for KIM-1 and TNFR-1 and a 2-fold higher risk for TNFR-2). Plasma MCP-1, suPAR, and YKL-40 were not independently associated with progression. When stratified by glomerular versus nonglomerular etiology of CKD, effect estimates did not differ significantly. Conclusions Higher plasma KIM-1, TNFR-1, and TNFR-2 are independently associated with CKD progression in children. Full Article
bi Interaction between Epithelial Sodium Channel {gamma}-Subunit and Claudin-8 Modulates Paracellular Sodium Permeability in Renal Collecting Duct By jasn.asnjournals.org Published On :: 2020-04-30T10:00:30-07:00 Background Water and solute transport across epithelia can occur via the transcellular or paracellular pathways. Tight junctions play a key role in mediating paracellular ion reabsorption in the kidney. In the renal collecting duct, which is a typical absorptive tight epithelium, coordination between transcellular sodium reabsorption and paracellular permeability may prevent the backflow of reabsorbed sodium to the tubular lumen along a steep electrochemical gradient. Methods To investigate whether transcellular sodium transport controls tight-junction composition and paracellular permeability via modulating expression of the transmembrane protein claudin-8, we used cultured mouse cortical collecting duct cells to see how overexpression or silencing of epithelial sodium channel (ENaC) subunits and claudin-8 affect paracellular permeability. We also used conditional kidney tubule–specific knockout mice lacking ENaC subunits to assess the ENaC’s effect on claudin-8 expression. Results Overexpression or silencing of the ENaC -subunit was associated with parallel and specific changes in claudin-8 abundance. Increased claudin-8 abundance was associated with a reduction in paracellular permeability to sodium, whereas decreased claudin-8 abundance was associated with the opposite effect. Claudin-8 overexpression and silencing reproduced these functional effects on paracellular ion permeability. Conditional kidney tubule–specific ENaC -subunit knockout mice displayed decreased claudin-8 expression, confirming the cell culture experiments' findings. Importantly, ENaC β-subunit or α-subunit silencing or kidney tubule–specific β-ENaC or α-ENaC knockout mice did not alter claudin-8 abundance. Conclusions Our data reveal the specific coupling between ENaC -subunit and claudin-8 expression. This coupling may play an important role in preventing the backflow of reabsorbed solutes and water to the tubular lumen, as well as in coupling paracellular and transcellular sodium permeability. Full Article
bi Use of Human Induced Pluripotent Stem Cells and Kidney Organoids To Develop a Cysteamine/mTOR Inhibition Combination Therapy for Cystinosis By jasn.asnjournals.org Published On :: 2020-04-30T10:00:29-07:00 Background Mutations in CTNS—a gene encoding the cystine transporter cystinosin—cause the rare, autosomal, recessive, lysosomal-storage disease cystinosis. Research has also implicated cystinosin in modulating the mTORC1 pathway, which serves as a core regulator of cellular metabolism, proliferation, survival, and autophagy. In its severest form, cystinosis is characterized by cystine accumulation, renal proximal tubule dysfunction, and kidney failure. Because treatment with the cystine-depleting drug cysteamine only slows disease progression, there is an urgent need for better treatments. Methods To address a lack of good human-based cell culture models for studying cystinosis, we generated the first human induced pluripotent stem cell (iPSC) and kidney organoid models of the disorder. We used a variety of techniques to examine hallmarks of cystinosis—including cystine accumulation, lysosome size, the autophagy pathway, and apoptosis—and performed RNA sequencing on isogenic lines to identify differentially expressed genes in the cystinosis models compared with controls. Results Compared with controls, these cystinosis models exhibit elevated cystine levels, increased apoptosis, and defective basal autophagy. Cysteamine treatment ameliorates this phenotype, except for abnormalities in apoptosis and basal autophagy. We found that treatment with everolimus, an inhibitor of the mTOR pathway, reduces the number of large lysosomes, decreases apoptosis, and activates autophagy, but it does not rescue the defect in cystine loading. However, dual treatment of cystinotic iPSCs or kidney organoids with cysteamine and everolimus corrects all of the observed phenotypic abnormalities. Conclusions These observations suggest that combination therapy with a cystine-depleting drug such as cysteamine and an mTOR pathway inhibitor such as everolimus has potential to improve treatment of cystinosis. Full Article
bi Role of Impaired Nutrient and Oxygen Deprivation Signaling and Deficient Autophagic Flux in Diabetic CKD Development: Implications for Understanding the Effects of Sodium-Glucose Cotransporter 2-Inhibitors By jasn.asnjournals.org Published On :: 2020-04-30T10:00:29-07:00 Growing evidence indicates that oxidative and endoplasmic reticular stress, which trigger changes in ion channels and inflammatory pathways that may undermine cellular homeostasis and survival, are critical determinants of injury in the diabetic kidney. Cells are normally able to mitigate these cellular stresses by maintaining high levels of autophagy, an intracellular lysosome-dependent degradative pathway that clears the cytoplasm of dysfunctional organelles. However, the capacity for autophagy in both podocytes and renal tubular cells is markedly impaired in type 2 diabetes, and this deficiency contributes importantly to the intensity of renal injury. The primary drivers of autophagy in states of nutrient and oxygen deprivation—sirtuin-1 (SIRT1), AMP-activated protein kinase (AMPK), and hypoxia-inducible factors (HIF-1α and HIF-2α)—can exert renoprotective effects by promoting autophagic flux and by exerting direct effects on sodium transport and inflammasome activation. Type 2 diabetes is characterized by marked suppression of SIRT1 and AMPK, leading to a diminution in autophagic flux in glomerular podocytes and renal tubules and markedly increasing their susceptibility to renal injury. Importantly, because insulin acts to depress autophagic flux, these derangements in nutrient deprivation signaling are not ameliorated by antihyperglycemic drugs that enhance insulin secretion or signaling. Metformin is an established AMPK agonist that can promote autophagy, but its effects on the course of CKD have been demonstrated only in the experimental setting. In contrast, the effects of sodium-glucose cotransporter–2 (SGLT2) inhibitors may be related primarily to enhanced SIRT1 and HIF-2α signaling; this can explain the effects of SGLT2 inhibitors to promote ketonemia and erythrocytosis and potentially underlies their actions to increase autophagy and mute inflammation in the diabetic kidney. These distinctions may contribute importantly to the consistent benefit of SGLT2 inhibitors to slow the deterioration in glomerular function and reduce the risk of ESKD in large-scale randomized clinical trials of patients with type 2 diabetes. Full Article
bi Biomarkers of CKD in Children By jasn.asnjournals.org Published On :: 2020-04-30T10:00:29-07:00 Full Article
bi RNAconTest: comparing tools for noncoding RNA multiple sequence alignment based on structural consistency [BIOINFORMATICS] By rnajournal.cshlp.org Published On :: 2020-04-16T06:30:22-07:00 The importance of noncoding RNA sequences has become increasingly clear over the past decade. New RNA families are often detected and analyzed using comparative methods based on multiple sequence alignments. Accordingly, a number of programs have been developed for aligning and deriving secondary structures from sets of RNA sequences. Yet, the best tools for these tasks remain unclear because existing benchmarks contain too few sequences belonging to only a small number of RNA families. RNAconTest (RNA consistency test) is a new benchmarking approach relying on the observation that secondary structure is often conserved across highly divergent RNA sequences from the same family. RNAconTest scores multiple sequence alignments based on the level of consistency among known secondary structures belonging to reference sequences in their output alignment. Similarly, consensus secondary structure predictions are scored according to their agreement with one or more known structures in a family. Comparing the performance of 10 popular alignment programs using RNAconTest revealed that DAFS, DECIPHER, LocARNA, and MAFFT created the most structurally consistent alignments. The best consensus secondary structure predictions were generated by DAFS and LocARNA (via RNAalifold). Many of the methods specific to noncoding RNAs exhibited poor scalability as the number or length of input sequences increased, and several programs displayed substantial declines in score as more sequences were aligned. Overall, RNAconTest provides a means of testing and improving tools for comparative RNA analysis, as well as highlighting the best available approaches. RNAconTest is available from the DECIPHER website (http://DECIPHER.codes/Downloads.html). Full Article
bi Probiotics for the Prevention of Ventilator-Associated Pneumonia: A Meta-Analysis of Randomized Controlled Trials By rc.rcjournal.com Published On :: 2020-04-28T00:42:49-07:00 BACKGROUND:Ventilator-associated pneumonia (VAP) is a common and serious complication of mechanical ventilation. We conducted a meta-analysis of published randomized controlled trials to evaluate the efficacy and safety of probiotics for VAP prevention in patients who received mechanical ventilation.METHODS:We searched a number of medical literature databases to identify randomized controlled trials that compared probiotics with controls for VAP prevention. The results were expressed as odds ratios (OR) or mean differences with accompanying 95% CIs. Study-level data were pooled by using a random-effects model. Data syntheses were accomplished by using statistical software.RESULTS:Fourteen studies that involved 1,975 subjects met our inclusion criteria. Probiotic administration was associated with a reduction in VAP incidence among all 13 studies included in the meta-analysis (OR 0.62, 95% CI 0.45–0.85; P = .003; I2 = 43%) but not among the 6 double-blinded studies (OR 0.72, 95% CI 0.44–1.19; P = .20; I2 = 55%). We found a shorter duration of antibiotic use for VAP (mean difference −1.44, 95% CI −2.88 to −0.01; P = .048, I2 = 30%) in the probiotics group than in the control group, and the finding comes from just 2 studies. No statistically significant differences were found between the groups in terms of ICU mortality (OR 0.95, 95% CI 0.67–1.34; P = .77; I2 = 0%), ICU stay (mean difference –0.77, 95% CI –2.58 to 1.04; P = .40; I2 = 43%), duration of mechanical ventilation (mean difference –0.91, 95% CI –2.20 to 0.38; P = .17; I2 = 25%), or occurrence of diarrhea (OR 0.72, 95% CI 0.45–1.15; P = .17; I2 = 41%).CONCLUSIONS:The meta-analysis results indicated that the administration of probiotics significantly reduced the incidence of VAP. Furthermore, our findings need to be verified in large-scale, well-designed, randomized, multi-center trials. Full Article
bi An Interrater Reliability Study of Pulmonary Function Assessment With a Portable Spirometer By rc.rcjournal.com Published On :: 2020-04-28T00:42:49-07:00 BACKGROUND:In this study, we aimed to validate the agreement between pulmonary function measurements obtained with a portable spirometer and measurements obtained with conventional spirometry in Chinese pediatric and adult populations.METHODS:Pulmonary function testing was performed to evaluate subjects enrolled at Shanghai Zhongshan Hospital (n = 104) and Shanghai Children's Medical Center (n = 103). The portable spirometers and conventional devices were applied to each subject with a 20-min quiescent period between each measurement. Pulmonary function parameters of FVC, FEV1, peak expiratory flow, maximum expiratory flow at 25%, 50%, and 75% of FVC (MEF25, MEF50, and MEF75, respectively), and FEV1/FVC% were compared with intraclass correlation and Bland-Altman methods.RESULTS:A satisfactory concordance of pulmonary function was observed between spirometry measurements obtained with portable versus conventional spirometers. Intraclass correlation indicated excellent reliability (>0.75) for all pulmonary function indicators in pediatric and adult subjects. Significant positive correlations of all variables measured with different spirometers were observed (all P < .001). No significant bias was observed in either group, although limits of agreement varied. Funnel effects were observed for peak expiratory flow in pediatric subjects and for FVC, FEV1, MEF50, and MEF25 in adult subjects.CONCLUSIONS:The portable spirometer is an alternative to the conventional device for the measurement of pulmonary function. Compared with the conventional device, the portable spirometer is expected to provide convenient, operational, and financial advantages. Full Article
bi The Timed Inspiratory Effort Index as a Weaning Predictor: Analysis of Intra- and Interobserver Reproducibility By rc.rcjournal.com Published On :: 2020-04-28T00:42:49-07:00 BACKGROUND:Prolonged ventilatory weaning may expose patients to unnecessary discomfort, increase the risk of complications, and raise the costs of hospital treatment. In this scenario, indexes that reliably predict successful liberation can be helpful.OBJECTIVE:To evaluate the intra- and interobserver reproducibility of the timed inspiratory effort index as a weaning predictor.METHODS:This prospective observational study included subjects judged as able to start liberation from mechanical ventilation. For the intra-observer analysis, the same investigator performed 2 measurements in each selected patient with an interval of 30 min a rest. For interobserver analysis, 2 measurements were obtained in another sample of subjects, also with an interval of 30 min rest, but each of one performed by a different investigator. The Bland-Altman diagram, the coefficient concordance of kappa, and the Pearson correlation coefficient were used to compare the measurements. The performance of the timed inspiratory effort index was assessed by receiver operating characteristic curves. Values of P < .05 were considered significant.RESULTS:We selected 113 subjects (43 males; mean ± SD age, 77 ± 14 y). Fifty-six (49.6%) achieved successful liberation, and 33 (29%) died in the ICU. The mean ± SD duration of mechanical ventilation was 14.4 ± 6.7 d. The Bland-Altman diagrams that addressed intra- and interobservers agreement showed low variability between measurements. Values of the concordance coefficients of kappa were 0.82 (0.68–0.95) and 0.80 (0.65–0.94), and of the linear correlation coefficients, 0.86 (0.77–0.91) and 0.89 (0.82–0.93) for the intra- and interobservers measurements, respectively. The mean ± SD values for the area under the curve for each pair of the intra- and interobserver measurements were 0.96 ± 0.07 versus 0.94 ± 0.07 (P = .41) and 0.94 ± 0.05 versus 0.90 ± 0.07 (P = .14), respectively.CONCLUSIONS:The variability of the measurement of the timed inspiratory effort index by intra- and interobservers showed very high reproducibility, which reinforced the index as a sensible, accurate, and reliable outcome predictor of liberation from mechanical ventilation. Full Article
bi Characterization of Antineovascularization Activity and Ocular Pharmacokinetics of Phosphoinositide 3-Kinase/Mammalian Target of Rapamycin Inhibitor GNE-947 [Articles] By dmd.aspetjournals.org Published On :: 2020-04-21T21:06:36-07:00 The objectives of the present study were to characterize GNE-947 for its phosphoinositide 3-kinase (PI3K) and mammalian target of rapamycin (mTOR) inhibitory activities, in vitro anti–cell migration activity in human umbilical vein endothelial cells (HUVECs), in vivo antineovascularization activity in laser-induced rat choroidal neovascular (CNV) eyes, pharmacokinetics in rabbit plasma and eyes, and ocular distribution using matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS) and autoradioluminography. Its PI3K and mTOR Ki were 0.0005 and 0.045 µM, respectively, and its HUVEC IC50 was 0.093 µM. GNE-947 prevented neovascularization in the rat CNV model at 50 or 100 µg per eye with repeat dosing. After a single intravenous injection at 2.5 and 500 μg/kg in rabbits, its plasma terminal half-lives (t1/2) were 9.11 and 9.59 hours, respectively. After a single intravitreal injection of a solution at 2.5 μg per eye in rabbits, its apparent t1/2 values were 14.4, 16.3, and 23.2 hours in the plasma, vitreous humor, and aqueous humor, respectively. After a single intravitreal injection of a suspension at 33.5, 100, 200 μg per eye in rabbits, the t1/2 were 29, 74, and 219 days in the plasma and 46, 143, and 191 days in the eyes, respectively. MALDI-IMS and autoradioluminography images show that GNE-947 did not homogenously distribute in the vitreous humor and aggregated at the injection sites after injection of the suspension, which was responsible for the long t1/2 of the suspension because of the slow dissolution process. This hypothesis was supported by pharmacokinetic modeling analyses. In conclusion, the PI3K/mTOR inhibitor GNE-947 prevented neovascularization in a rat CNV model, with t1/2 up to approximately 6 months after a single intravitreal injection of the suspension in rabbit eyes. SIGNIFICANCE STATEMENT GNE-947 is a potent phosphoinositide 3-kinase/mammalian target of rapamycin inhibitor and exhibits anti–choroidal neovascular activity in rat eyes. The duration of GNE-947 in the rabbit eyes after intravitreal injection in a solution is short, with a half-life (t1/2) of less than a day. However, the duration after intravitreal dose of a suspension is long, with t1/2 up to 6 months due to low solubility and slow dissolution. These results indicate that intravitreal injection of a suspension for low-solubility drugs can be used to achieve long-term drug exposure. Full Article
bi Alteration in the Plasma Concentrations of Endogenous Organic Anion-Transporting Polypeptide 1B Biomarkers in Patients with Non-Small Cell Lung Cancer Treated with Paclitaxel [Articles] By dmd.aspetjournals.org Published On :: 2020-04-16T08:31:41-07:00 Paclitaxel has been considered to cause OATP1B-mediated drug-drug interactions at therapeutic doses; however, its clinical relevance has not been demonstrated. This study aimed to elucidate in vivo inhibition potency of paclitaxel against OATP1B1 and OATP1B3 using endogenous OATP1B biomarkers. Paclitaxel is an inhibitor of OATP1B1 and OATP1B3, with Ki of 0.579 ± 0.107 and 5.29 ± 3.87 μM, respectively. Preincubation potentiated its inhibitory effect on both OATP1B1 and OATP1B3, with Ki of 0.154 ± 0.031 and 0.624 ± 0.183 μM, respectively. Ten patients with non–small cell lung cancer who received 200 mg/m2 of paclitaxel by a 3-hour infusion were recruited. Plasma concentrations of 10 endogenous OATP1B biomarkers—namely, coproporphyrin I, coproporphyrin III, glycochenodeoxycholate-3-sulfate, glycochenodeoxycholate-3-glucuronide, glycodeoxycholate-3-sulfate, glycodeoxycholate-3-glucuronide, lithocholate-3-sulfate, glycolithocholate-3-sulfate, taurolithocholate-3-sulfate, and chenodeoxycholate-24-glucuronide—were determined in the patients with non–small cell lung cancer on the day before paclitaxel administration and after the end of paclitaxel infusion for 7 hours. Paclitaxel increased the area under the plasma concentration-time curve (AUC) of the endogenous biomarkers 2- to 4-fold, although a few patients did not show any increment in the AUC ratios of lithocholate-3-sulfate, glycolithocholate-3-sulfate, and taurolithocholate-3-sulfate. Therapeutic doses of paclitaxel for the treatment of non–small cell lung cancer (200 mg/m2) will cause significant OATP1B1 inhibition during and at the end of the infusion. This is the first demonstration that endogenous OATP1B biomarkers could serve as surrogate biomarkers in patients. SIGNIFICANCE STATEMENT Endogenous biomarkers can address practical and ethical issues in elucidating transporter-mediated drug-drug interaction (DDI) risks of anticancer drugs clinically. We could elucidate a significant increment of the plasma concentrations of endogenous OATP1B biomarkers after a 3-hour infusion (200 mg/m2) of paclitaxel, a time-dependent inhibitor of OATP1B, in patients with non–small cell lung cancer. The endogenous OATP1B biomarkers are useful to assess the possibility of OATP1B-mediated DDIs in patients and help in appropriately designing a dosing schedule to avoid the DDIs. Full Article
bi Correction: Rational design, synthesis, and evaluation of uncharged, “smart” bis-oxime antidotes of organophosphate-inhibited human acetylcholinesterase. [Additions and Corrections] By www.jbc.org Published On :: 2020-05-08T03:41:14-07:00 VOLUME 295 (2020) PAGES 4079–4092There was an error in the abstract. “The pyridinium cation hampers uptake of OPs into the central nervous system (CNS)” should read as “The pyridinium cation hampers uptake into the central nervous system (CNS).” Full Article
bi Effects of deficiency in the RLBP1-encoded visual cycle protein CRALBP on visual dysfunction in humans and mice [Cell Biology] By www.jbc.org Published On :: 2020-05-08T03:41:14-07:00 Mutations in retinaldehyde-binding protein 1 (RLBP1), encoding the visual cycle protein cellular retinaldehyde-binding protein (CRALBP), cause an autosomal recessive form of retinal degeneration. By binding to 11-cis-retinoid, CRALBP augments the isomerase activity of retinoid isomerohydrolase RPE65 (RPE65) and facilitates 11-cis-retinol oxidation to 11-cis-retinal. CRALBP also maintains the 11-cis configuration and protects against unwanted retinaldehyde activity. Studying a sibling pair that is compound heterozygous for mutations in RLBP1/CRALBP, here we expand the phenotype of affected individuals, elucidate a previously unreported phenotype in RLBP1/CRALBP carriers, and demonstrate consistencies between the affected individuals and Rlbp1/Cralbp−/− mice. In the RLBP1/CRALBP-affected individuals, nonrecordable rod-specific electroretinogram traces were recovered after prolonged dark adaptation. In ultrawide-field fundus images, we observed radially arranged puncta typical of RLBP1/CRALBP-associated disease. Spectral domain-optical coherence tomography (SD-OCT) revealed hyperreflective aberrations within photoreceptor-associated bands. In short-wavelength fundus autofluorescence (SW-AF) images, speckled hyperautofluorescence and mottling indicated macular involvement. In both the affected individuals and their asymptomatic carrier parents, reduced SW-AF intensities, measured as quantitative fundus autofluorescence (qAF), indicated chronic impairment in 11-cis-retinal availability and provided information on mutation severity. Hypertransmission of the SD-OCT signal into the choroid together with decreased near-infrared autofluorescence (NIR-AF) provided evidence for retinal pigment epithelial cell (RPE) involvement. In Rlbp1/Cralbp−/− mice, reduced 11-cis-retinal levels, qAF and NIR-AF intensities, and photoreceptor loss were consistent with the clinical presentation of the affected siblings. These findings indicate that RLBP1 mutations are associated with progressive disease involving RPE atrophy and photoreceptor cell degeneration. In asymptomatic carriers, qAF disclosed previously undetected visual cycle deficiency. Full Article
bi Spectral and photochemical diversity of tandem cysteine cyanobacterial phytochromes [Plant Biology] By www.jbc.org Published On :: 2020-05-08T03:41:14-07:00 The atypical trichromatic cyanobacterial phytochrome NpTP1 from Nostoc punctiforme ATCC 29133 is a linear tetrapyrrole (bilin)-binding photoreceptor protein that possesses tandem-cysteine residues responsible for shifting its light-sensing maximum to the violet spectral region. Using bioinformatics and phylogenetic analyses, here we established that tandem-cysteine cyanobacterial phytochromes (TCCPs) compose a well-supported monophyletic phytochrome lineage distinct from prototypical red/far-red cyanobacterial phytochromes. To investigate the light-sensing diversity of this family, we compared the spectroscopic properties of NpTP1 (here renamed NpTCCP) with those of three phylogenetically diverged TCCPs identified in the draft genomes of Tolypothrix sp. PCC7910, Scytonema sp. PCC10023, and Gloeocapsa sp. PCC7513. Recombinant photosensory core modules of ToTCCP, ScTCCP, and GlTCCP exhibited violet-blue–absorbing dark-states consistent with dual thioether-linked phycocyanobilin (PCB) chromophores. Photoexcitation generated singly-linked photoproduct mixtures with variable ratios of yellow-orange and red-absorbing species. The photoproduct ratio was strongly influenced by pH and by mutagenesis of TCCP- and phytochrome-specific signature residues. Our experiments support the conclusion that both photoproduct species possess protonated 15E bilin chromophores, but differ in the ionization state of the noncanonical “second” cysteine sulfhydryl group. We found that the ionization state of this and other residues influences subsequent conformational change and downstream signal transmission. We also show that tandem-cysteine phytochromes present in eukaryotes possess similar amino acid substitutions within their chromophore-binding pocket, which tune their spectral properties in an analogous fashion. Taken together, our findings provide a roadmap for tailoring the wavelength specificity of plant phytochromes to optimize plant performance in diverse natural and artificial light environments. Full Article
bi SUMOylation of the transcription factor ZFHX3 at Lys-2806 requires SAE1, UBC9, and PIAS2 and enhances its stability and function in cell proliferation [Protein Synthesis and Degradation] By www.jbc.org Published On :: 2020-05-08T03:41:14-07:00 SUMOylation is a posttranslational modification (PTM) at a lysine residue and is crucial for the proper functions of many proteins, particularly of transcription factors, in various biological processes. Zinc finger homeobox 3 (ZFHX3), also known as AT motif-binding factor 1 (ATBF1), is a large transcription factor that is active in multiple pathological processes, including atrial fibrillation and carcinogenesis, and in circadian regulation and development. We have previously demonstrated that ZFHX3 is SUMOylated at three or more lysine residues. Here, we investigated which enzymes regulate ZFHX3 SUMOylation and whether SUMOylation modulates ZFHX3 stability and function. We found that SUMO1, SUMO2, and SUMO3 each are conjugated to ZFHX3. Multiple lysine residues in ZFHX3 were SUMOylated, but Lys-2806 was the major SUMOylation site, and we also found that it is highly conserved among ZFHX3 orthologs from different animal species. Using molecular analyses, we identified the enzymes that mediate ZFHX3 SUMOylation; these included SUMO1-activating enzyme subunit 1 (SAE1), an E1-activating enzyme; SUMO-conjugating enzyme UBC9 (UBC9), an E2-conjugating enzyme; and protein inhibitor of activated STAT2 (PIAS2), an E3 ligase. Multiple analyses established that both SUMO-specific peptidase 1 (SENP1) and SENP2 deSUMOylate ZFHX3. SUMOylation at Lys-2806 enhanced ZFHX3 stability by interfering with its ubiquitination and proteasomal degradation. Functionally, Lys-2806 SUMOylation enabled ZFHX3-mediated cell proliferation and xenograft tumor growth of the MDA-MB-231 breast cancer cell line. These findings reveal the enzymes involved in, and the functional consequences of, ZFHX3 SUMOylation, insights that may help shed light on ZFHX3's roles in various cellular and pathophysiological processes. Full Article
bi Roles of the DOCK-D family proteins in a mouse model of neuroinflammation [Neurobiology] By www.jbc.org Published On :: 2020-05-08T03:41:14-07:00 The DOCK-D (dedicator of cytokinesis D) family proteins are atypical guanine nucleotide exchange factors that regulate Rho GTPase activity. The family consists of Zizimin1 (DOCK9), Zizimin2 (DOCK11), and Zizimin3 (DOCK10). Functions of the DOCK-D family proteins are presently not well-explored, and the role of the DOCK-D family in neuroinflammation is unknown. In this study, we generated three mouse lines in which DOCK9 (DOCK9−/−), DOCK10 (DOCK10−/−), or DOCK11 (DOCK11−/−) had been deleted and examined the phenotypic effects of these gene deletions in MOG35–55 peptide-induced experimental autoimmune encephalomyelitis, an animal model of the neuroinflammatory disorder multiple sclerosis. We found that all the gene knockout lines were healthy and viable. The only phenotype observed under normal conditions was a slightly smaller proportion of B cells in splenocytes in DOCK10−/− mice than in the other mouse lines. We also found that the migration ability of macrophages is impaired in DOCK10−/− and DOCK11−/− mice and that the severity of experimental autoimmune encephalomyelitis was ameliorated only in DOCK10−/− mice. No apparent phenotype was observed for DOCK9−/− mice. Further investigations indicated that lipopolysaccharide stimulation up-regulates DOCK10 expression in microglia and that microglial migration is decreased in DOCK10−/− mice. Up-regulation of C–C motif chemokine ligand 2 (CCL2) expression induced by activation of Toll-like receptor 4 or 9 signaling was reduced in DOCK10−/− astrocytes compared with WT astrocytes. Taken together, our findings suggest that DOCK10 plays a role in innate immunity and neuroinflammation and might represent a potential therapeutic target for managing multiple sclerosis. Full Article
bi A flexible network of vimentin intermediate filaments promotes migration of amoeboid cancer cells through confined environments [Cell Biology] By www.jbc.org Published On :: 2020-05-08T03:41:14-07:00 Tumor cells can spread to distant sites through their ability to switch between mesenchymal and amoeboid (bleb-based) migration. Because of this difference, inhibitors of metastasis must account for each migration mode. However, the role of vimentin in amoeboid migration has not been determined. Because amoeboid leader bleb–based migration (LBBM) occurs in confined spaces and vimentin is known to strongly influence cell-mechanical properties, we hypothesized that a flexible vimentin network is required for fast amoeboid migration. To this end, here we determined the precise role of the vimentin intermediate filament system in regulating the migration of amoeboid human cancer cells. Vimentin is a classic marker of epithelial-to-mesenchymal transition and is therefore an ideal target for a metastasis inhibitor. Using a previously developed polydimethylsiloxane slab–based approach to confine cells, RNAi-based vimentin silencing, vimentin overexpression, pharmacological treatments, and measurements of cell stiffness, we found that RNAi-mediated depletion of vimentin increases LBBM by ∼50% compared with control cells and that vimentin overexpression and simvastatin-induced vimentin bundling inhibit fast amoeboid migration and proliferation. Importantly, these effects were independent of changes in actomyosin contractility. Our results indicate that a flexible vimentin intermediate filament network promotes LBBM of amoeboid cancer cells in confined environments and that vimentin bundling perturbs cell-mechanical properties and inhibits the invasive properties of cancer cells. Full Article
bi The streptococcal multidomain fibrillar adhesin CshA has an elongated polymeric architecture [Microbiology] By www.jbc.org Published On :: 2020-05-08T03:41:14-07:00 The cell surfaces of many bacteria carry filamentous polypeptides termed adhesins that enable binding to both biotic and abiotic surfaces. Surface adherence is facilitated by the exquisite selectivity of the adhesins for their cognate ligands or receptors and is a key step in niche or host colonization and pathogenicity. Streptococcus gordonii is a primary colonizer of the human oral cavity and an opportunistic pathogen, as well as a leading cause of infective endocarditis in humans. The fibrillar adhesin CshA is an important determinant of S. gordonii adherence, forming peritrichous fibrils on its surface that bind host cells and other microorganisms. CshA possesses a distinctive multidomain architecture comprising an N-terminal target-binding region fused to 17 repeat domains (RDs) that are each ∼100 amino acids long. Here, using structural and biophysical methods, we demonstrate that the intact CshA repeat region (CshA_RD1–17, domains 1–17) forms an extended polymeric monomer in solution. We recombinantly produced a subset of CshA RDs and found that they differ in stability and unfolding behavior. The NMR structure of CshA_RD13 revealed a hitherto unreported all β-fold, flanked by disordered interdomain linkers. These findings, in tandem with complementary hydrodynamic studies of CshA_RD1–17, indicate that this polypeptide possesses a highly unusual dynamic transitory structure characterized by alternating regions of order and disorder. This architecture provides flexibility for the adhesive tip of the CshA fibril to maintain bacterial attachment that withstands shear forces within the human host. It may also help mitigate deleterious folding events between neighboring RDs that share significant structural identity without compromising mechanical stability. Full Article
bi ADAM10 and ADAM17 proteases mediate proinflammatory cytokine-induced and constitutive cleavage of endomucin from the endothelial surface [Membrane Biology] By www.jbc.org Published On :: 2020-05-08T03:41:14-07:00 Contact between inflammatory cells and endothelial cells (ECs) is a crucial step in vascular inflammation. Recently, we demonstrated that the cell-surface level of endomucin (EMCN), a heavily O-glycosylated single-transmembrane sialomucin, interferes with the interactions between inflammatory cells and ECs. We have also shown that, in response to an inflammatory stimulus, EMCN is cleared from the cell surface by an unknown mechanism. In this study, using adenovirus-mediated overexpression of a tagged EMCN in human umbilical vein ECs, we found that treatment with tumor necrosis factor α (TNF-α) or the strong oxidant pervanadate leads to loss of cell-surface EMCN and increases the levels of the C-terminal fragment of EMCN 3- to 4-fold. Furthermore, treatment with the broad-spectrum matrix metalloproteinase inhibitor batimastat (BB94) or inhibition of ADAM metallopeptidase domain 10 (ADAM10) and ADAM17 with two small-molecule inhibitors, GW280264X and GI254023X, or with siRNA significantly reduced basal and TNFα-induced cell-surface EMCN cleavage. Release of the C-terminal fragment of EMCN by TNF-α treatment was blocked by chemical inhibition of ADAM10 alone or in combination with ADAM17. These results indicate that cell-surface EMCN undergoes constitutive cleavage and that TNF-α treatment dramatically increases this cleavage, which is mediated predominantly by ADAM10 and ADAM17. As endothelial cell-surface EMCN attenuates leukocyte–EC interactions during inflammation, we propose that EMCN is a potential therapeutic target to manage vascular inflammation. Full Article
bi A kinesin adapter directly mediates dendritic mRNA localization during neural development in mice [Neurobiology] By www.jbc.org Published On :: 2020-05-08T03:41:14-07:00 Motor protein-based active transport is essential for mRNA localization and local translation in animal cells, yet how mRNA granules interact with motor proteins remains poorly understood. Using an unbiased yeast two–hybrid screen for interactions between murine RNA-binding proteins (RBPs) and motor proteins, here we identified protein interaction with APP tail-1 (PAT1) as a potential direct adapter between zipcode-binding protein 1 (ZBP1, a β-actin RBP) and the kinesin-I motor complex. The amino acid sequence of mouse PAT1 is similar to that of the kinesin light chain (KLC), and we found that PAT1 binds to KLC directly. Studying PAT1 in mouse primary hippocampal neuronal cultures from both sexes and using structured illumination microscopic imaging of these neurons, we observed that brain-derived neurotrophic factor (BDNF) enhances co-localization of dendritic ZBP1 and PAT1 within granules that also contain kinesin-I. PAT1 is essential for BDNF-stimulated neuronal growth cone development and dendritic protrusion formation, and we noted that ZBP1 and PAT1 co-locate along with β-actin mRNA in actively transported granules in living neurons. Acute disruption of the PAT1–ZBP1 interaction in neurons with PAT1 siRNA or a dominant-negative ZBP1 construct diminished localization of β-actin mRNA but not of Ca2+/calmodulin-dependent protein kinase IIα (CaMKIIα) mRNA in dendrites. The aberrant β-actin mRNA localization resulted in abnormal dendritic protrusions and growth cone dynamics. These results suggest a critical role for PAT1 in BDNF-induced β-actin mRNA transport during postnatal development and reveal a new molecular mechanism for mRNA localization in vertebrates. Full Article
bi The major subunit of widespread competence pili exhibits a novel and conserved type IV pilin fold [Protein Structure and Folding] By www.jbc.org Published On :: 2020-05-08T03:41:14-07:00 Type IV filaments (T4F), which are helical assemblies of type IV pilins, constitute a superfamily of filamentous nanomachines virtually ubiquitous in prokaryotes that mediate a wide variety of functions. The competence (Com) pilus is a widespread T4F, mediating DNA uptake (the first step in natural transformation) in bacteria with one membrane (monoderms), an important mechanism of horizontal gene transfer. Here, we report the results of genomic, phylogenetic, and structural analyses of ComGC, the major pilin subunit of Com pili. By performing a global comparative analysis, we show that Com pili genes are virtually ubiquitous in Bacilli, a major monoderm class of Firmicutes. This also revealed that ComGC displays extensive sequence conservation, defining a monophyletic group among type IV pilins. We further report ComGC solution structures from two naturally competent human pathogens, Streptococcus sanguinis (ComGCSS) and Streptococcus pneumoniae (ComGCSP), revealing that this pilin displays extensive structural conservation. Strikingly, ComGCSS and ComGCSP exhibit a novel type IV pilin fold that is purely helical. Results from homology modeling analyses suggest that the unusual structure of ComGC is compatible with helical filament assembly. Because ComGC displays such a widespread distribution, these results have implications for hundreds of monoderm species. Full Article
bi Templated folding of intrinsically disordered proteins [Molecular Biophysics] By www.jbc.org Published On :: 2020-05-08T03:41:14-07:00 Much of our current knowledge of biological chemistry is founded in the structure-function relationship, whereby sequence determines structure that determines function. Thus, the discovery that a large fraction of the proteome is intrinsically disordered, while being functional, has revolutionized our understanding of proteins and raised new and interesting questions. Many intrinsically disordered proteins (IDPs) have been determined to undergo a disorder-to-order transition when recognizing their physiological partners, suggesting that their mechanisms of folding are intrinsically different from those observed in globular proteins. However, IDPs also follow some of the classic paradigms established for globular proteins, pointing to important similarities in their behavior. In this review, we compare and contrast the folding mechanisms of globular proteins with the emerging features of binding-induced folding of intrinsically disordered proteins. Specifically, whereas disorder-to-order transitions of intrinsically disordered proteins appear to follow rules of globular protein folding, such as the cooperative nature of the reaction, their folding pathways are remarkably more malleable, due to the heterogeneous nature of their folding nuclei, as probed by analysis of linear free-energy relationship plots. These insights have led to a new model for the disorder-to-order transition in IDPs termed “templated folding,” whereby the binding partner dictates distinct structural transitions en route to product, while ensuring a cooperative folding. Full Article
bi Crystallographic and kinetic analyses of the FdsBG subcomplex of the cytosolic formate dehydrogenase FdsABG from Cupriavidus necator [Molecular Biophysics] By www.jbc.org Published On :: 2020-05-08T03:41:14-07:00 Formate oxidation to carbon dioxide is a key reaction in one-carbon compound metabolism, and its reverse reaction represents the first step in carbon assimilation in the acetogenic and methanogenic branches of many anaerobic organisms. The molybdenum-containing dehydrogenase FdsABG is a soluble NAD+-dependent formate dehydrogenase and a member of the NADH dehydrogenase superfamily. Here, we present the first structure of the FdsBG subcomplex of the cytosolic FdsABG formate dehydrogenase from the hydrogen-oxidizing bacterium Cupriavidus necator H16 both with and without bound NADH. The structures revealed that the two iron-sulfur clusters, Fe4S4 in FdsB and Fe2S2 in FdsG, are closer to the FMN than they are in other NADH dehydrogenases. Rapid kinetic studies and EPR measurements of rapid freeze-quenched samples of the NADH reduction of FdsBG identified a neutral flavin semiquinone, FMNH•, not previously observed to participate in NADH-mediated reduction of the FdsABG holoenzyme. We found that this semiquinone forms through the transfer of one electron from the fully reduced FMNH−, initially formed via NADH-mediated reduction, to the Fe2S2 cluster. This Fe2S2 cluster is not part of the on-path chain of iron-sulfur clusters connecting the FMN of FdsB with the active-site molybdenum center of FdsA. According to the NADH-bound structure, the nicotinamide ring stacks onto the re-face of the FMN. However, NADH binding significantly reduced the electron density for the isoalloxazine ring of FMN and induced a conformational change in residues of the FMN-binding pocket that display peptide-bond flipping upon NAD+ binding in proper NADH dehydrogenases. Full Article
bi The histone H4 basic patch regulates SAGA-mediated H2B deubiquitination and histone acetylation [DNA and Chromosomes] By www.jbc.org Published On :: 2020-05-08T03:41:14-07:00 Histone H2B monoubiquitylation (H2Bub1) has central functions in multiple DNA-templated processes, including gene transcription, DNA repair, and replication. H2Bub1 also is required for the trans-histone regulation of H3K4 and H3K79 methylation. Although previous studies have elucidated the basic mechanisms that establish and remove H2Bub1, we have only an incomplete understanding of how H2Bub1 is regulated. We report here that the histone H4 basic patch regulates H2Bub1. Yeast cells with arginine-to-alanine mutations in the H4 basic patch (H42RA) exhibited a significant loss of global H2Bub1. H42RA mutant yeast strains also displayed chemotoxin sensitivities similar to, but less severe than, strains containing a complete loss of H2Bub1. We found that the H4 basic patch regulates H2Bub1 levels independently of interactions with chromatin remodelers and separately from its regulation of H3K79 methylation. To measure H2B ubiquitylation and deubiquitination kinetics in vivo, we used a rapid and reversible optogenetic tool, the light-inducible nuclear exporter, to control the subcellular location of the H2Bub1 E3 ligase, Bre1. The ability of Bre1 to ubiquitylate H2B was unaffected in the H42RA mutant. In contrast, H2Bub1 deubiquitination by SAGA-associated Ubp8, but not by Ubp10, increased in the H42RA mutant. Consistent with a function for the H4 basic patch in regulating SAGA deubiquitinase activity, we also detected increased SAGA-mediated histone acetylation in H4 basic patch mutants. Our findings uncover that the H4 basic patch has a regulatory function in SAGA-mediated histone modifications. Full Article
bi The short variant of optic atrophy 1 (OPA1) improves cell survival under oxidative stress [Bioenergetics] By www.jbc.org Published On :: 2020-05-08T03:41:14-07:00 Optic atrophy 1 (OPA1) is a dynamin protein that mediates mitochondrial fusion at the inner membrane. OPA1 is also necessary for maintaining the cristae and thus essential for supporting cellular energetics. OPA1 exists as membrane-anchored long form (L-OPA1) and short form (S-OPA1) that lacks the transmembrane region and is generated by cleavage of L-OPA1. Mitochondrial dysfunction and cellular stresses activate the inner membrane–associated zinc metallopeptidase OMA1 that cleaves L-OPA1, causing S-OPA1 accumulation. The prevailing notion has been that L-OPA1 is the functional form, whereas S-OPA1 is an inactive cleavage product in mammals, and that stress-induced OPA1 cleavage causes mitochondrial fragmentation and sensitizes cells to death. However, S-OPA1 contains all functional domains of dynamin proteins, suggesting that it has a physiological role. Indeed, we recently demonstrated that S-OPA1 can maintain cristae and energetics through its GTPase activity, despite lacking fusion activity. Here, applying oxidant insult that induces OPA1 cleavage, we show that cells unable to generate S-OPA1 are more sensitive to this stress under obligatory respiratory conditions, leading to necrotic death. These findings indicate that L-OPA1 and S-OPA1 differ in maintaining mitochondrial function. Mechanistically, we found that cells that exclusively express L-OPA1 generate more superoxide and are more sensitive to Ca2+-induced mitochondrial permeability transition, suggesting that S-OPA1, and not L-OPA1, protects against cellular stress. Importantly, silencing of OMA1 expression increased oxidant-induced cell death, indicating that stress-induced OPA1 cleavage supports cell survival. Our findings suggest that S-OPA1 generation by OPA1 cleavage is a survival mechanism in stressed cells. Full Article
bi Small-molecule agonists of the RET receptor tyrosine kinase activate biased trophic signals that are influenced by the presence of GFRa1 co-receptors [Neurobiology] By www.jbc.org Published On :: 2020-05-08T03:41:14-07:00 Glial cell line–derived neurotrophic factor (GDNF) is a growth factor that regulates the health and function of neurons and other cells. GDNF binds to GDNF family receptor α1 (GFRa1), and the resulting complex activates the RET receptor tyrosine kinase and subsequent downstream signals. This feature restricts GDNF activity to systems in which GFRa1 and RET are both present, a scenario that may constrain GDNF breadth of action. Furthermore, this co-dependence precludes the use of GDNF as a tool to study a putative functional cross-talk between GFRa1 and RET. Here, using biochemical techniques, terminal deoxynucleotidyl transferase dUTP nick end labeling staining, and immunohistochemistry in murine cells, tissues, or retinal organotypic cultures, we report that a naphthoquinone/quinolinedione family of small molecules (Q compounds) acts as RET agonists. We found that, like GDNF, signaling through the parental compound Q121 is GFRa1-dependent. Structural modifications of Q121 generated analogs that activated RET irrespective of GFRa1 expression. We used these analogs to examine RET–GFRa1 interactions and show that GFRa1 can influence RET-mediated signaling and enhance or diminish AKT Ser/Thr kinase or extracellular signal-regulated kinase signaling in a biased manner. In a genetic mutant model of retinitis pigmentosa, a lead compound, Q525, afforded sustained RET activation and prevented photoreceptor neuron loss in the retina. This work uncovers key components of the dynamic relationships between RET and its GFRa co-receptor and provides RET agonist scaffolds for drug development. Full Article