base Remote Working: The home office desks of Basecamp By feedproxy.google.com Published On :: Fri, 20 Mar 2020 20:35:47 +0000 People are always curious about work-from-home (WFH), remote working setups. So, I posted a Basecamp message asking our employees to share a photo of their home office, desk, table, whatever. Here’s what came in. First, the ask: And the answers, in the order they came in: Andy Didorosi, Marketing Justin White, Programmer Jonas Downey, Designer… keep reading Full Article Uncategorized
base A live tour of how Basecamp uses Basecamp to run Basecamp By feedproxy.google.com Published On :: Wed, 25 Mar 2020 14:40:33 +0000 David and I spent nearly 2-hours giving a livestream tour of our very own Basecamp account. We wanted to show you how Basecamp uses Basecamp to run projects, communicate internally, share announcements, know what everyone’s working on, build software, keep up socially, and a whole bunch more. Our entire company runs on Basecamp, and this… keep reading Full Article Uncategorized
base Employee-surveillance software is not welcome to integrate with Basecamp By feedproxy.google.com Published On :: Thu, 07 May 2020 20:17:17 +0000 We’ve been teaching people how to do remote work well for the better part of two decades. We wrote a whole book about the topic in 2013, called REMOTE: Office Not Required. Basecamp has been a remote company since day one, and our software is sold as an all-in-one toolkit for remote work. Yeah, we’re… keep reading Full Article Uncategorized
base Repression of sphingosine kinase (SK)-interacting protein (SKIP) in acute myeloid leukemia diminishes SK activity and its re-expression restores SK function [Molecular Bases of Disease] By feedproxy.google.com Published On :: 2020-04-17T00:06:05-07:00 Previous studies have shown that sphingosine kinase interacting protein (SKIP) inhibits sphingosine kinase (SK) function in fibroblasts. SK phosphorylates sphingosine producing the potent signaling molecule sphingosine-1-phosphate (S1P). SKIP gene (SPHKAP) expression is silenced by hypermethylation of its promoter in acute myeloid leukemia (AML). However, why SKIP activity is silenced in primary AML cells is unclear. Here, we investigated the consequences of SKIP down-regulation in AML primary cells and the effects of SKIP re-expression in leukemic cell lines. Using targeted ultra-HPLC-tandem MS (UPLC-MS/MS), we measured sphingolipids (including S1P and ceramides) in AML and control cells. Primary AML cells had significantly lower SK activity and intracellular S1P concentrations than control cells, and SKIP-transfected leukemia cell lines exhibited increased SK activity. These findings show that SKIP re-expression enhances SK activity in leukemia cells. Furthermore, other bioactive sphingolipids such as ceramide were also down-regulated in primary AML cells. Of note, SKIP re-expression in leukemia cells increased ceramide levels 2-fold, inactivated the key signaling protein extracellular signal-regulated kinase, and increased apoptosis following serum deprivation or chemotherapy. These results indicate that SKIP down-regulation in AML reduces SK activity and ceramide levels, an effect that ultimately inhibits apoptosis in leukemia cells. The findings of our study contrast with previous results indicating that SKIP inhibits SK function in fibroblasts and therefore challenge the notion that SKIP always inhibits SK activity. Full Article
base The FKH domain in FOXP3 mRNA frequently contains mutations in hepatocellular carcinoma that influence the subcellular localization and functions of FOXP3 [Molecular Bases of Disease] By feedproxy.google.com Published On :: 2020-04-17T00:06:05-07:00 The transcription factor forkhead box P3 (FOXP3) is a biomarker for regulatory T cells and can also be expressed in cancer cells, but its function in cancer appears to be divergent. The role of hepatocyte-expressed FOXP3 in hepatocellular carcinoma (HCC) is unknown. Here, we collected tumor samples and clinical information from 115 HCC patients and used five human cancer cell lines. We examined FOXP3 mRNA sequences for mutations, used a luciferase assay to assess promoter activities of FOXP3's target genes, and employed mouse tumor models to confirm in vitro results. We detected mutations in the FKH domain of FOXP3 mRNAs in 33% of the HCC tumor tissues, but in none of the adjacent nontumor tissues. None of the mutations occurred at high frequency, indicating that they occurred randomly. Notably, the mutations were not detected in the corresponding regions of FOXP3 genomic DNA, and many of them resulted in amino acid substitutions in the FKH region, altering FOXP3's subcellular localization. FOXP3 delocalization from the nucleus to the cytoplasm caused loss of transcriptional regulation of its target genes, inactivated its tumor-inhibitory capability, and changed cellular responses to histone deacetylase (HDAC) inhibitors. More complex FKH mutations appeared to be associated with worse prognosis in HCC patients. We conclude that mutations in the FKH domain of FOXP3 mRNA frequently occur in HCC and that these mutations are caused by errors in transcription and are not derived from genomic DNA mutations. Our results suggest that transcriptional mutagenesis of FOXP3 plays a role in HCC. Full Article
base Inhibition of the erythropoietin-producing receptor EPHB4 antagonizes androgen receptor overexpression and reduces enzalutamide resistance [Molecular Bases of Disease] By feedproxy.google.com Published On :: 2020-04-17T00:06:05-07:00 Prostate cancer (PCa) cells heavily rely on an active androgen receptor (AR) pathway for their survival. Enzalutamide (MDV3100) is a second-generation antiandrogenic drug that was approved by the Food and Drug Administration in 2012 to treat patients with castration-resistant prostate cancer (CRPC). However, emergence of resistance against this drug is inevitable, and it has been a major challenge to develop interventions that help manage enzalutamide-resistant CRPC. Erythropoietin-producing human hepatocellular (Eph) receptors are targeted by ephrin protein ligands and have a broad range of functions. Increasing evidence indicates that this signaling pathway plays an important role in tumorigenesis. Overexpression of EPH receptor B4 (EPHB4) has been observed in multiple types of cancer, being closely associated with proliferation, invasion, and metastasis of tumors. Here, using RNA-Seq analyses of clinical and preclinical samples, along with several biochemical and molecular methods, we report that enzalutamide-resistant PCa requires an active EPHB4 pathway that supports drug resistance of this tumor type. Using a small kinase inhibitor and RNAi-based gene silencing to disrupt EPHB4 activity, we found that these disruptions re-sensitize enzalutamide-resistant PCa to the drug both in vitro and in vivo. Mechanistically, we found that EPHB4 stimulates the AR by inducing proto-oncogene c-Myc (c-Myc) expression. Taken together, these results provide critical insight into the mechanism of enzalutamide resistance in PCa, potentially offering a therapeutic avenue for enhancing the efficacy of enzalutamide to better manage this common malignancy. Full Article
base Heterotrimeric Gq proteins as therapeutic targets? [Molecular Bases of Disease] By feedproxy.google.com Published On :: 2020-04-17T00:06:05-07:00 Heterotrimeric G proteins are the core upstream elements that transduce and amplify the cellular signals from G protein–coupled receptors (GPCRs) to intracellular effectors. GPCRs are the largest family of membrane proteins encoded in the human genome and are the targets of about one-third of prescription medicines. However, to date, no single therapeutic agent exerts its effects via perturbing heterotrimeric G protein function, despite a plethora of evidence linking G protein malfunction to human disease. Several recent studies have brought to light that the Gq family–specific inhibitor FR900359 (FR) is unexpectedly efficacious in silencing the signaling of Gq oncoproteins, mutant Gq variants that mostly exist in the active state. These data not only raise the hope that researchers working in drug discovery may be able to potentially strike Gq oncoproteins from the list of undruggable targets, but also raise questions as to how FR achieves its therapeutic effect. Here, we place emphasis on these recent studies and explain why they expand our pharmacological armamentarium for targeting Gq protein oncogenes as well as broaden our mechanistic understanding of Gq protein oncogene function. We also highlight how this novel insight impacts the significance and utility of using G(q) proteins as targets in drug discovery efforts. Full Article
base N{alpha}-Acetylation of the virulence factor EsxA is required for mycobacterial cytosolic translocation and virulence [Molecular Bases of Disease] By feedproxy.google.com Published On :: 2020-04-24T06:08:45-07:00 The Mycobacterium tuberculosis virulence factor EsxA and its chaperone EsxB are secreted as a heterodimer (EsxA:B) and are crucial for mycobacterial escape from phagosomes and cytosolic translocation. Current findings support the idea that for EsxA to interact with host membranes, EsxA must dissociate from EsxB at low pH. However, the molecular mechanism by which the EsxA:B heterodimer separates is not clear. In the present study, using liposome-leakage and cytotoxicity assays, LC-MS/MS–based proteomics, and CCF-4 FRET analysis, we obtained evidence that the Nα-acetylation of the Thr-2 residue on EsxA, a post-translational modification that is present in mycobacteria but absent in Escherichia coli, is required for the EsxA:B separation. Substitutions at Thr-2 that precluded Nα-acetylation inhibited the heterodimer separation and hence prevented EsxA from interacting with the host membrane, resulting in attenuated mycobacterial cytosolic translocation and virulence. Molecular dynamics simulations revealed that at low pH, the Nα-acetylated Thr-2 makes direct and frequent “bind-and-release” contacts with EsxB, which generates a force that pulls EsxB away from EsxA. In summary, our findings provide evidence that the Nα-acetylation at Thr-2 of EsxA facilitates dissociation of the EsxA:B heterodimer required for EsxA membrane permeabilization and mycobacterial cytosolic translocation and virulence. Full Article
base ER stress increases store-operated Ca2+ entry (SOCE) and augments basal insulin secretion in pancreatic beta cells [Molecular Bases of Disease] By feedproxy.google.com Published On :: 2020-04-24T06:08:45-07:00 Type 2 diabetes mellitus (T2DM) is characterized by impaired glucose-stimulated insulin secretion and increased peripheral insulin resistance. Unremitting endoplasmic reticulum (ER) stress can lead to beta-cell apoptosis and has been linked to type 2 diabetes. Although many studies have attempted to link ER stress and T2DM, the specific effects of ER stress on beta-cell function remain incompletely understood. To determine the interrelationship between ER stress and beta-cell function, here we treated insulin-secreting INS-1(832/13) cells or isolated mouse islets with the ER stress–inducer tunicamycin (TM). TM induced ER stress as expected, as evidenced by activation of the unfolded protein response. Beta cells treated with TM also exhibited concomitant alterations in their electrical activity and cytosolic free Ca2+ oscillations. As ER stress is known to reduce ER Ca2+ levels, we tested the hypothesis that the observed increase in Ca2+ oscillations occurred because of reduced ER Ca2+ levels and, in turn, increased store-operated Ca2+ entry. TM-induced cytosolic Ca2+ and membrane electrical oscillations were acutely inhibited by YM58483, which blocks store-operated Ca2+ channels. Significantly, TM-treated cells secreted increased insulin under conditions normally associated with only minimal release, e.g. 5 mm glucose, and YM58483 blocked this secretion. Taken together, these results support a critical role for ER Ca2+ depletion–activated Ca2+ current in mediating Ca2+-induced insulin secretion in response to ER stress. Full Article
base Modification of a PE/PPE substrate pair reroutes an Esx substrate pair from the mycobacterial ESX-1 type VII secretion system to the ESX-5 system [Molecular Bases of Disease] By feedproxy.google.com Published On :: 2020-05-01T00:06:09-07:00 Bacterial type VII secretion systems secrete a wide range of extracellular proteins that play important roles in bacterial viability and in interactions of pathogenic mycobacteria with their hosts. Mycobacterial type VII secretion systems consist of five subtypes, ESX-1–5, and have four substrate classes, namely, Esx, PE, PPE, and Esp proteins. At least some of these substrates are secreted as heterodimers. Each ESX system mediates the secretion of a specific set of Esx, PE, and PPE proteins, raising the question of how these substrates are recognized in a system-specific fashion. For the PE/PPE heterodimers, it has been shown that they interact with their cognate EspG chaperone and that this chaperone determines the designated secretion pathway. However, both structural and pulldown analyses have suggested that EspG cannot interact with the Esx proteins. Therefore, the determining factor for system specificity of the Esx proteins remains unknown. Here, we investigated the secretion specificity of the ESX-1 substrate pair EsxB_1/EsxA_1 in Mycobacterium marinum. Although this substrate pair was hardly secreted when homologously expressed, it was secreted when co-expressed together with the PE35/PPE68_1 pair, indicating that this pair could stimulate secretion of the EsxB_1/EsxA_1 pair. Surprisingly, co-expression of EsxB_1/EsxA_1 with a modified PE35/PPE68_1 version that carried the EspG5 chaperone-binding domain, previously shown to redirect this substrate pair to the ESX-5 system, also resulted in redirection and co-secretion of the Esx pair via ESX-5. Our results suggest a secretion model in which PE35/PPE68_1 determines the system-specific secretion of EsxB_1/EsxA_1. Full Article
base Structure-based discovery of a small-molecule inhibitor of methicillin-resistant Staphylococcus aureus virulence [Molecular Biophysics] By feedproxy.google.com Published On :: 2020-05-01T00:06:09-07:00 The rapid emergence and dissemination of methicillin-resistant Staphylococcus aureus (MRSA) strains poses a major threat to public health. MRSA possesses an arsenal of secreted host-damaging virulence factors that mediate pathogenicity and blunt immune defenses. Panton–Valentine leukocidin (PVL) and α-toxin are exotoxins that create lytic pores in the host cell membrane. They are recognized as being important for the development of invasive MRSA infections and are thus potential targets for antivirulence therapies. Here, we report the high-resolution X-ray crystal structures of both PVL and α-toxin in their soluble, monomeric, and oligomeric membrane-inserted pore states in complex with n-tetradecylphosphocholine (C14PC). The structures revealed two evolutionarily conserved phosphatidylcholine-binding mechanisms and their roles in modulating host cell attachment, oligomer assembly, and membrane perforation. Moreover, we demonstrate that the soluble C14PC compound protects primary human immune cells in vitro against cytolysis by PVL and α-toxin and hence may serve as the basis for the development of an antivirulence agent for managing MRSA infections. Full Article
base {alpha}-Synuclein filaments from transgenic mouse and human synucleinopathy-containing brains are maȷor seed-competent species [Molecular Bases of Disease] By feedproxy.google.com Published On :: 2020-05-08T03:41:14-07:00 Assembled α-synuclein in nerve cells and glial cells is the defining pathological feature of neurodegenerative diseases called synucleinopathies. Seeds of α-synuclein can induce the assembly of monomeric protein. Here, we used sucrose gradient centrifugation and transiently transfected HEK 293T cells to identify the species of α-synuclein from the brains of homozygous, symptomatic mice transgenic for human mutant A53T α-synuclein (line M83) that seed aggregation. The most potent fractions contained Sarkosyl-insoluble assemblies enriched in filaments. We also analyzed six cases of idiopathic Parkinson's disease (PD), one case of familial PD, and six cases of multiple system atrophy (MSA) for their ability to induce α-synuclein aggregation. The MSA samples were more potent than those of idiopathic PD in seeding aggregation. We found that following sucrose gradient centrifugation, the most seed-competent fractions from PD and MSA brains are those that contain Sarkosyl-insoluble α-synuclein. The fractions differed between PD and MSA, consistent with the presence of distinct conformers of assembled α-synuclein in these different samples. We conclude that α-synuclein filaments are the main driving force for amplification and propagation of pathology in synucleinopathies. Full Article
base Non-photopic and photopic visual cycles differentially regulate immediate, early, and late phases of cone photoreceptor-mediated vision [Molecular Bases of Disease] By feedproxy.google.com Published On :: 2020-05-08T03:41:14-07:00 Cone photoreceptors in the retina enable vision over a wide range of light intensities. However, the processes enabling cone vision in bright light (i.e. photopic vision) are not adequately understood. Chromophore regeneration of cone photopigments may require the retinal pigment epithelium (RPE) and/or retinal Müller glia. In the RPE, isomerization of all-trans-retinyl esters to 11-cis-retinol is mediated by the retinoid isomerohydrolase Rpe65. A putative alternative retinoid isomerase, dihydroceramide desaturase-1 (DES1), is expressed in RPE and Müller cells. The retinol-isomerase activities of Rpe65 and Des1 are inhibited by emixustat and fenretinide, respectively. Here, we tested the effects of these visual cycle inhibitors on immediate, early, and late phases of cone photopic vision. In zebrafish larvae raised under cyclic light conditions, fenretinide impaired late cone photopic vision, while the emixustat-treated zebrafish unexpectedly had normal vision. In contrast, emixustat-treated larvae raised under extensive dark-adaptation displayed significantly attenuated immediate photopic vision concomitant with significantly reduced 11-cis-retinaldehyde (11cRAL). Following 30 min of light, early photopic vision was recovered, despite 11cRAL levels remaining significantly reduced. Defects in immediate cone photopic vision were rescued in emixustat- or fenretinide-treated larvae following exogenous 9-cis-retinaldehyde supplementation. Genetic knockout of Des1 (degs1) or retinaldehyde-binding protein 1b (rlbp1b) did not eliminate photopic vision in zebrafish. Our findings define molecular and temporal requirements of the nonphotopic or photopic visual cycles for mediating vision in bright light. Full Article
base A neuroglobin-based high-affinity ligand trap reverses carbon monoxide-induced mitochondrial poisoning [Molecular Biophysics] By feedproxy.google.com Published On :: 2020-05-08T03:41:14-07:00 Carbon monoxide (CO) remains the most common cause of human poisoning. The consequences of CO poisoning include cardiac dysfunction, brain injury, and death. CO causes toxicity by binding to hemoglobin and by inhibiting mitochondrial cytochrome c oxidase (CcO), thereby decreasing oxygen delivery and inhibiting oxidative phosphorylation. We have recently developed a CO antidote based on human neuroglobin (Ngb-H64Q-CCC). This molecule enhances clearance of CO from red blood cells in vitro and in vivo. Herein, we tested whether Ngb-H64Q-CCC can also scavenge CO from CcO and attenuate CO-induced inhibition of mitochondrial respiration. Heart tissue from mice exposed to 3% CO exhibited a 42 ± 19% reduction in tissue respiration rate and a 33 ± 38% reduction in CcO activity compared with unexposed mice. Intravenous infusion of Ngb-H64Q-CCC restored respiration rates to that of control mice correlating with higher electron transport chain CcO activity in Ngb-H64Q-CCC–treated compared with PBS-treated, CO-poisoned mice. Further, using a Clark-type oxygen electrode, we measured isolated rat liver mitochondrial respiration in the presence and absence of saturating solutions of CO (160 μm) and nitric oxide (100 μm). Both CO and NO inhibited respiration, and treatment with Ngb-H64Q-CCC (100 and 50 μm, respectively) significantly reversed this inhibition. These results suggest that Ngb-H64Q-CCC mitigates CO toxicity by scavenging CO from carboxyhemoglobin, improving systemic oxygen delivery and reversing the inhibitory effects of CO on mitochondria. We conclude that Ngb-H64Q-CCC or other CO scavengers demonstrate potential as antidotes that reverse the clinical and molecular effects of CO poisoning. Full Article
base Reactive dicarbonyl compounds cause Calcitonin Gene-Related Peptide release and synergize with inflammatory conditions in mouse skin and peritoneum [Molecular Bases of Disease] By feedproxy.google.com Published On :: 2020-05-08T03:41:14-07:00 The plasmas of diabetic or uremic patients and of those receiving peritoneal dialysis treatment have increased levels of the glucose-derived dicarbonyl metabolites like methylglyoxal (MGO), glyoxal (GO), and 3-deoxyglucosone (3-DG). The elevated dicarbonyl levels can contribute to the development of painful neuropathies. Here, we used stimulated immunoreactive Calcitonin Gene–Related Peptide (iCGRP) release as a measure of nociceptor activation, and we found that each dicarbonyl metabolite induces a concentration-, TRPA1-, and Ca2+-dependent iCGRP release. MGO, GO, and 3-DG were about equally potent in the millimolar range. We hypothesized that another dicarbonyl, 3,4-dideoxyglucosone-3-ene (3,4-DGE), which is present in peritoneal dialysis (PD) solutions after heat sterilization, activates nociceptors. We also showed that at body temperatures 3,4-DGE is formed from 3-DG and that concentrations of 3,4-DGE in the micromolar range effectively induced iCGRP release from isolated murine skin. In a novel preparation of the isolated parietal peritoneum PD fluid or 3,4-DGE alone, at concentrations found in PD solutions, stimulated iCGRP release. We also tested whether inflammatory tissue conditions synergize with dicarbonyls to induce iCGRP release from isolated skin. Application of MGO together with bradykinin or prostaglandin E2 resulted in an overadditive effect on iCGRP release, whereas MGO applied at a pH of 5.2 resulted in reduced release, probably due to an MGO-mediated inhibition of transient receptor potential (TRP) V1 receptors. These results indicate that several reactive dicarbonyls activate nociceptors and potentiate inflammatory mediators. Our findings underline the roles of dicarbonyls and TRPA1 receptors in causing pain during diabetes or renal disease. Full Article
base Brain manganese and the balance between essential roles and neurotoxicity [Molecular Bases of Disease] By feedproxy.google.com Published On :: 2020-05-08T03:41:14-07:00 Manganese (Mn) is an essential micronutrient required for the normal development of many organs, including the brain. Although its roles as a cofactor in several enzymes and in maintaining optimal physiology are well-known, the overall biological functions of Mn are rather poorly understood. Alterations in body Mn status are associated with altered neuronal physiology and cognition in humans, and either overexposure or (more rarely) insufficiency can cause neurological dysfunction. The resultant balancing act can be viewed as a hormetic U-shaped relationship for biological Mn status and optimal brain health, with changes in the brain leading to physiological effects throughout the body and vice versa. This review discusses Mn homeostasis, biomarkers, molecular mechanisms of cellular transport, and neuropathological changes associated with disruptions of Mn homeostasis, especially in its excess, and identifies gaps in our understanding of the molecular and biochemical mechanisms underlying Mn homeostasis and neurotoxicity. Full Article
base Inhibition of the polyamine synthesis enzyme ornithine decarboxylase sensitizes triple-negative breast cancer cells to cytotoxic chemotherapy [Molecular Bases of Disease] By feedproxy.google.com Published On :: 2020-05-08T03:41:14-07:00 Treatment of patients with triple-negative breast cancer (TNBC) is limited by a lack of effective molecular therapies targeting this disease. Recent studies have identified metabolic alterations in cancer cells that can be targeted to improve responses to standard-of-care chemotherapy regimens. Using MDA-MB-468 and SUM-159PT TNBC cells, along with LC-MS/MS and HPLC metabolomics profiling, we found here that exposure of TNBC cells to the cytotoxic chemotherapy drugs cisplatin and doxorubicin alter arginine and polyamine metabolites. This alteration was because of a reduction in the levels and activity of a rate-limiting polyamine biosynthetic enzyme, ornithine decarboxylase (ODC). Using gene silencing and inhibitor treatments, we determined that the reduction in ODC was mediated by its negative regulator antizyme, targeting ODC to the proteasome for degradation. Treatment with the ODC inhibitor difluoromethylornithine (DFMO) sensitized TNBC cells to chemotherapy, but this was not observed in receptor-positive breast cancer cells. Moreover, TNBC cell lines had greater sensitivity to single-agent DFMO, and ODC levels were elevated in TNBC patient samples. The alterations in polyamine metabolism in response to chemotherapy, as well as DFMO-induced preferential sensitization of TNBC cells to chemotherapy, reported here suggest that ODC may be a targetable metabolic vulnerability in TNBC. Full Article
base Basem Mahmoud By feedproxy.google.com Published On :: Sat, 02 May 2020 08:55:23 +0000 Project Manager, Middle East and North Africa Programme Biography Basem Mahmoud is a project manager with the Middle East and North Africa Programme at Chatham House.Basem joined Chatham House in 2019 and has contributed to the projects Future of Statehood in the MENA Region, Transformative Policies towards Syria, and Post-Conflict State Dynamics in Syria.Prior to joining Chatham House, Basem worked in managing wide range of projects and programmes with the Anna Lindh Euro-Mediterranean Foundation, Freedom House, and Friedrich Naumann Foundation.Basem has an MA in conflict, security, and development from the University of Bradford. +44 (0) 20 7314 3658 Email Full Article
base Modification of a PE/PPE substrate pair reroutes an Esx substrate pair from the mycobacterial ESX-1 type VII secretion system to the ESX-5 system [Molecular Bases of Disease] By feedproxy.google.com Published On :: 2020-05-01T00:06:09-07:00 Bacterial type VII secretion systems secrete a wide range of extracellular proteins that play important roles in bacterial viability and in interactions of pathogenic mycobacteria with their hosts. Mycobacterial type VII secretion systems consist of five subtypes, ESX-1–5, and have four substrate classes, namely, Esx, PE, PPE, and Esp proteins. At least some of these substrates are secreted as heterodimers. Each ESX system mediates the secretion of a specific set of Esx, PE, and PPE proteins, raising the question of how these substrates are recognized in a system-specific fashion. For the PE/PPE heterodimers, it has been shown that they interact with their cognate EspG chaperone and that this chaperone determines the designated secretion pathway. However, both structural and pulldown analyses have suggested that EspG cannot interact with the Esx proteins. Therefore, the determining factor for system specificity of the Esx proteins remains unknown. Here, we investigated the secretion specificity of the ESX-1 substrate pair EsxB_1/EsxA_1 in Mycobacterium marinum. Although this substrate pair was hardly secreted when homologously expressed, it was secreted when co-expressed together with the PE35/PPE68_1 pair, indicating that this pair could stimulate secretion of the EsxB_1/EsxA_1 pair. Surprisingly, co-expression of EsxB_1/EsxA_1 with a modified PE35/PPE68_1 version that carried the EspG5 chaperone-binding domain, previously shown to redirect this substrate pair to the ESX-5 system, also resulted in redirection and co-secretion of the Esx pair via ESX-5. Our results suggest a secretion model in which PE35/PPE68_1 determines the system-specific secretion of EsxB_1/EsxA_1. Full Article
base PaxDb, a Database of Protein Abundance Averages Across All Three Domains of Life By feedproxy.google.com Published On :: 2012-08-01 M. WangAug 1, 2012; 11:492-500Technological Innovation and Resources Full Article
base A Human Protein Atlas for Normal and Cancer Tissues Based on Antibody Proteomics By feedproxy.google.com Published On :: 2005-12-01 Mathias UhlénDec 1, 2005; 4:1920-1932Research Full Article
base Analysis of the Human Tissue-specific Expression by Genome-wide Integration of Transcriptomics and Antibody-based Proteomics By feedproxy.google.com Published On :: 2014-02-01 Linn FagerbergFeb 1, 2014; 13:397-406Research Full Article
base Heterotrimeric Gq proteins as therapeutic targets? [Molecular Bases of Disease] By feedproxy.google.com Published On :: 2020-04-17T00:06:05-07:00 Heterotrimeric G proteins are the core upstream elements that transduce and amplify the cellular signals from G protein–coupled receptors (GPCRs) to intracellular effectors. GPCRs are the largest family of membrane proteins encoded in the human genome and are the targets of about one-third of prescription medicines. However, to date, no single therapeutic agent exerts its effects via perturbing heterotrimeric G protein function, despite a plethora of evidence linking G protein malfunction to human disease. Several recent studies have brought to light that the Gq family–specific inhibitor FR900359 (FR) is unexpectedly efficacious in silencing the signaling of Gq oncoproteins, mutant Gq variants that mostly exist in the active state. These data not only raise the hope that researchers working in drug discovery may be able to potentially strike Gq oncoproteins from the list of undruggable targets, but also raise questions as to how FR achieves its therapeutic effect. Here, we place emphasis on these recent studies and explain why they expand our pharmacological armamentarium for targeting Gq protein oncogenes as well as broaden our mechanistic understanding of Gq protein oncogene function. We also highlight how this novel insight impacts the significance and utility of using G(q) proteins as targets in drug discovery efforts. Full Article
base An enzyme-based protocol for cell-free synthesis of nature-identical capsular oligosaccharides from Actinobacillus pleuropneumoniae serotype 1 [Enzymology] By feedproxy.google.com Published On :: 2020-04-24T06:08:45-07:00 Actinobacillus pleuropneumoniae (App) is the etiological agent of acute porcine pneumonia and responsible for severe economic losses worldwide. The capsule polymer of App serotype 1 (App1) consists of [4)-GlcNAc-β(1,6)-Gal-α-1-(PO4-] repeating units that are O-acetylated at O-6 of the GlcNAc. It is a major virulence factor and was used in previous studies in the successful generation of an experimental glycoconjugate vaccine. However, the application of glycoconjugate vaccines in the animal health sector is limited, presumably because of the high costs associated with harvesting the polymer from pathogen culture. Consequently, here we exploited the capsule polymerase Cps1B of App1 as an in vitro synthesis tool and an alternative for capsule polymer provision. Cps1B consists of two catalytic domains, as well as a domain rich in tetratricopeptide repeats (TPRs). We compared the elongation mechanism of Cps1B with that of a ΔTPR truncation (Cps1B-ΔTPR). Interestingly, the product profiles displayed by Cps1B suggested processive elongation of the nascent polymer, whereas Cps1B-ΔTPR appeared to work in a more distributive manner. The dispersity of the synthesized products could be reduced by generating single-action transferases and immobilizing them on individual columns, separating the two catalytic activities. Furthermore, we identified the O-acetyltransferase Cps1D of App1 and used it to modify the polymers produced by Cps1B. Two-dimensional NMR analyses of the products revealed O-acetylation levels identical to those of polymer harvested from App1 culture supernatants. In conclusion, we have established a protocol for the pathogen-free in vitro synthesis of tailored, nature-identical App1 capsule polymers. Full Article
base {alpha}-Synuclein filaments from transgenic mouse and human synucleinopathy-containing brains are maȷor seed-competent species [Molecular Bases of Disease] By feedproxy.google.com Published On :: 2020-05-08T03:41:14-07:00 Assembled α-synuclein in nerve cells and glial cells is the defining pathological feature of neurodegenerative diseases called synucleinopathies. Seeds of α-synuclein can induce the assembly of monomeric protein. Here, we used sucrose gradient centrifugation and transiently transfected HEK 293T cells to identify the species of α-synuclein from the brains of homozygous, symptomatic mice transgenic for human mutant A53T α-synuclein (line M83) that seed aggregation. The most potent fractions contained Sarkosyl-insoluble assemblies enriched in filaments. We also analyzed six cases of idiopathic Parkinson's disease (PD), one case of familial PD, and six cases of multiple system atrophy (MSA) for their ability to induce α-synuclein aggregation. The MSA samples were more potent than those of idiopathic PD in seeding aggregation. We found that following sucrose gradient centrifugation, the most seed-competent fractions from PD and MSA brains are those that contain Sarkosyl-insoluble α-synuclein. The fractions differed between PD and MSA, consistent with the presence of distinct conformers of assembled α-synuclein in these different samples. We conclude that α-synuclein filaments are the main driving force for amplification and propagation of pathology in synucleinopathies. Full Article
base Reactive dicarbonyl compounds cause Calcitonin Gene-Related Peptide release and synergize with inflammatory conditions in mouse skin and peritoneum [Molecular Bases of Disease] By feedproxy.google.com Published On :: 2020-05-08T03:41:14-07:00 The plasmas of diabetic or uremic patients and of those receiving peritoneal dialysis treatment have increased levels of the glucose-derived dicarbonyl metabolites like methylglyoxal (MGO), glyoxal (GO), and 3-deoxyglucosone (3-DG). The elevated dicarbonyl levels can contribute to the development of painful neuropathies. Here, we used stimulated immunoreactive Calcitonin Gene–Related Peptide (iCGRP) release as a measure of nociceptor activation, and we found that each dicarbonyl metabolite induces a concentration-, TRPA1-, and Ca2+-dependent iCGRP release. MGO, GO, and 3-DG were about equally potent in the millimolar range. We hypothesized that another dicarbonyl, 3,4-dideoxyglucosone-3-ene (3,4-DGE), which is present in peritoneal dialysis (PD) solutions after heat sterilization, activates nociceptors. We also showed that at body temperatures 3,4-DGE is formed from 3-DG and that concentrations of 3,4-DGE in the micromolar range effectively induced iCGRP release from isolated murine skin. In a novel preparation of the isolated parietal peritoneum PD fluid or 3,4-DGE alone, at concentrations found in PD solutions, stimulated iCGRP release. We also tested whether inflammatory tissue conditions synergize with dicarbonyls to induce iCGRP release from isolated skin. Application of MGO together with bradykinin or prostaglandin E2 resulted in an overadditive effect on iCGRP release, whereas MGO applied at a pH of 5.2 resulted in reduced release, probably due to an MGO-mediated inhibition of transient receptor potential (TRP) V1 receptors. These results indicate that several reactive dicarbonyls activate nociceptors and potentiate inflammatory mediators. Our findings underline the roles of dicarbonyls and TRPA1 receptors in causing pain during diabetes or renal disease. Full Article
base Brain manganese and the balance between essential roles and neurotoxicity [Molecular Bases of Disease] By feedproxy.google.com Published On :: 2020-05-08T03:41:14-07:00 Manganese (Mn) is an essential micronutrient required for the normal development of many organs, including the brain. Although its roles as a cofactor in several enzymes and in maintaining optimal physiology are well-known, the overall biological functions of Mn are rather poorly understood. Alterations in body Mn status are associated with altered neuronal physiology and cognition in humans, and either overexposure or (more rarely) insufficiency can cause neurological dysfunction. The resultant balancing act can be viewed as a hormetic U-shaped relationship for biological Mn status and optimal brain health, with changes in the brain leading to physiological effects throughout the body and vice versa. This review discusses Mn homeostasis, biomarkers, molecular mechanisms of cellular transport, and neuropathological changes associated with disruptions of Mn homeostasis, especially in its excess, and identifies gaps in our understanding of the molecular and biochemical mechanisms underlying Mn homeostasis and neurotoxicity. Full Article
base Basem Mahmoud By feedproxy.google.com Published On :: Sat, 02 May 2020 08:55:23 +0000 Project Manager, Middle East and North Africa Programme Biography Basem Mahmoud is a project manager with the Middle East and North Africa Programme at Chatham House.Basem joined Chatham House in 2019 and has contributed to the projects Future of Statehood in the MENA Region, Transformative Policies towards Syria, and Post-Conflict State Dynamics in Syria.Prior to joining Chatham House, Basem worked in managing wide range of projects and programmes with the Anna Lindh Euro-Mediterranean Foundation, Freedom House, and Friedrich Naumann Foundation.Basem has an MA in conflict, security, and development from the University of Bradford. +44 (0) 20 7314 3658 Email Full Article
base Phosphotyrosine-based Phosphoproteomics for Target Identification and Drug Response Prediction in AML Cell Lines [Research] By feedproxy.google.com Published On :: 2020-05-01T00:05:26-07:00 Acute myeloid leukemia (AML) is a clonal disorder arising from hematopoietic myeloid progenitors. Aberrantly activated tyrosine kinases (TK) are involved in leukemogenesis and are associated with poor treatment outcome. Kinase inhibitor (KI) treatment has shown promise in improving patient outcome in AML. However, inhibitor selection for patients is suboptimal. In a preclinical effort to address KI selection, we analyzed a panel of 16 AML cell lines using phosphotyrosine (pY) enrichment-based, label-free phosphoproteomics. The Integrative Inferred Kinase Activity (INKA) algorithm was used to identify hyperphosphorylated, active kinases as candidates for KI treatment, and efficacy of selected KIs was tested. Heterogeneous signaling was observed with between 241 and 2764 phosphopeptides detected per cell line. Of 4853 identified phosphopeptides with 4229 phosphosites, 4459 phosphopeptides (4430 pY) were linked to 3605 class I sites (3525 pY). INKA analysis in single cell lines successfully pinpointed driver kinases (PDGFRA, JAK2, KIT and FLT3) corresponding with activating mutations present in these cell lines. Furthermore, potential receptor tyrosine kinase (RTK) drivers, undetected by standard molecular analyses, were identified in four cell lines (FGFR1 in KG-1 and KG-1a, PDGFRA in Kasumi-3, and FLT3 in MM6). These cell lines proved highly sensitive to specific KIs. Six AML cell lines without a clear RTK driver showed evidence of MAPK1/3 activation, indicative of the presence of activating upstream RAS mutations. Importantly, FLT3 phosphorylation was demonstrated in two clinical AML samples with a FLT3 internal tandem duplication (ITD) mutation. Our data show the potential of pY-phosphoproteomics and INKA analysis to provide insight in AML TK signaling and identify hyperactive kinases as potential targets for treatment in AML cell lines. These results warrant future investigation of clinical samples to further our understanding of TK phosphorylation in relation to clinical response in the individual patient. Full Article
base Atomic force microscopy-based characterization of the interaction of PriA helicase with stalled DNA replication forks [DNA and Chromosomes] By feedproxy.google.com Published On :: 2020-05-01T00:06:09-07:00 In bacteria, the restart of stalled DNA replication forks requires the DNA helicase PriA. PriA can recognize and remodel abandoned DNA replication forks, unwind DNA in the 3'-to-5' direction, and facilitate the loading of the helicase DnaB onto the DNA to restart replication. Single-stranded DNA–binding protein (SSB) is typically present at the abandoned forks, but it is unclear how SSB and PriA interact, although it has been shown that the two proteins interact both physically and functionally. Here, we used atomic force microscopy to visualize the interaction of PriA with DNA substrates with or without SSB. These experiments were done in the absence of ATP to delineate the substrate recognition pattern of PriA before its ATP-catalyzed DNA-unwinding reaction. These analyses revealed that in the absence of SSB, PriA binds preferentially to a fork substrate with a gap in the leading strand. Such a preference has not been observed for 5'- and 3'-tailed duplexes, suggesting that it is the fork structure that plays an essential role in PriA's selection of DNA substrates. Furthermore, we found that in the absence of SSB, PriA binds exclusively to the fork regions of the DNA substrates. In contrast, fork-bound SSB loads PriA onto the duplex DNA arms of forks, suggesting a remodeling of PriA by SSB. We also demonstrate that the remodeling of PriA requires a functional C-terminal domain of SSB. In summary, our atomic force microscopy analyses reveal key details in the interactions between PriA and stalled DNA replication forks with or without SSB. Full Article
base Structure-based discovery of a small-molecule inhibitor of methicillin-resistant Staphylococcus aureus virulence [Molecular Biophysics] By feedproxy.google.com Published On :: 2020-05-01T00:06:09-07:00 The rapid emergence and dissemination of methicillin-resistant Staphylococcus aureus (MRSA) strains poses a major threat to public health. MRSA possesses an arsenal of secreted host-damaging virulence factors that mediate pathogenicity and blunt immune defenses. Panton–Valentine leukocidin (PVL) and α-toxin are exotoxins that create lytic pores in the host cell membrane. They are recognized as being important for the development of invasive MRSA infections and are thus potential targets for antivirulence therapies. Here, we report the high-resolution X-ray crystal structures of both PVL and α-toxin in their soluble, monomeric, and oligomeric membrane-inserted pore states in complex with n-tetradecylphosphocholine (C14PC). The structures revealed two evolutionarily conserved phosphatidylcholine-binding mechanisms and their roles in modulating host cell attachment, oligomer assembly, and membrane perforation. Moreover, we demonstrate that the soluble C14PC compound protects primary human immune cells in vitro against cytolysis by PVL and α-toxin and hence may serve as the basis for the development of an antivirulence agent for managing MRSA infections. Full Article
base Tracking isotopically labeled oxidants using boronate-based redox probes [Methods and Resources] By feedproxy.google.com Published On :: 2020-05-08T03:41:14-07:00 Reactive oxygen and nitrogen species have been implicated in many biological processes and diseases, including immune responses, cardiovascular dysfunction, neurodegeneration, and cancer. These chemical species are short-lived in biological settings, and detecting them in these conditions and diseases requires the use of molecular probes that form stable, easily detectable, products. The chemical mechanisms and limitations of many of the currently used probes are not well-understood, hampering their effective applications. Boronates have emerged as a class of probes for the detection of nucleophilic two-electron oxidants. Here, we report the results of an oxygen-18–labeling MS study to identify the origin of oxygen atoms in the oxidation products of phenylboronate targeted to mitochondria. We demonstrate that boronate oxidation by hydrogen peroxide, peroxymonocarbonate, hypochlorite, or peroxynitrite involves the incorporation of oxygen atoms from these oxidants. We therefore conclude that boronates can be used as probes to track isotopically labeled oxidants. This suggests that the detection of specific products formed from these redox probes could enable precise identification of oxidants formed in biological systems. We discuss the implications of these results for understanding the mechanism of conversion of the boronate-based redox probes to oxidant-specific products. Full Article
base A neuroglobin-based high-affinity ligand trap reverses carbon monoxide-induced mitochondrial poisoning [Molecular Biophysics] By feedproxy.google.com Published On :: 2020-05-08T03:41:14-07:00 Carbon monoxide (CO) remains the most common cause of human poisoning. The consequences of CO poisoning include cardiac dysfunction, brain injury, and death. CO causes toxicity by binding to hemoglobin and by inhibiting mitochondrial cytochrome c oxidase (CcO), thereby decreasing oxygen delivery and inhibiting oxidative phosphorylation. We have recently developed a CO antidote based on human neuroglobin (Ngb-H64Q-CCC). This molecule enhances clearance of CO from red blood cells in vitro and in vivo. Herein, we tested whether Ngb-H64Q-CCC can also scavenge CO from CcO and attenuate CO-induced inhibition of mitochondrial respiration. Heart tissue from mice exposed to 3% CO exhibited a 42 ± 19% reduction in tissue respiration rate and a 33 ± 38% reduction in CcO activity compared with unexposed mice. Intravenous infusion of Ngb-H64Q-CCC restored respiration rates to that of control mice correlating with higher electron transport chain CcO activity in Ngb-H64Q-CCC–treated compared with PBS-treated, CO-poisoned mice. Further, using a Clark-type oxygen electrode, we measured isolated rat liver mitochondrial respiration in the presence and absence of saturating solutions of CO (160 μm) and nitric oxide (100 μm). Both CO and NO inhibited respiration, and treatment with Ngb-H64Q-CCC (100 and 50 μm, respectively) significantly reversed this inhibition. These results suggest that Ngb-H64Q-CCC mitigates CO toxicity by scavenging CO from carboxyhemoglobin, improving systemic oxygen delivery and reversing the inhibitory effects of CO on mitochondria. We conclude that Ngb-H64Q-CCC or other CO scavengers demonstrate potential as antidotes that reverse the clinical and molecular effects of CO poisoning. Full Article
base CBD News: New CBD publication on forests and climate change: Technical Series No. 43, "Forest Resilience, Biodiversity, and Climate Change", a synthesis report based on over 400 scientific articles about forest stability, health, and biodiversit By www.cbd.int Published On :: Mon, 26 Oct 2009 00:00:00 GMT Full Article
base CBD News: Executive Secretary offers CBD support through biodiversiy information to the REDD-plus Partnership, based on results of Nairobi Global Expert Workshop on REDD Biodiversity Benefits. By www.cbd.int Published On :: Tue, 26 Oct 2010 00:00:00 GMT Full Article
base CBD Communiqué: Engaging the Canadian Business Community in Support of the Nagoya Biodiversity Compact. Convention on Biological Diversity Secretariat co-hosts Biodiversity Workshop for Quebec-Based Companies. By www.cbd.int Published On :: Tue, 22 Mar 2011 00:00:00 GMT Full Article
base CBD Press Release: New Web-Based Implementation Tool to Support Forest Protection and Sustainable Use Launched by the Convention on Biological Diversity By www.cbd.int Published On :: Fri, 20 May 2011 00:00:00 GMT Full Article
base CBD Press Release: Carpathian Convention signs Tourism Protocol based on CBD Guidelines, Ramsar Convention Involved in Similar Effort By www.cbd.int Published On :: Tue, 28 Jun 2011 00:00:00 GMT Full Article
base CBD Press Release: Opening of the Base Camp of 1000 Days for the Planet, an expedition led by Jean Lemire, Honorary Ambassador to the The Green Wave for biodiversity By www.cbd.int Published On :: Wed, 20 Jun 2012 00:00:00 GMT Full Article
base CBD News: Message de Braulio Ferreira de Souza Dias, Secrétaire exécutif de la CDB, à l'occasion du lancement du Camp de base de 1000 Jours pour la planète, Espace pour la vie, 20 Juin 2012 By www.cbd.int Published On :: Wed, 20 Jun 2012 00:00:00 GMT Full Article
base CBD News: Statement from Mr. Braulio F. de Souza Dias, CBD Executive Secretary, on the occasion of the Sub-Regional Workshop for Anglophone Africa on the Integration of Climate Change and Ecosystem-Based Adaptation in National Biodiversity Planning Proce By www.cbd.int Published On :: Mon, 25 Mar 2013 00:00:00 GMT Full Article
base CBD News: Statement by Mr. Braulio Ferreira de Souza Dias, CBD Executive Secretary, on the occasion of the Technical Workshop on Ecosystem-Based Approaches to Climate Change Adaptation and Disaster Risk Reduction, Sandton, Johannesburg, South Africa, 28 S By www.cbd.int Published On :: Mon, 28 Sep 2015 00:00:00 GMT Full Article
base CBD News: The Technical Expert Workshop on Other Effective Area-Based Conservation Measures for Achieving Aichi Biodiversity Target 11 is being held 6-9 February 2018 in Montreal, Canada. By www.cbd.int Published On :: Tue, 06 Feb 2018 00:00:00 GMT Full Article
base CBD News: Statement of the Executive Secretary of the Convention on Biological Diversity, Dr. Cristiana Pasca Palmer, on the occasion of the Ministerial Roundtable on Forest-based Solutions for Accelerating Achievement of the SDGs, at the thirteenth ses By www.cbd.int Published On :: Mon, 07 May 2018 00:00:00 GMT Full Article
base CBD News: Online platform allows policymakers and other partners to access global data layers, upload and manipulate their own datasets, and query multiple datasets to provide key information on the Aichi Biodiversity Targets and nature-based Sustainable By www.undp.org Published On :: Fri, 06 Jul 2018 00:00:00 GMT Full Article
base CBD News: Young people from around the world are encouraged to submit videos for the 2019 Global Youth Video Competition showcasing positive solutions on three themes: Nature-based Solutions for Food and Human Health; Cities and Local Action to Combat Cli By www.cbd.int Published On :: Fri, 24 May 2019 00:00:00 GMT Full Article
base CBD News: The film highlights the importance of nature in tackling climate change, calling for the need to protect, restore and fund nature and mobilizing attention to scale nature-based solutions. By www.youtube.com Published On :: Fri, 20 Sep 2019 00:00:00 GMT Full Article
base CBD Notification SCBD/OES/EM/DC/KM/88491 (2019-102): Workshop on the Evidence Base for the Post-2020 Global Biodiversity Framework: Fifth Edition of the Global Biodiversity Outlook and IPBES Global Assessment, 23 November 2019 - Montreal, Canada By www.cbd.int Published On :: Tue, 12 Nov 2019 00:00:00 GMT Full Article
base CBD News: The Convention on Biological Diversity's (CBD) subsidiary body on science suggested elements of the science base that will be used at next year's biennial UN Biodiversity Conference in Kunming, China that will include discussions on an By www.cbd.int Published On :: Sun, 01 Dec 2019 00:00:00 GMT Full Article
base CBD News: Statement by Ms. Elizabeth Maruma Mrema, Acting Executive Secretary of the Convention on Biological Diversity, at the opening of the Thematic Workshop on Area-Based Conservation Measures, La Prairie, Canada, 1-3 December 2019 By www.cbd.int Published On :: Sun, 01 Dec 2019 00:00:00 GMT Full Article