ai Review: Alberto Cairo, How Charts Lie By eagereyes.org Published On :: Tue, 12 Nov 2019 05:07:05 +0000 Alberto Cairo’s new book, How Charts Lie, takes readers on a tour of how charts are used and misused, and teaches them how to not be misled. It’s a useful book for both makers and consumers of charts, in the news, business, and pretty much anywhere else. When Alberto started talking about the title on […] Full Article Blog 2019 Book Reviews
ai In Praise of the Diagonal Reference Line By eagereyes.org Published On :: Tue, 24 Mar 2020 05:51:19 +0000 Annotations are what set visual communication and journalism apart from just visualization. They often consist of text, but some of the most useful annotations are graphical elements, and many of them are very simple. One type I have a particular fondness for is the diagonal reference line, which has been used to provide powerful context […] Full Article Blog 2020 COVID-19 Visual Communication
ai Some Quot schemes in tilted hearts and moduli spaces of stable pairs. (arXiv:2005.02202v2 [math.AG] UPDATED) By arxiv.org Published On :: For a smooth projective variety $X$, we study analogs of Quot functors in hearts of non-standard $t$-structures of $D^b(mathrm{Coh}(X))$. The technical framework is that of families of $t$-structures, as studied in arXiv:1902.08184. We provide several examples and suggest possible directions of further investigation, as we reinterpret moduli spaces of stable pairs, in the sense of Thaddeus (arXiv:alg-geom/9210007) and Huybrechts-Lehn (arXiv:alg-geom/9211001), as instances of Quot schemes. Full Article
ai Hessian quotient equations on exterior domains. (arXiv:2004.06908v2 [math.AP] UPDATED) By arxiv.org Published On :: It is well-known that a celebrated J"{o}rgens-Calabi-Pogorelov theorem for Monge-Amp`ere equations states that any classical (viscosity) convex solution of $det(D^2u)=1$ in $mathbb{R}^n$ must be a quadratic polynomial. Therefore, it is an interesting topic to study the existence and uniqueness theorem of such fully nonlinear partial differential equations' Dirichlet problems on exterior domains with suitable asymptotic conditions at infinity. As a continuation of the works of Caffarelli-Li for Monge-Amp`ere equation and of Bao-Li-Li for $k$-Hessian equations, this paper is devoted to the solvability of the exterior Dirichlet problem of Hessian quotient equations $sigma_k(lambda(D^2u))/sigma_l(lambda(D^2u))=1$ for any $1leq l<kleq n$ in all dimensions $ngeq 2$. By introducing the concept of generalized symmetric subsolutions and then using the Perron's method, we establish the existence theorem for viscosity solutions, with prescribed asymptotic behavior which is close to some quadratic polynomial at infinity. Full Article
ai $L^p$-regularity of the Bergman projection on quotient domains. (arXiv:2004.02598v2 [math.CV] UPDATED) By arxiv.org Published On :: We relate the $L^p$-mapping properties of the Bergman projections on two domains in $mathbb{C}^n$, one of which is the quotient of the other under the action of a finite group of biholomorphic automorphisms. We use this relation to deduce the sharp ranges of $L^p$-boundedness of the Bergman projection on certain $n$-dimensional model domains generalizing the Hartogs triangle. Full Article
ai Eigenvalues of the Finsler $p$-Laplacian on varying domains. (arXiv:1912.00152v4 [math.AP] UPDATED) By arxiv.org Published On :: We study the dependence of the first eigenvalue of the Finsler $p$-Laplacian and the corresponding eigenfunctions upon perturbation of the domain and we generalize a few results known for the standard $p$-Laplacian. In particular, we prove a Frech'{e}t differentiability result for the eigenvalues, we compute the corresponding Hadamard formulas and we prove a continuity result for the eigenfunctions. Finally, we briefly discuss a well-known overdetermined problem and we show how to deduce the Rellich-Pohozaev identity for the Finsler $p$-Laplacian from the Hadamard formula. Full Article
ai Unbounded Kobayashi hyperbolic domains in $mathbb C^n$. (arXiv:1911.05632v2 [math.CV] UPDATED) By arxiv.org Published On :: We first give a sufficient condition, issued from pluripotential theory, for an unbounded domain in the complex Euclidean space $mathbb C^n$ to be Kobayashi hyperbolic. Then, we construct an example of a rigid pseudoconvex domain in $mathbb C^3$ that is Kobayashi hyperbolic and has a nonempty core. In particular, this domain is not biholomorphic to a bounded domain in $mathbb C^3$ and the mentioned above sufficient condition for Kobayashi hyperbolicity is not necessary. Full Article
ai Study of fractional Poincar'e inequalities on unbounded domains. (arXiv:1904.07170v2 [math.AP] UPDATED) By arxiv.org Published On :: The central aim of this paper is to study (regional) fractional Poincar'e type inequalities on unbounded domains satisfying the finite ball condition. Both existence and non existence type results are established depending on various conditions on domains and on the range of $s in (0,1)$. The best constant in both regional fractional and fractional Poincar'e inequality is characterized for strip like domains $(omega imes mathbb{R}^{n-1})$, and the results obtained in this direction are analogous to those of the local case. This settles one of the natural questions raised by K. Yeressian in [ extit{Asymptotic behavior of elliptic nonlocal equations set in cylinders, Asymptot. Anal. 89, (2014), no 1-2}]. Full Article
ai Gabriel-Roiter measure, representation dimension and rejective chains. (arXiv:1903.05555v2 [math.RT] UPDATED) By arxiv.org Published On :: The Gabriel-Roiter measure is used to give an alternative proof of the finiteness of the representation dimension for Artin algebras, a result established by Iyama in 2002. The concept of Gabriel-Roiter measure can be extended to abelian length categories and every such category has multiple Gabriel-Roiter measures. Using this notion, we prove the following broader statement: given any object $X$ and any Gabriel-Roiter measure $mu$ in an abelian length category $mathcal{A}$, there exists an object $X'$ which depends on $X$ and $mu$, such that $Gamma = operatorname{End}_{mathcal{A}}(X oplus X')$ has finite global dimension. Analogously to Iyama's original results, our construction yields quasihereditary rings and fits into the theory of rejective chains. Full Article
ai Twisted quadrics and algebraic submanifolds in R^n. (arXiv:2005.03509v1 [math-ph]) By arxiv.org Published On :: We propose a general procedure to construct noncommutative deformations of an algebraic submanifold $M$ of $mathbb{R}^n$, specializing the procedure [G. Fiore, T. Weber, Twisted submanifolds of $mathbb{R}^n$, arXiv:2003.03854] valid for smooth submanifolds. We use the framework of twisted differential geometry of [Aschieri et al.,Class. Quantum Gravity 23 (2006), 1883], whereby the commutative pointwise product is replaced by the $star$-product determined by a Drinfel'd twist. We actually simultaneously construct noncommutative deformations of all the algebraic submanifolds $M_c$ that are level sets of the $f^a(x)$, where $f^a(x)=0$ are the polynomial equations solved by the points of $M$, employing twists based on the Lie algebra $Xi_t$ of vector fields that are tangent to all the $M_c$. The twisted Cartan calculus is automatically equivariant under twisted $Xi_t$. If we endow $mathbb{R}^n$ with a metric, then twisting and projecting to normal or tangent components commute, projecting the Levi-Civita connection to the twisted $M$ is consistent, and in particular a twisted Gauss theorem holds, provided the twist is based on Killing vector fields. Twisted algebraic quadrics can be characterized in terms of generators and $star$-polynomial relations. We explicitly work out deformations based on abelian or Jordanian twists of all quadrics in $mathbb{R}^3$ except ellipsoids, in particular twisted cylinders embedded in twisted Euclidean $mathbb{R}^3$ and twisted hyperboloids embedded in twisted Minkowski $mathbb{R}^3$ [the latter are twisted (anti-)de Sitter spaces $dS_2,AdS_2$]. Full Article
ai On the connection problem for the second Painlev'e equation with large initial data. (arXiv:2005.03440v1 [math.CA]) By arxiv.org Published On :: We consider two special cases of the connection problem for the second Painlev'e equation (PII) using the method of uniform asymptotics proposed by Bassom et al.. We give a classification of the real solutions of PII on the negative (positive) real axis with respect to their initial data. By product, a rigorous proof of a property associate with the nonlinear eigenvalue problem of PII on the real axis, recently revealed by Bender and Komijani, is given by deriving the asymptotic behavior of the Stokes multipliers. Full Article
ai Removable singularities for Lipschitz caloric functions in time varying domains. (arXiv:2005.03397v1 [math.CA]) By arxiv.org Published On :: In this paper we study removable singularities for regular $(1,1/2)$-Lipschitz solutions of the heat equation in time varying domains. We introduce an associated Lipschitz caloric capacity and we study its metric and geometric properties and the connection with the $L^2$ boundedness of the singular integral whose kernel is given by the gradient of the fundamental solution of the heat equation. Full Article
ai Minimum pair degree condition for tight Hamiltonian cycles in $4$-uniform hypergraphs. (arXiv:2005.03391v1 [math.CO]) By arxiv.org Published On :: We show that every 4-uniform hypergraph with $n$ vertices and minimum pair degree at least $(5/9+o(1))n^2/2$ contains a tight Hamiltonian cycle. This degree condition is asymptotically optimal. Full Article
ai Augmented Valuation and Minimal Pair. (arXiv:2005.03298v1 [math.AC]) By arxiv.org Published On :: Let $(K, u)$ be a valued field, the notions of emph{augmented valuation}, of emph{limit augmented valuation} and of emph{admissible family} of valuations enable to give a description of any valuation $mu$ of $K [x]$ extending $ u$. In the case where the field $K$ is algebraically closed, this description is particularly simple and we can reduce it to the notions of emph{minimal pair} and emph{pseudo-convergent family}. Let $(K, u )$ be a henselian valued field and $ar u$ the unique extension of $ u$ to the algebraic closure $ar K$ of $K$ and let $mu$ be a valuation of $ K [x]$ extending $ u$, we study the extensions $armu$ from $mu$ to $ar K [x]$ and we give a description of the valuations $armu_i$ of $ar K [x]$ which are the extensions of the valuations $mu_i$ belonging to the admissible family associated with $mu$. Full Article
ai An Issue Raised in 1978 by a Then-Future Editor-in-Chief of the Journal "Order": Does the Endomorphism Poset of a Finite Connected Poset Tell Us That the Poset Is Connected?. (arXiv:2005.03255v1 [math.CO]) By arxiv.org Published On :: In 1978, Dwight Duffus---editor-in-chief of the journal "Order" from 2010 to 2018 and chair of the Mathematics Department at Emory University from 1991 to 2005---wrote that "it is not obvious that $P$ is connected and $P^P$ isomorphic to $Q^Q$ implies that $Q$ is connected," where $P$ and $Q$ are finite non-empty posets. We show that, indeed, under these hypotheses $Q$ is connected and $Pcong Q$. Full Article
ai A Chance Constraint Predictive Control and Estimation Framework for Spacecraft Descent with Field Of View Constraints. (arXiv:2005.03245v1 [math.OC]) By arxiv.org Published On :: Recent studies of optimization methods and GNC of spacecraft near small bodies focusing on descent, landing, rendezvous, etc., with key safety constraints such as line-of-sight conic zones and soft landings have shown promising results; this paper considers descent missions to an asteroid surface with a constraint that consists of an onboard camera and asteroid surface markers while using a stochastic convex MPC law. An undermodeled asteroid gravity and spacecraft technology inspired measurement model is established to develop the constraint. Then a computationally light stochastic Linear Quadratic MPC strategy is presented to keep the spacecraft in satisfactory field of view of the surface markers while trajectory tracking, employing chance based constraints and up-to-date estimation uncertainty from navigation. The estimation uncertainty giving rise to the tightened constraints is particularly addressed. Results suggest robust tracking performance across a variety of trajectories. Full Article
ai Irreducible representations of Braid Group $B_n$ of dimension $n+1$. (arXiv:2005.03105v1 [math.GR]) By arxiv.org Published On :: We prove that there are no irreducible representations of $B_n$ of dimension $n+1$ for $ngeq 10.$ Full Article
ai On the Boundary Harnack Principle in Holder domains. (arXiv:2005.03079v1 [math.AP]) By arxiv.org Published On :: We investigate the Boundary Harnack Principle in H"older domains of exponent $alpha>0$ by the analytical method developed in our previous work "A short proof of Boundary Harnack Principle". Full Article
ai A Note on Approximations of Fixed Points for Nonexpansive Mappings in Norm-attainable Classes. (arXiv:2005.03069v1 [math.FA]) By arxiv.org Published On :: Let $H$ be an infinite dimensional, reflexive, separable Hilbert space and $NA(H)$ the class of all norm-attainble operators on $H.$ In this note, we study an implicit scheme for a canonical representation of nonexpansive contractions in norm-attainable classes. Full Article
ai Multi-task pre-training of deep neural networks for digital pathology. (arXiv:2005.02561v2 [eess.IV] UPDATED) By arxiv.org Published On :: In this work, we investigate multi-task learning as a way of pre-training models for classification tasks in digital pathology. It is motivated by the fact that many small and medium-size datasets have been released by the community over the years whereas there is no large scale dataset similar to ImageNet in the domain. We first assemble and transform many digital pathology datasets into a pool of 22 classification tasks and almost 900k images. Then, we propose a simple architecture and training scheme for creating a transferable model and a robust evaluation and selection protocol in order to evaluate our method. Depending on the target task, we show that our models used as feature extractors either improve significantly over ImageNet pre-trained models or provide comparable performance. Fine-tuning improves performance over feature extraction and is able to recover the lack of specificity of ImageNet features, as both pre-training sources yield comparable performance. Full Article
ai Jealousy-freeness and other common properties in Fair Division of Mixed Manna. (arXiv:2004.11469v2 [cs.GT] UPDATED) By arxiv.org Published On :: We consider a fair division setting where indivisible items are allocated to agents. Each agent in the setting has strictly negative, zero or strictly positive utility for each item. We, thus, make a distinction between items that are good for some agents and bad for other agents (i.e. mixed), good for everyone (i.e. goods) or bad for everyone (i.e. bads). For this model, we study axiomatic concepts of allocations such as jealousy-freeness up to one item, envy-freeness up to one item and Pareto-optimality. We obtain many new possibility and impossibility results in regard to combinations of these properties. We also investigate new computational tasks related to such combinations. Thus, we advance the state-of-the-art in fair division of mixed manna. Full Article
ai Cross-Lingual Semantic Role Labeling with High-Quality Translated Training Corpus. (arXiv:2004.06295v2 [cs.CL] UPDATED) By arxiv.org Published On :: Many efforts of research are devoted to semantic role labeling (SRL) which is crucial for natural language understanding. Supervised approaches have achieved impressing performances when large-scale corpora are available for resource-rich languages such as English. While for the low-resource languages with no annotated SRL dataset, it is still challenging to obtain competitive performances. Cross-lingual SRL is one promising way to address the problem, which has achieved great advances with the help of model transferring and annotation projection. In this paper, we propose a novel alternative based on corpus translation, constructing high-quality training datasets for the target languages from the source gold-standard SRL annotations. Experimental results on Universal Proposition Bank show that the translation-based method is highly effective, and the automatic pseudo datasets can improve the target-language SRL performances significantly. Full Article
ai Transfer Learning for EEG-Based Brain-Computer Interfaces: A Review of Progress Made Since 2016. (arXiv:2004.06286v3 [cs.HC] UPDATED) By arxiv.org Published On :: A brain-computer interface (BCI) enables a user to communicate with a computer directly using brain signals. Electroencephalograms (EEGs) used in BCIs are weak, easily contaminated by interference and noise, non-stationary for the same subject, and varying across different subjects and sessions. Therefore, it is difficult to build a generic pattern recognition model in an EEG-based BCI system that is optimal for different subjects, during different sessions, for different devices and tasks. Usually, a calibration session is needed to collect some training data for a new subject, which is time consuming and user unfriendly. Transfer learning (TL), which utilizes data or knowledge from similar or relevant subjects/sessions/devices/tasks to facilitate learning for a new subject/session/device/task, is frequently used to reduce the amount of calibration effort. This paper reviews journal publications on TL approaches in EEG-based BCIs in the last few years, i.e., since 2016. Six paradigms and applications -- motor imagery, event-related potentials, steady-state visual evoked potentials, affective BCIs, regression problems, and adversarial attacks -- are considered. For each paradigm/application, we group the TL approaches into cross-subject/session, cross-device, and cross-task settings and review them separately. Observations and conclusions are made at the end of the paper, which may point to future research directions. Full Article
ai Personal Health Knowledge Graphs for Patients. (arXiv:2004.00071v2 [cs.AI] UPDATED) By arxiv.org Published On :: Existing patient data analytics platforms fail to incorporate information that has context, is personal, and topical to patients. For a recommendation system to give a suitable response to a query or to derive meaningful insights from patient data, it should consider personal information about the patient's health history, including but not limited to their preferences, locations, and life choices that are currently applicable to them. In this review paper, we critique existing literature in this space and also discuss the various research challenges that come with designing, building, and operationalizing a personal health knowledge graph (PHKG) for patients. Full Article
ai Human Motion Transfer with 3D Constraints and Detail Enhancement. (arXiv:2003.13510v2 [cs.GR] UPDATED) By arxiv.org Published On :: We propose a new method for realistic human motion transfer using a generative adversarial network (GAN), which generates a motion video of a target character imitating actions of a source character, while maintaining high authenticity of the generated results. We tackle the problem by decoupling and recombining the posture information and appearance information of both the source and target characters. The innovation of our approach lies in the use of the projection of a reconstructed 3D human model as the condition of GAN to better maintain the structural integrity of transfer results in different poses. We further introduce a detail enhancement net to enhance the details of transfer results by exploiting the details in real source frames. Extensive experiments show that our approach yields better results both qualitatively and quantitatively than the state-of-the-art methods. Full Article
ai Eccentricity terrain of $delta$-hyperbolic graphs. (arXiv:2002.08495v2 [cs.DM] UPDATED) By arxiv.org Published On :: A graph $G=(V,E)$ is $delta$-hyperbolic if for any four vertices $u,v,w,x$, the two larger of the three distance sums $d(u,v)+d(w,x)$, $d(u,w)+d(v,x)$, and $d(u,x)+d(v,w)$ differ by at most $2delta geq 0$. Recent work shows that many real-world graphs have small hyperbolicity $delta$. This paper describes the eccentricity terrain of a $delta$-hyperbolic graph. The eccentricity function $e_G(v)=max{d(v,u) : u in V}$ partitions the vertex set of $G$ into eccentricity layers $C_{k}(G) = {v in V : e(v)=rad(G)+k}$, $k in mathbb{N}$, where $rad(G)=min{e_G(v): vin V}$ is the radius of $G$. The paper studies the eccentricity layers of vertices along shortest paths, identifying such terrain features as hills, plains, valleys, terraces, and plateaus. It introduces the notion of $eta$-pseudoconvexity, which implies Gromov's $epsilon$-quasiconvexity, and illustrates the abundance of pseudoconvex sets in $delta$-hyperbolic graphs. In particular, it shows that all sets $C_{leq k}(G)={vin V : e_G(v) leq rad(G) + k}$, $kin mathbb{N}$, are $(2delta-1)$-pseudoconvex. Additionally, several bounds on the eccentricity of a vertex are obtained which yield a few approaches to efficiently approximating all eccentricities. An $O(delta |E|)$ time eccentricity approximation $hat{e}(v)$, for all $vin V$, is presented that uses distances to two mutually distant vertices and satisfies $e_G(v)-2delta leq hat{e}(v) leq {e_G}(v)$. It also shows existence of two eccentricity approximating spanning trees $T$, one constructible in $O(delta |E|)$ time and the other in $O(|E|)$ time, which satisfy ${e}_G(v) leq e_T(v) leq {e}_G(v)+4delta+1$ and ${e}_G(v) leq e_T(v) leq {e}_G(v)+6delta$, respectively. Thus, the eccentricity terrain of a tree gives a good approximation (up-to an additive error $O(delta))$ of the eccentricity terrain of a $delta$-hyperbolic graph. Full Article
ai Recursed is not Recursive: A Jarring Result. (arXiv:2002.05131v2 [cs.AI] UPDATED) By arxiv.org Published On :: Recursed is a 2D puzzle platform video game featuring treasure chests that, when jumped into, instantiate a room that can later be exited (similar to function calls), optionally generating a jar that returns back to that room (similar to continuations). We prove that Recursed is RE-complete and thus undecidable (not recursive) by a reduction from the Post Correspondence Problem. Our reduction is "practical": the reduction from PCP results in fully playable levels that abide by all constraints governing levels (including the 15x20 room size) designed for the main game. Our reduction is also "efficient": a Turing machine can be simulated by a Recursed level whose size is linear in the encoding size of the Turing machine and whose solution length is polynomial in the running time of the Turing machine. Full Article
ai A Real-Time Approach for Chance-Constrained Motion Planning with Dynamic Obstacles. (arXiv:2001.08012v2 [cs.RO] UPDATED) By arxiv.org Published On :: Uncertain dynamic obstacles, such as pedestrians or vehicles, pose a major challenge for optimal robot navigation with safety guarantees. Previous work on motion planning has followed two main strategies to provide a safe bound on an obstacle's space: a polyhedron, such as a cuboid, or a nonlinear differentiable surface, such as an ellipsoid. The former approach relies on disjunctive programming, which has a relatively high computational cost that grows exponentially with the number of obstacles. The latter approach needs to be linearized locally to find a tractable evaluation of the chance constraints, which dramatically reduces the remaining free space and leads to over-conservative trajectories or even unfeasibility. In this work, we present a hybrid approach that eludes the pitfalls of both strategies while maintaining the original safety guarantees. The key idea consists in obtaining a safe differentiable approximation for the disjunctive chance constraints bounding the obstacles. The resulting nonlinear optimization problem is free of chance constraint linearization and disjunctive programming, and therefore, it can be efficiently solved to meet fast real-time requirements with multiple obstacles. We validate our approach through mathematical proof, simulation and real experiments with an aerial robot using nonlinear model predictive control to avoid pedestrians. Full Article
ai Maximal Closed Set and Half-Space Separations in Finite Closure Systems. (arXiv:2001.04417v2 [cs.AI] UPDATED) By arxiv.org Published On :: Several problems of artificial intelligence, such as predictive learning, formal concept analysis or inductive logic programming, can be viewed as a special case of half-space separation in abstract closure systems over finite ground sets. For the typical scenario that the closure system is given via a closure operator, we show that the half-space separation problem is NP-complete. As a first approach to overcome this negative result, we relax the problem to maximal closed set separation, give a greedy algorithm solving this problem with a linear number of closure operator calls, and show that this bound is sharp. For a second direction, we consider Kakutani closure systems and prove that they are algorithmically characterized by the greedy algorithm. As a first special case of the general problem setting, we consider Kakutani closure systems over graphs, generalize a fundamental characterization result based on the Pasch axiom to graph structured partitioning of finite sets, and give a sufficient condition for this kind of closures systems in terms of graph minors. For a second case, we then focus on closure systems over finite lattices, give an improved adaptation of the greedy algorithm for this special case, and present two applications concerning formal concept and subsumption lattices. We also report some experimental results to demonstrate the practical usefulness of our algorithm. Full Article
ai Unsupervised Domain Adaptation on Reading Comprehension. (arXiv:1911.06137v4 [cs.CL] UPDATED) By arxiv.org Published On :: Reading comprehension (RC) has been studied in a variety of datasets with the boosted performance brought by deep neural networks. However, the generalization capability of these models across different domains remains unclear. To alleviate this issue, we are going to investigate unsupervised domain adaptation on RC, wherein a model is trained on labeled source domain and to be applied to the target domain with only unlabeled samples. We first show that even with the powerful BERT contextual representation, the performance is still unsatisfactory when the model trained on one dataset is directly applied to another target dataset. To solve this, we provide a novel conditional adversarial self-training method (CASe). Specifically, our approach leverages a BERT model fine-tuned on the source dataset along with the confidence filtering to generate reliable pseudo-labeled samples in the target domain for self-training. On the other hand, it further reduces domain distribution discrepancy through conditional adversarial learning across domains. Extensive experiments show our approach achieves comparable accuracy to supervised models on multiple large-scale benchmark datasets. Full Article
ai Box Covers and Domain Orderings for Beyond Worst-Case Join Processing. (arXiv:1909.12102v2 [cs.DB] UPDATED) By arxiv.org Published On :: Recent beyond worst-case optimal join algorithms Minesweeper and its generalization Tetris have brought the theory of indexing and join processing together by developing a geometric framework for joins. These algorithms take as input an index $mathcal{B}$, referred to as a box cover, that stores output gaps that can be inferred from traditional indexes, such as B+ trees or tries, on the input relations. The performances of these algorithms highly depend on the certificate of $mathcal{B}$, which is the smallest subset of gaps in $mathcal{B}$ whose union covers all of the gaps in the output space of a query $Q$. We study how to generate box covers that contain small size certificates to guarantee efficient runtimes for these algorithms. First, given a query $Q$ over a set of relations of size $N$ and a fixed set of domain orderings for the attributes, we give a $ ilde{O}(N)$-time algorithm called GAMB which generates a box cover for $Q$ that is guaranteed to contain the smallest size certificate across any box cover for $Q$. Second, we show that finding a domain ordering to minimize the box cover size and certificate is NP-hard through a reduction from the 2 consecutive block minimization problem on boolean matrices. Our third contribution is a $ ilde{O}(N)$-time approximation algorithm called ADORA to compute domain orderings, under which one can compute a box cover of size $ ilde{O}(K^r)$, where $K$ is the minimum box cover for $Q$ under any domain ordering and $r$ is the maximum arity of any relation. This guarantees certificates of size $ ilde{O}(K^r)$. We combine ADORA and GAMB with Tetris to form a new algorithm we call TetrisReordered, which provides several new beyond worst-case bounds. On infinite families of queries, TetrisReordered's runtimes are unboundedly better than the bounds stated in prior work. Full Article
ai Over-the-Air Computation Systems: Optimization, Analysis and Scaling Laws. (arXiv:1909.00329v2 [cs.IT] UPDATED) By arxiv.org Published On :: For future Internet of Things (IoT)-based Big Data applications (e.g., smart cities/transportation), wireless data collection from ubiquitous massive smart sensors with limited spectrum bandwidth is very challenging. On the other hand, to interpret the meaning behind the collected data, it is also challenging for edge fusion centers running computing tasks over large data sets with limited computation capacity. To tackle these challenges, by exploiting the superposition property of a multiple-access channel and the functional decomposition properties, the recently proposed technique, over-the-air computation (AirComp), enables an effective joint data collection and computation from concurrent sensor transmissions. In this paper, we focus on a single-antenna AirComp system consisting of $K$ sensors and one receiver (i.e., the fusion center). We consider an optimization problem to minimize the computation mean-squared error (MSE) of the $K$ sensors' signals at the receiver by optimizing the transmitting-receiving (Tx-Rx) policy, under the peak power constraint of each sensor. Although the problem is not convex, we derive the computation-optimal policy in closed form. Also, we comprehensively investigate the ergodic performance of AirComp systems in terms of the average computation MSE and the average power consumption under Rayleigh fading channels with different Tx-Rx policies. For the computation-optimal policy, we prove that its average computation MSE has a decay rate of $O(1/sqrt{K})$, and our numerical results illustrate that the policy also has a vanishing average power consumption with the increasing $K$, which jointly show the computation effectiveness and the energy efficiency of the policy with a large number of sensors. Full Article
ai On analog quantum algorithms for the mixing of Markov chains. (arXiv:1904.11895v2 [quant-ph] UPDATED) By arxiv.org Published On :: The problem of sampling from the stationary distribution of a Markov chain finds widespread applications in a variety of fields. The time required for a Markov chain to converge to its stationary distribution is known as the classical mixing time. In this article, we deal with analog quantum algorithms for mixing. First, we provide an analog quantum algorithm that given a Markov chain, allows us to sample from its stationary distribution in a time that scales as the sum of the square root of the classical mixing time and the square root of the classical hitting time. Our algorithm makes use of the framework of interpolated quantum walks and relies on Hamiltonian evolution in conjunction with von Neumann measurements. There also exists a different notion for quantum mixing: the problem of sampling from the limiting distribution of quantum walks, defined in a time-averaged sense. In this scenario, the quantum mixing time is defined as the time required to sample from a distribution that is close to this limiting distribution. Recently we provided an upper bound on the quantum mixing time for Erd"os-Renyi random graphs [Phys. Rev. Lett. 124, 050501 (2020)]. Here, we also extend and expand upon our findings therein. Namely, we provide an intuitive understanding of the state-of-the-art random matrix theory tools used to derive our results. In particular, for our analysis we require information about macroscopic, mesoscopic and microscopic statistics of eigenvalues of random matrices which we highlight here. Furthermore, we provide numerical simulations that corroborate our analytical findings and extend this notion of mixing from simple graphs to any ergodic, reversible, Markov chain. Full Article
ai Constrained Restless Bandits for Dynamic Scheduling in Cyber-Physical Systems. (arXiv:1904.08962v3 [cs.SY] UPDATED) By arxiv.org Published On :: Restless multi-armed bandits are a class of discrete-time stochastic control problems which involve sequential decision making with a finite set of actions (set of arms). This paper studies a class of constrained restless multi-armed bandits (CRMAB). The constraints are in the form of time varying set of actions (set of available arms). This variation can be either stochastic or semi-deterministic. Given a set of arms, a fixed number of them can be chosen to be played in each decision interval. The play of each arm yields a state dependent reward. The current states of arms are partially observable through binary feedback signals from arms that are played. The current availability of arms is fully observable. The objective is to maximize long term cumulative reward. The uncertainty about future availability of arms along with partial state information makes this objective challenging. Applications for CRMAB abound in the domain of cyber-physical systems. This optimization problem is analyzed using Whittle's index policy. To this end, a constrained restless single-armed bandit is studied. It is shown to admit a threshold-type optimal policy, and is also indexable. An algorithm to compute Whittle's index is presented. Further, upper bounds on the value function are derived in order to estimate the degree of sub-optimality of various solutions. The simulation study compares the performance of Whittle's index, modified Whittle's index and myopic policies. Full Article
ai ZebraLancer: Decentralized Crowdsourcing of Human Knowledge atop Open Blockchain. (arXiv:1803.01256v5 [cs.HC] UPDATED) By arxiv.org Published On :: We design and implement the first private and anonymous decentralized crowdsourcing system ZebraLancer, and overcome two fundamental challenges of decentralizing crowdsourcing, i.e., data leakage and identity breach. First, our outsource-then-prove methodology resolves the tension between the blockchain transparency and the data confidentiality to guarantee the basic utilities/fairness requirements of data crowdsourcing, thus ensuring: (i) a requester will not pay more than what data deserve, according to a policy announced when her task is published via the blockchain; (ii) each worker indeed gets a payment based on the policy, if he submits data to the blockchain; (iii) the above properties are realized not only without a central arbiter, but also without leaking the data to the open blockchain. Second, the transparency of blockchain allows one to infer private information about workers and requesters through their participation history. Simply enabling anonymity is seemingly attempting but will allow malicious workers to submit multiple times to reap rewards. ZebraLancer also overcomes this problem by allowing anonymous requests/submissions without sacrificing accountability. The idea behind is a subtle linkability: if a worker submits twice to a task, anyone can link the submissions, or else he stays anonymous and unlinkable across tasks. To realize this delicate linkability, we put forward a novel cryptographic concept, i.e., the common-prefix-linkable anonymous authentication. We remark the new anonymous authentication scheme might be of independent interest. Finally, we implement our protocol for a common image annotation task and deploy it in a test net of Ethereum. The experiment results show the applicability of our protocol atop the existing real-world blockchain. Full Article
ai Defending Hardware-based Malware Detectors against Adversarial Attacks. (arXiv:2005.03644v1 [cs.CR]) By arxiv.org Published On :: In the era of Internet of Things (IoT), Malware has been proliferating exponentially over the past decade. Traditional anti-virus software are ineffective against modern complex Malware. In order to address this challenge, researchers have proposed Hardware-assisted Malware Detection (HMD) using Hardware Performance Counters (HPCs). The HPCs are used to train a set of Machine learning (ML) classifiers, which in turn, are used to distinguish benign programs from Malware. Recently, adversarial attacks have been designed by introducing perturbations in the HPC traces using an adversarial sample predictor to misclassify a program for specific HPCs. These attacks are designed with the basic assumption that the attacker is aware of the HPCs being used to detect Malware. Since modern processors consist of hundreds of HPCs, restricting to only a few of them for Malware detection aids the attacker. In this paper, we propose a Moving target defense (MTD) for this adversarial attack by designing multiple ML classifiers trained on different sets of HPCs. The MTD randomly selects a classifier; thus, confusing the attacker about the HPCs or the number of classifiers applied. We have developed an analytical model which proves that the probability of an attacker to guess the perfect HPC-classifier combination for MTD is extremely low (in the range of $10^{-1864}$ for a system with 20 HPCs). Our experimental results prove that the proposed defense is able to improve the classification accuracy of HPC traces that have been modified through an adversarial sample generator by up to 31.5%, for a near perfect (99.4%) restoration of the original accuracy. Full Article
ai On Exposure Bias, Hallucination and Domain Shift in Neural Machine Translation. (arXiv:2005.03642v1 [cs.CL]) By arxiv.org Published On :: The standard training algorithm in neural machine translation (NMT) suffers from exposure bias, and alternative algorithms have been proposed to mitigate this. However, the practical impact of exposure bias is under debate. In this paper, we link exposure bias to another well-known problem in NMT, namely the tendency to generate hallucinations under domain shift. In experiments on three datasets with multiple test domains, we show that exposure bias is partially to blame for hallucinations, and that training with Minimum Risk Training, which avoids exposure bias, can mitigate this. Our analysis explains why exposure bias is more problematic under domain shift, and also links exposure bias to the beam search problem, i.e. performance deterioration with increasing beam size. Our results provide a new justification for methods that reduce exposure bias: even if they do not increase performance on in-domain test sets, they can increase model robustness to domain shift. Full Article
ai Technical Report of "Deductive Joint Support for Rational Unrestricted Rebuttal". (arXiv:2005.03620v1 [cs.AI]) By arxiv.org Published On :: In ASPIC-style structured argumentation an argument can rebut another argument by attacking its conclusion. Two ways of formalizing rebuttal have been proposed: In restricted rebuttal, the attacked conclusion must have been arrived at with a defeasible rule, whereas in unrestricted rebuttal, it may have been arrived at with a strict rule, as long as at least one of the antecedents of this strict rule was already defeasible. One systematic way of choosing between various possible definitions of a framework for structured argumentation is to study what rationality postulates are satisfied by which definition, for example whether the closure postulate holds, i.e. whether the accepted conclusions are closed under strict rules. While having some benefits, the proposal to use unrestricted rebuttal faces the problem that the closure postulate only holds for the grounded semantics but fails when other argumentation semantics are applied, whereas with restricted rebuttal the closure postulate always holds. In this paper we propose that ASPIC-style argumentation can benefit from keeping track not only of the attack relation between arguments, but also the relation of deductive joint support that holds between a set of arguments and an argument that was constructed from that set using a strict rule. By taking this deductive joint support relation into account while determining the extensions, the closure postulate holds with unrestricted rebuttal under all admissibility-based semantics. We define the semantics of deductive joint support through the flattening method. Full Article
ai Efficient Exact Verification of Binarized Neural Networks. (arXiv:2005.03597v1 [cs.AI]) By arxiv.org Published On :: We present a new system, EEV, for verifying binarized neural networks (BNNs). We formulate BNN verification as a Boolean satisfiability problem (SAT) with reified cardinality constraints of the form $y = (x_1 + cdots + x_n le b)$, where $x_i$ and $y$ are Boolean variables possibly with negation and $b$ is an integer constant. We also identify two properties, specifically balanced weight sparsity and lower cardinality bounds, that reduce the verification complexity of BNNs. EEV contains both a SAT solver enhanced to handle reified cardinality constraints natively and novel training strategies designed to reduce verification complexity by delivering networks with improved sparsity properties and cardinality bounds. We demonstrate the effectiveness of EEV by presenting the first exact verification results for $ell_{infty}$-bounded adversarial robustness of nontrivial convolutional BNNs on the MNIST and CIFAR10 datasets. Our results also show that, depending on the dataset and network architecture, our techniques verify BNNs between a factor of ten to ten thousand times faster than the best previous exact verification techniques for either binarized or real-valued networks. Full Article
ai QuickSync: A Quickly Synchronizing PoS-Based Blockchain Protocol. (arXiv:2005.03564v1 [cs.CR]) By arxiv.org Published On :: To implement a blockchain, we need a blockchain protocol for all the nodes to follow. To design a blockchain protocol, we need a block publisher selection mechanism and a chain selection rule. In Proof-of-Stake (PoS) based blockchain protocols, block publisher selection mechanism selects the node to publish the next block based on the relative stake held by the node. However, PoS protocols may face vulnerability to fully adaptive corruptions. In literature, researchers address this issue at the cost of performance. In this paper, we propose a novel PoS-based blockchain protocol, QuickSync, to achieve security against fully adaptive corruptions without compromising on performance. We propose a metric called block power, a value defined for each block, derived from the output of the verifiable random function based on the digital signature of the block publisher. With this metric, we compute chain power, the sum of block powers of all the blocks comprising the chain, for all the valid chains. These metrics are a function of the block publisher's stake to enable the PoS aspect of the protocol. The chain selection rule selects the chain with the highest chain power as the one to extend. This chain selection rule hence determines the selected block publisher of the previous block. When we use metrics to define the chain selection rule, it may lead to vulnerabilities against Sybil attacks. QuickSync uses a Sybil attack resistant function implemented using histogram matching. We prove that QuickSync satisfies common prefix, chain growth, and chain quality properties and hence it is secure. We also show that it is resilient to different types of adversarial attack strategies. Our analysis demonstrates that QuickSync performs better than Bitcoin by an order of magnitude on both transactions per second and time to finality, and better than Ouroboros v1 by a factor of three on time to finality. Full Article
ai Brain-like approaches to unsupervised learning of hidden representations -- a comparative study. (arXiv:2005.03476v1 [cs.NE]) By arxiv.org Published On :: Unsupervised learning of hidden representations has been one of the most vibrant research directions in machine learning in recent years. In this work we study the brain-like Bayesian Confidence Propagating Neural Network (BCPNN) model, recently extended to extract sparse distributed high-dimensional representations. The saliency and separability of the hidden representations when trained on MNIST dataset is studied using an external classifier, and compared with other unsupervised learning methods that include restricted Boltzmann machines and autoencoders. Full Article
ai Ensuring Fairness under Prior Probability Shifts. (arXiv:2005.03474v1 [cs.LG]) By arxiv.org Published On :: In this paper, we study the problem of fair classification in the presence of prior probability shifts, where the training set distribution differs from the test set. This phenomenon can be observed in the yearly records of several real-world datasets, such as recidivism records and medical expenditure surveys. If unaccounted for, such shifts can cause the predictions of a classifier to become unfair towards specific population subgroups. While the fairness notion called Proportional Equality (PE) accounts for such shifts, a procedure to ensure PE-fairness was unknown. In this work, we propose a method, called CAPE, which provides a comprehensive solution to the aforementioned problem. CAPE makes novel use of prevalence estimation techniques, sampling and an ensemble of classifiers to ensure fair predictions under prior probability shifts. We introduce a metric, called prevalence difference (PD), which CAPE attempts to minimize in order to ensure PE-fairness. We theoretically establish that this metric exhibits several desirable properties. We evaluate the efficacy of CAPE via a thorough empirical evaluation on synthetic datasets. We also compare the performance of CAPE with several popular fair classifiers on real-world datasets like COMPAS (criminal risk assessment) and MEPS (medical expenditure panel survey). The results indicate that CAPE ensures PE-fair predictions, while performing well on other performance metrics. Full Article
ai ExpDNN: Explainable Deep Neural Network. (arXiv:2005.03461v1 [cs.LG]) By arxiv.org Published On :: In recent years, deep neural networks have been applied to obtain high performance of prediction, classification, and pattern recognition. However, the weights in these deep neural networks are difficult to be explained. Although a linear regression method can provide explainable results, the method is not suitable in the case of input interaction. Therefore, an explainable deep neural network (ExpDNN) with explainable layers is proposed to obtain explainable results in the case of input interaction. Three cases were given to evaluate the proposed ExpDNN, and the results showed that the absolute value of weight in an explainable layer can be used to explain the weight of corresponding input for feature extraction. Full Article
ai AIBench: Scenario-distilling AI Benchmarking. (arXiv:2005.03459v1 [cs.PF]) By arxiv.org Published On :: Real-world application scenarios like modern Internet services consist of diversity of AI and non-AI modules with very long and complex execution paths. Using component or micro AI benchmarks alone can lead to error-prone conclusions. This paper proposes a scenario-distilling AI benchmarking methodology. Instead of using real-world applications, we propose the permutations of essential AI and non-AI tasks as a scenario-distilling benchmark. We consider scenario-distilling benchmarks, component and micro benchmarks as three indispensable parts of a benchmark suite. Together with seventeen industry partners, we identify nine important real-world application scenarios. We design and implement a highly extensible, configurable, and flexible benchmark framework. On the basis of the framework, we propose the guideline for building scenario-distilling benchmarks, and present two Internet service AI ones. The preliminary evaluation shows the advantage of scenario-distilling AI benchmarking against using component or micro AI benchmarks alone. The specifications, source code, testbed, and results are publicly available from the web site url{this http URL}. Full Article
ai Fine-Grained Analysis of Cross-Linguistic Syntactic Divergences. (arXiv:2005.03436v1 [cs.CL]) By arxiv.org Published On :: The patterns in which the syntax of different languages converges and diverges are often used to inform work on cross-lingual transfer. Nevertheless, little empirical work has been done on quantifying the prevalence of different syntactic divergences across language pairs. We propose a framework for extracting divergence patterns for any language pair from a parallel corpus, building on Universal Dependencies. We show that our framework provides a detailed picture of cross-language divergences, generalizes previous approaches, and lends itself to full automation. We further present a novel dataset, a manually word-aligned subset of the Parallel UD corpus in five languages, and use it to perform a detailed corpus study. We demonstrate the usefulness of the resulting analysis by showing that it can help account for performance patterns of a cross-lingual parser. Full Article
ai AutoSOS: Towards Multi-UAV Systems Supporting Maritime Search and Rescue with Lightweight AI and Edge Computing. (arXiv:2005.03409v1 [cs.RO]) By arxiv.org Published On :: Rescue vessels are the main actors in maritime safety and rescue operations. At the same time, aerial drones bring a significant advantage into this scenario. This paper presents the research directions of the AutoSOS project, where we work in the development of an autonomous multi-robot search and rescue assistance platform capable of sensor fusion and object detection in embedded devices using novel lightweight AI models. The platform is meant to perform reconnaissance missions for initial assessment of the environment using novel adaptive deep learning algorithms that efficiently use the available sensors and computational resources on drones and rescue vessel. When drones find potential objects, they will send their sensor data to the vessel to verity the findings with increased accuracy. The actual rescue and treatment operation are left as the responsibility of the rescue personnel. The drones will autonomously reconfigure their spatial distribution to enable multi-hop communication, when a direct connection between a drone transmitting information and the vessel is unavailable. Full Article
ai A LiDAR-based real-time capable 3D Perception System for Automated Driving in Urban Domains. (arXiv:2005.03404v1 [cs.RO]) By arxiv.org Published On :: We present a LiDAR-based and real-time capable 3D perception system for automated driving in urban domains. The hierarchical system design is able to model stationary and movable parts of the environment simultaneously and under real-time conditions. Our approach extends the state of the art by innovative in-detail enhancements for perceiving road users and drivable corridors even in case of non-flat ground surfaces and overhanging or protruding elements. We describe a runtime-efficient pointcloud processing pipeline, consisting of adaptive ground surface estimation, 3D clustering and motion classification stages. Based on the pipeline's output, the stationary environment is represented in a multi-feature mapping and fusion approach. Movable elements are represented in an object tracking system capable of using multiple reference points to account for viewpoint changes. We further enhance the tracking system by explicit consideration of occlusion and ambiguity cases. Our system is evaluated using a subset of the TUBS Road User Dataset. We enhance common performance metrics by considering application-driven aspects of real-world traffic scenarios. The perception system shows impressive results and is able to cope with the addressed scenarios while still preserving real-time capability. Full Article
ai Simultaneous topology and fastener layout optimization of assemblies considering joint failure. (arXiv:2005.03398v1 [cs.CE]) By arxiv.org Published On :: This paper provides a method for the simultaneous topology optimization of parts and their corresponding joint locations in an assembly. Therein, the joint locations are not discrete and predefined, but continuously movable. The underlying coupling equations allow for connecting dissimilar meshes and avoid the need for remeshing when joint locations change. The presented method models the force transfer at a joint location not only by using single spring elements but accounts for the size and type of the joints. When considering riveted or bolted joints, the local part geometry at the joint location consists of holes that are surrounded by material. For spot welds, the joint locations are filled with material and may be smaller than for bolts. The presented method incorporates these material and clearance zones into the simultaneously running topology optimization of the parts. Furthermore, failure of joints may be taken into account at the optimization stage, yielding assemblies connected in a fail-safe manner. Full Article
ai WSMN: An optimized multipurpose blind watermarking in Shearlet domain using MLP and NSGA-II. (arXiv:2005.03382v1 [cs.CR]) By arxiv.org Published On :: Digital watermarking is a remarkable issue in the field of information security to avoid the misuse of images in multimedia networks. Although access to unauthorized persons can be prevented through cryptography, it cannot be simultaneously used for copyright protection or content authentication with the preservation of image integrity. Hence, this paper presents an optimized multipurpose blind watermarking in Shearlet domain with the help of smart algorithms including MLP and NSGA-II. In this method, four copies of the robust copyright logo are embedded in the approximate coefficients of Shearlet by using an effective quantization technique. Furthermore, an embedded random sequence as a semi-fragile authentication mark is effectively extracted from details by the neural network. Due to performing an effective optimization algorithm for selecting optimum embedding thresholds, and also distinguishing the texture of blocks, the imperceptibility and robustness have been preserved. The experimental results reveal the superiority of the scheme with regard to the quality of watermarked images and robustness against hybrid attacks over other state-of-the-art schemes. The average PSNR and SSIM of the dual watermarked images are 38 dB and 0.95, respectively; Besides, it can effectively extract the copyright logo and locates forgery regions under severe attacks with satisfactory accuracy. Full Article
ai Playing Minecraft with Behavioural Cloning. (arXiv:2005.03374v1 [cs.AI]) By arxiv.org Published On :: MineRL 2019 competition challenged participants to train sample-efficient agents to play Minecraft, by using a dataset of human gameplay and a limit number of steps the environment. We approached this task with behavioural cloning by predicting what actions human players would take, and reached fifth place in the final ranking. Despite being a simple algorithm, we observed the performance of such an approach can vary significantly, based on when the training is stopped. In this paper, we detail our submission to the competition, run further experiments to study how performance varied over training and study how different engineering decisions affected these results. Full Article