rat

Exploiting fourth-generation synchrotron radiation for enzyme and photoreceptor characterization

(Time-resolved) macromolecular crystallography at the new ESRF-ID29 beamline is described.




rat

The seventh blind test of crystal structure prediction: structure generation methods

The results of the seventh blind test of crystal structure prediction are presented, focusing on structure generation methods.




rat

Crystal structure of the incommensurate modulated high-pressure phase of the potassium guaninate monohydrate

Incommensurate phase of potassium guaninate monohydrate is the first example of a modulation in purine derivatives and of a high-pressure incommensurate crystal structure to be solved for an organic compound.




rat

From `crystallographic accuracy' to `thermodynamic accuracy': a redetermination of the crystal structure of calcium atorvastatin trihydrate (Lipitor®)

The crystal structure of calcium atorvastatin trihydrate was redetermined from previously published synchrotron powder diffraction data to give a much-improved agreement with two independent density-functional theory calculations.




rat

Crystal structure and compressibility of magnesium chloride heptahydrate found under high pressure

In-situ diffraction measurements reveal that magnesium chloride forms a unique high-pressure phase, a heptahydrate, above 2 GPa. The hydrogen-bonding structure appears to contain orientational disorder.




rat

Morphological control for hollow rod crystals of a photochromic di­aryl­ethene on spherulites by surface properties of substrates

1,2-Bis(3,5-di­methyl-2-thienyl)perfluoro­cyclo­pentene formed its own spherulites by sublimation onto the hydro­philic surfaces of the (0001) planes of α-quartz and sapphire substrates. The formation of different morphologies of these spherulites was attributed to the surface properties of each substrate. Depending on the morphology of the spherulites, hollow rod crystals with cross sections of different sizes and shapes and branching structures were generated on the surfaces of the spherulites.




rat

The incommensurate composite YxOs4B4 (x = 1.161)

Tetragonal YxOs4B4 (x = 1.161) is an incommensurate composite of columns of Y atoms in a three-dimensional Os4B4 framework. The structure was refined using the superspace approach.




rat

Seed layer formation by deposition of micro-crystallites on a revolving substrate: modeling of the effective linear elastic, piezoelectric, and dielectric coefficients

The rotating substrate method of crystallite deposition is modeled, allowing computation of effective material coefficients of the layers resulting from the averaging. A worked numerical example particularized to 6mm ZnO is provided.




rat

Selective Acceleration and Inhibition of Crystal Growth of Glass Carbamazepine by Low-Concentration Poly(ethylene oxide):Effects of Drug Polymorph

Low-concentration poly(ethylene oxide) exhibit the polymorph-dependent effects on both the surface and bulk crystal growth of carbamazepine polymorphs. These polymorph-dependent effects of PEO were mainly attributed to the polymer enrichment at the interface and different crystal surface-polymer interactions.




rat

Morphological control for hollow rod crystals of a photochromic diarylethene on spherulites by surface properties of substrates

Sublimation methods utilizing the surface properties of substrates can address the challenge of controlling hollow morphologies in rod crystals. Spherulites were formed on the hydrophilic surface of the (0001) planes of α-quartz and sapphire substrates by sublimation of 1,2-bis(3,5-dimethyl-2-thienyl)perfluorocyclopentene (1a). Various types of hollow morphologies, distinguished by the size and shape of their cross sections and by the presence or absence of branching structures, were formed separately on α-quartz and sapphire substrates. Such precise control of the hollow morphologies was attributed to the wettability of each substrate, leading to the formation of spherulites of 1a. In addition, it was indicated that the formation process of the surface morphologies of spherulites was associated with the hollow morphologies of rod crystals of 1a.




rat

The incommensurate composite YxOs4B4 (x = 1.161)

YxOs4B4 (x = 1.161) crystallizes as a tetragonal incommensurate composite of columns of Y atoms extending along [001] in an Os4B4 framework. The structure was refined using the superspace approach. The basic structure of the Y subsystem can be idealized as having I4/mmm symmetry, with a crystallographically unique Y atom located on the 4/mmm position. The actual superspace symmetry is P42/nmc(00σ3)s0s0. The Y atoms feature only subtle positional modulation in the [001] direction. The Os4B4 subsystem [P42/ncm(00σ3)00ss superspace symmetry] is built of columns of edge-sharing Os4 tetrahedra extending along [001] and B2 dumbbells. The Os4 tetrahedra feature pronounced positional modulation with a distinct variation of the Os—Os bond lengths. Modulation of the B2 dumbbells is best described as a rotation about the [001] axis.




rat

Crystal structure and compressibility of magnesium chloride heptahydrate found under high pressure

The odd hydration number has so far been missing in the water-rich magnesium chloride hydrate series (MgCl2·nH2O). In this study, magnesium chloride heptahydrate, MgCl2·7H2O (or MgCl2·7D2O), which forms at high pressures above 2 GPa and high temperatures above 300 K, has been identified. Its structure has been determined by a combination of in-situ single-crystal X-ray diffraction at 2.5 GPa and 298 K and powder neutron diffraction at 3.1 GPa and 300 K. The single-crystal specimen was grown by mixing alcohols to prevent nucleation of undesired crystalline phases. The results show orientational disorder of water molecules, which was also examined using density functional theory calculations. The disorder involves the reconnection of hydrogen bonds, which differs from those in water ice phases and known disordered salt hydrates. Shrinkage by compression occurs mainly in one direction. In the plane perpendicular to this most compressible direction, oxygen and chlorine atoms are in a hexagonal-like arrangement.




rat

From `crystallographic accuracy' to `thermodynamic accuracy': a redetermination of the crystal structure of calcium atorvastatin trihydrate (Lipitor®)

With ever-improving quantum-mechanical computational methods, the accuracy requirements for experimental crystal structures increase. The crystal structure of calcium atorvastatin trihydrate, which has 56 degrees of freedom when determined with a real-space algorithm, was determined from powder diffraction data by Hodge et al. [Powder Diffr. (2020), 35, 136–143]. The crystal structure was a good fit to the experimental data, indicating that the electron density had been captured essentially correctly, but two independent quantum-mechanical calculations disagreed with the experimental structure and with each other. Using the same experimental data, the crystal structure was redetermined from scratch and it was shown that it can be reproduced within a root-mean-square Cartesian displacement of 0.1 Å by two independent quantum-mechanical calculations. The consequences for the calculated energies and solubilities are described.




rat

Crystal structure of the incommensurate modulated high-pressure phase of the potassium guaninate monohydrate

The crystal structure of the incommensurate modulated phase of potassium guaninate monohydrate has been solved on the basis of high-pressure single-crystal X-ray diffraction data. The modulated structure was described as a `mosaic' sequence of three different local configurations of two neighbouring guaninate rings. In contrast to known examples of incommensurate modulated organic compounds, the modulation functions of all atoms are discontinuous. This is the first example of the experimental detection of an incommensurate modulated crystal structure that can be modelled using the special `soliton mode' modulation function proposed by Aramburu et al. [(1995), J. Phys. Condens. Matter, 7, 6187–6196].




rat

The seventh blind test of crystal structure prediction: structure generation methods

A seventh blind test of crystal structure prediction was organized by the Cambridge Crystallographic Data Centre featuring seven target systems of varying complexity: a silicon and iodine-containing molecule, a copper coordination complex, a near-rigid molecule, a cocrystal, a polymorphic small agrochemical, a highly flexible polymorphic drug candidate, and a polymorphic morpholine salt. In this first of two parts focusing on structure generation methods, many crystal structure prediction (CSP) methods performed well for the small but flexible agrochemical compound, successfully reproducing the experimentally observed crystal structures, while few groups were successful for the systems of higher complexity. A powder X-ray diffraction (PXRD) assisted exercise demonstrated the use of CSP in successfully determining a crystal structure from a low-quality PXRD pattern. The use of CSP in the prediction of likely cocrystal stoichiometry was also explored, demonstrating multiple possible approaches. Crystallographic disorder emerged as an important theme throughout the test as both a challenge for analysis and a major achievement where two groups blindly predicted the existence of disorder for the first time. Additionally, large-scale comparisons of the sets of predicted crystal structures also showed that some methods yield sets that largely contain the same crystal structures.




rat

Online carbohydrate 3D structure validation with the Privateer web app

Owing to the difficulties associated with working with carbohydrates, validating glycan 3D structures prior to deposition into the Protein Data Bank has become a staple of the structure-solution pipeline. The Privateer software provides integrative methods for the validation, analysis, refinement and graphical representation of 3D atomic structures of glycans, both as ligands and as protein modifiers. While Privateer is free software, it requires users to install any of the structural biology software suites that support it or to build it from source code. Here, the Privateer web app is presented, which is always up to date and available to be used online (https://privateer.york.ac.uk) without installation. This self-updating tool, which runs locally on the user's machine, will allow structural biologists to simply and quickly analyse carbohydrate ligands and protein glycosylation from a web browser whilst retaining all confidential information on their devices.




rat

Room-temperature serial synchrotron crystallography structure of Spinacia oleracea RuBisCO

Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is the enzyme responsible for the first step of carbon dioxide (CO2) fixation in plants, which proceeds via the carboxylation of ribulose 1,5-biphosphate. Because of the enormous importance of this reaction in agriculture and the environment, there is considerable interest in the mechanism of fixation of CO2 by RuBisCO. Here, a serial synchrotron crystallography structure of spinach RuBisCO is reported at 2.3 Å resolution. This structure is consistent with earlier single-crystal X-ray structures of this enzyme and the results are a good starting point for a further push towards time-resolved serial synchrotron crystallography in order to better understand the mechanism of the reaction.




rat

X-ray crystal structure of proliferating cell nuclear antigen 1 from Aeropyrum pernix

Proliferating cell nuclear antigen (PCNA) plays a critical role in DNA replication by enhancing the activity of various proteins involved in replication. In this study, the crystal structure of ApePCNA1, one of three PCNAs from the thermophilic archaeon Aeropyrum pernix, was elucidated. ApePCNA1 was cloned and expressed in Escherichia coli and the protein was purified and crystallized. The resulting crystal structure determined at 2.00 Å resolution revealed that ApePCNA1 does not form a trimeric ring, unlike PCNAs from other domains of life. It has unique structural features, including a long interdomain-connecting loop and a PIP-box-like sequence at the N-terminus, indicating potential interactions with other proteins. These findings provide insights into the functional mechanisms of PCNAs in archaea and their evolutionary conservation across different domains of life. A modified medium and protocol were used to express recombinant protein containing the lac operon. The expression of the target protein increased and the total incubation time decreased when using this system compared with those of previous expression protocols.




rat

Multi-species cryoEM calibration and workflow verification standard

Cryogenic electron microscopy (cryoEM) is a rapidly growing structural biology modality that has been successful in revealing molecular details of biological systems. However, unlike established biophysical and analytical techniques with calibration standards, cryoEM has lacked comprehensive biological test samples. Here, a cryoEM calibration sample consisting of a mixture of compatible macromolecules is introduced that can not only be used for resolution optimization, but also provides multiple reference points for evaluating instrument performance, data quality and image-processing workflows in a single experiment. This combined test specimen provides researchers with a reference point for validating their cryoEM pipeline, benchmarking their methodologies and testing new algorithms.




rat

Laboratory X-ray powder micro-diffraction in the research of painted artworks

This review summarizes the methodological aspects of laboratory X-ray powder micro-diffraction and demonstrates the assets of the method in the research of painted artworks for evaluation of their provenance or diagnosing their degradation.




rat

Integrating machine learning interatomic potentials with hybrid reverse Monte Carlo structure refinements in RMCProfile

New software capabilities in RMCProfile allow researchers to study the structure of materials by combining machine learning interatomic potentials and reverse Monte Carlo.




rat

AnACor2.0: a GPU-accelerated open-source software package for analytical absorption corrections in X-ray crystallography

AnACor2.0 significantly accelerates the calculation of analytical absorption corrections in long-wavelength crystallography, achieving up to 175× speed improvements. This enhancement is achieved through innovative sampling techniques, bisection and gridding methods, and optimized CUDA implementations, ensuring efficient and accurate results.




rat

The effects of low boron incorporation on the structural and optical properties of BxGa1−xN/SiC epitaxial layers

The effect of boron in BxGa1−xN/SiC heteroepitaxy was established by X-ray diffraction reciprocal-space maps on symmetric 0002 and asymmetric 11 {overline 2} 4 reflections. The density of screw and edge threading dislocations was quantified in the framework of the mosaic model.




rat

Characterization and calibration of DECTRIS PILATUS3 X CdTe 2M high-Z hybrid pixel detector for high-precision powder diffraction measurements

The performance of a high-Z photon-counting detector for powder diffraction measurements at high (>50 keV) energies is characterized, and the appropriate corrections are described in order to obtain data of higher quality than have previously been obtained from 2D detectors in these energy ranges.




rat

Position-independent product increase rate in a shaker mill revealed by position-resolved in situ synchrotron powder X-ray diffraction

The position- and time-resolved monitoring of a mechanochemical reaction using synchrotron powder X-ray diffraction revealed a position-independent increase rate of product in the jar of a shaker mill.




rat

Optimal operation guidelines for direct recovery of high-purity precursor from spent lithium-ion batteries: hybrid operation model of population balance equation and data-driven classifier

This study proposes an operation optimization framework for impurity-free recycling of spent lithium-ion batteries. Using a hybrid population balance equation integrated with a data-driven condition classifier, the study firstly identifies the optimal batch and semi-batch operation conditions that significantly reduce the operation time with 100% purity of product; detailed guidelines are given for industrial applications.




rat

TOMOMAN: a software package for large-scale cryo-electron tomography data preprocessing, community data sharing and collaborative computing

Here we describe TOMOMAN (TOMOgram MANager), an extensible open-sourced software package for handling cryo-electron tomography data preprocessing. TOMOMAN streamlines interoperability between a wide range of external packages and provides tools for project sharing and archival.




rat

GRASP Integrated 3D Plotter: GRIP

This article describes the implementation of GRIP as a module of GRASP, enabling the fully three-dimensional visualization and analysis of data collected on small-angle neutron scattering instruments.




rat

Variable temperature studies of tetra­pyridine­silver(I) hexa­fluoro­phosphate and tetra­pyridine­silver(I) hexa­fluoro­anti­monate

Structures of tetra­pyridine­silver(I) hexa­fluoro­phosphate and tetra­pyridine silver(I) hexa­fluoro­anti­monate are reported from data collected at 300 K and 100 K.




rat

The cadmium oxidotellurates(IV) Cd5(TeO3)4(NO3)2 and Cd4Te5O14

The crystal structure of Cd5(TeO3)4(NO3)2 exhibits a distinct layered arrangement, whereas Cd4Te5O14 crystallizes with a framework structure.




rat

Synthesis and structure of penta­kis­(2-aminopyridinium) nona­vanado(V)tellurate(VI)

In the title compound, the tellurium(VI) and vanadium(V) atoms are statistically disordered over two of the ten metal-atom sites in the unprotonated [TeV9O28]5– heteropolyanion.




rat

Crystal structure of 1,10-phenanthrolinium violurate violuric acid penta­hydrate

The crystal structure of the co-crystal salt solvate 1,10-phenanthrolinium violurate violuric acid penta­hydrate features a tri-periodic hydrogen-bonded network with the violurate and violuric acid residues each assembled into tapes and the phenanthrolinium cations residing in channels.




rat

Crystal structure of N-terminally hexahistidine-tagged Onchocerca volvulus macrophage migration inhibitory factor-1

N-terminally hexahistidine-tagged O. volvulus macrophage migration inhibitory factor-1 has a unique jellyfish-like structure with the prototypical macrophage migration inhibitory factor trimer as the `head' and a C-terminal extension as the `tail'.




rat

AnACor2.0: a GPU-accelerated open-source software package for analytical absorption corrections in X-ray crystallography

Analytical absorption corrections are employed in scaling diffraction data for highly absorbing samples, such as those used in long-wavelength crystallography, where empirical corrections pose a challenge. AnACor2.0 is an accelerated software package developed to calculate analytical absorption corrections. It accomplishes this by ray-tracing the paths of diffracted X-rays through a voxelized 3D model of the sample. Due to the computationally intensive nature of ray-tracing, the calculation of analytical absorption corrections for a given sample can be time consuming. Three experimental datasets (insulin at λ = 3.10 Å, thermolysin at λ = 3.53 Å and thaumatin at λ = 4.13 Å) were processed to investigate the effectiveness of the accelerated methods in AnACor2.0. These methods demonstrated a maximum reduction in execution time of up to 175× compared with previous methods. As a result, the absorption factor calculation for the insulin dataset can now be completed in less than 10 s. These acceleration methods combine sampling, which evaluates subsets of crystal voxels, with modifications to standard ray-tracing. The bisection method is used to find path lengths, reducing the complexity from O(n) to O(log2 n). The gridding method involves calculating a regular grid of diffraction paths and using interpolation to find an absorption correction for a specific reflection. Additionally, optimized and specifically designed CUDA implementations for NVIDIA GPUs are utilized to enhance performance. Evaluation of these methods using simulated and real datasets demonstrates that systematic sampling of the 3D model provides consistently accurate results with minimal variance across different sampling ratios. The mean difference of absorption factors from the full calculation (without sampling) is at most 2%. Additionally, the anomalous peak heights of sulfur atoms in the Fourier map show a mean difference of only 1% compared with the full calculation. This research refines and accelerates the process of analytical absorption corrections, introducing innovative sampling and computational techniques that significantly enhance efficiency while maintaining accurate results.




rat

Position-independent product increase rate in a shaker mill revealed by position-resolved in situ synchrotron powder X-ray diffraction

We investigated the position and time dependence of a mechanochemical reaction induced by ball milling using in situ synchrotron powder X-ray diffraction with changing X-ray irradiation position. The mechanochemical reduction of AgCl with Cu was monitored in situ with the X-rays incident at two different vertical positions on the jar. Our previously developed multi-distance Rietveld method was applied to analyze the in situ diffraction data with a 1 min resolution. Both the vertical and the horizontal sample positions were determined using the sample-to-detector distances from the in situ data. Position dependence was found in the powder spreading and induction time. We reveal that the increase rate of the product is independent of the sample position when measured with a 1 min time resolution, confirming the validity of in situ monitoring of part of the space in a milling jar for a gradual mechanochemical reaction.




rat

The effects of low boron incorporation on the structural and optical properties of BxGa1−xN/SiC epitaxial layers

BGaN epilayers with boron contents up to 5.6% were grown on SiC substrates by metal–organic chemical vapor deposition. The effects of boron incorporation on the structural and optical properties were studied by high-resolution X-ray diffraction (XRD), atomic force microscopy (AFM), Raman spectroscopy and photoluminescence (PL) spectroscopy. XRD reciprocal-space maps around the symmetric 0002 and asymmetric 11 {overline 2} 4 reflections allowed evaluation of the lattice constants and lattice mismatch with respect to the underlying substrate. XRD rocking curves and AFM measurements indicated the mosaic microstructure of the epilayer. The impact of boron content on crystallite size, tilt and twist is evaluated and the correlation with threading dislocation density is discussed. The deterioration of optical properties with increasing boron content was assessed by Raman and PL spectroscopy.




rat

Integrating machine learning interatomic potentials with hybrid reverse Monte Carlo structure refinements in RMCProfile

Structure refinement with reverse Monte Carlo (RMC) is a powerful tool for interpreting experimental diffraction data. To ensure that the under-constrained RMC algorithm yields reasonable results, the hybrid RMC approach applies interatomic potentials to obtain solutions that are both physically sensible and in agreement with experiment. To expand the range of materials that can be studied with hybrid RMC, we have implemented a new interatomic potential constraint in RMCProfile that grants flexibility to apply potentials supported by the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) molecular dynamics code. This includes machine learning interatomic potentials, which provide a pathway to applying hybrid RMC to materials without currently available interatomic potentials. To this end, we present a methodology to use RMC to train machine learning interatomic potentials for hybrid RMC applications.




rat

Laboratory X-ray powder micro-diffraction in the research of painted artworks

Painted artworks represent a significant group of cultural heritage artifacts, which are primarily admired because of their aesthetic quality. Nevertheless, the value of each particular painting depends also on what is known about it. Material investigation of paintings is one of the most reliable sources of information. Materials in painted artworks (i.e. panel, easel and miniature paintings, wall paintings, polychromed sculptures etc.) represent an extensive set of inorganic and organic phases, which are often present in complicated mixtures and exhibit characteristics reflecting their geological genesis (mineral pigments), manufacturing technology (artificial pigments), diverse biological nature (binders or dyes) or secondary changes (degradation or intentional later interventions). The analyses of paintings are often made challenging by the heterogeneous nature and minute size of micro-samples or, in some cases, even by the impossibility of sampling due to the preciousness, fragility or small dimensions of the artwork. This review demonstrates the successful implementation of laboratory X-ray powder micro-diffraction for material investigation of paintings, illustrating its efficiency for mineralogical analysis of (i) earth-based materials indicating the provenance of paintings, (ii) copper-based pigments pointing to their origin, and (iii) products of both salt corrosion and saponification enabling one to reveal the deterioration and probable original appearance of artworks.




rat

Influence of device configuration and noise on a machine learning predictor for the selection of nanoparticle small-angle X-ray scattering models

Small-angle X-ray scattering (SAXS) is a widely used method for nanoparticle characterization. A common approach to analysing nanoparticles in solution by SAXS involves fitting the curve using a parametric model that relates real-space parameters, such as nanoparticle size and electron density, to intensity values in reciprocal space. Selecting the optimal model is a crucial step in terms of analysis quality and can be time-consuming and complex. Several studies have proposed effective methods, based on machine learning, to automate the model selection step. Deploying these methods in software intended for both researchers and industry raises several issues. The diversity of SAXS instrumentation requires assessment of the robustness of these methods on data from various machine configurations, involving significant variations in the q-space ranges and highly variable signal-to-noise ratios (SNR) from one data set to another. In the case of laboratory instrumentation, data acquisition can be time-consuming and there is no universal criterion for defining an optimal acquisition time. This paper presents an approach that revisits the nanoparticle model selection method proposed by Monge et al. [Acta Cryst. (2024), A80, 202–212], evaluating and enhancing its robustness on data from device configurations not seen during training, by expanding the data set used for training. The influence of SNR on predictor robustness is then assessed, improved, and used to propose a stopping criterion for optimizing the trade-off between exposure time and data quality.




rat

Symmetries and symmetry-generated averages of elastic constants up to the sixth order of nonlinearity for all crystal classes, isotropy and transverse isotropy

Algebraic expressions for averaging linear and nonlinear stiffness tensors from general anisotropy to different effective symmetries (11 Laue classes elastically representing all 32 crystal classes, and two non-crystalline symmetries: isotropic and cylindrical) have been derived by automatic symbolic computations of the arithmetic mean over the set of rotational transforms determining a given symmetry. This approach generalizes the Voigt average to nonlinear constants and desired approximate symmetries other than isotropic, which can be useful for a description of textured polycrystals and rocks preserving some symmetry aspects. Low-symmetry averages have been used to derive averages of higher symmetry to speed up computations. Relationships between the elastic constants of each symmetry have been deduced from their corresponding averages by resolving the rank-deficient system of linear equations. Isotropy has also been considered in terms of generalized Lamé constants. The results are published in the form of appendices in the supporting information for this article and have been deposited in the Mendeley database.




rat

In situ/operando plug-flow fixed-bed cell for synchrotron PXRD and XAFS investigations at high temperature, pressure, controlled gas atmosphere and ultra-fast heating

A plug-flow fixed-bed cell for synchrotron powder X-ray diffraction (PXRD) and X-ray absorption fine structure (XAFS) idoneous for the study of heterogeneous catalysts at high temperature, pressure and under gas flow is designed, constructed and demonstrated. The operating conditions up to 1000°C and 50 bar are ensured by a set of mass flow controllers, pressure regulators and two infra-red lamps that constitute a robust and ultra-fast heating and cooling method. The performance of the system and cell for carbon dioxide hydrogenation reactions under specified temperatures, gas flows and pressures is demonstrated both for PXRD and XAFS at the P02.1 (PXRD) and the P64 (XAFS) beamlines of the Deutsches Elektronen-Synchrotron (DESY).




rat

Heitt Mjölnir: a heated miniature triaxial apparatus for 4D synchrotron microtomography

Third- and fourth-generation synchrotron light sources with high fluxes and beam energies enable the use of innovative X-ray translucent experimental apparatus. These experimental devices access geologically relevant conditions whilst enabling in situ characterization using the spatial and temporal resolutions accessible at imaging beamlines. Here, Heitt Mjölnir is introduced, a heated miniature triaxial rig based on the design of Mjölnir, but covering a wider temperature range and larger sample volume at similar pressure capacities. This device is designed to investigate coupled thermal, chemical, hydraulic and mechanical processes from grain to centimetre scales using cylindrical samples of 10 mm × 20 mm (diameter × length). Heitt Mjölnir can simultaneously reach confining (hydraulic) pressures of 30 MPa and 500 MPa of axial stress with independently controlled sample pore fluid pressure < 30 MPa. This internally heated apparatus operates to temperatures up to 573 K with a minimal vertical thermal gradient in the sample of <0.3 K mm−1. This new apparatus has been deployed in operando studies at the TOMCAT (Swiss Light Source), I12 JEEP (Diamond Light Source) and PSICHÉ (Synchrotron SOLEIL) beamlines for 4D X-ray microtomography with scan intervals of a few minutes. Heitt Mjölnir is portable and modular, allowing a wide range of 4D characterizations of low-grade metamorphism and deformational processes. It enables spatially and temporally resolved fluid–rock interaction studies at conditions of crustal reservoirs and is suitable for characterization of material properties in geothermal, carbonation or subsurface gas storage applications. Technical drawings and an operation guide are included in this publication.