men Top three Mikayla Pivec moments: Pivec's OSU rebounding record highlights her impressive career By sports.yahoo.com Published On :: Thu, 02 Apr 2020 22:26:58 GMT All-Pac-12 talent Mikayla Pivec's career in Corvallis has been memorable to say the least. While it's difficult to choose just three, her top moments include a career-high 19 rebounds against Washington, a buzzer-beating layup against ASU, and breaking Ruth Hamblin's Oregon State rebounding record this year against Stanford. Full Article video Sports
men Oregon's Ionescu wins women's Naismith Player of the Year By sports.yahoo.com Published On :: Fri, 03 Apr 2020 17:27:00 GMT Already named The Associated Press women's player of the year, Ionescu was awarded the Naismith Trophy for the most outstanding women's basketball player on Friday. Ionescu, who won AP All-American honors three times, shattered the NCAA career triple-double mark with 26 and became the first player in college history to have 2,000 points, 1,000 rebounds and 1,000 assists. Ionescu averaged 17.5 points, 9.1 assists and 8.6 rebounds with eight triple-doubles as a senior this season. Full Article article Sports
men Texas women's basketball coach Karen Aston dismissed By sports.yahoo.com Published On :: Fri, 03 Apr 2020 19:35:13 GMT AUSTIN, Texas (AP) -- Texas dismissed women's basketball coach Karen Aston on Friday, ending an eight-year stint that included four straight trips to the NCAA Tournament Sweet 16 from 2015-2018. Full Article article Sports
men Top three Satou Sabally moments: Sharpshooter's 33-point game in Pullman was unforgettable By sports.yahoo.com Published On :: Fri, 03 Apr 2020 19:40:06 GMT Since the day she stepped on campus, Satou Sabally's game has turned heads — and for good reason. She's had many memorable moments in a Duck uniform, including a standout performance against the USA Women in Nov. 2019, a monster game against Cal in Jan. 2020 and a career performance in Pullman in Jan. 2019. Full Article video News
men Top three Ruthy Hebard moments: NCAA record for consecutive FGs etched her place in history By sports.yahoo.com Published On :: Fri, 03 Apr 2020 23:08:48 GMT Over four years in Eugene, Ruthy Hebard has made a name for herself with reliability and dynamic play. She's had many memorable moments in a Duck uniform. But her career day against Washington State (34 points), her moment reaching 2,000 career points and her NCAA record for consecutive made FGs (2018) tops the list. Against the Trojans, she set the record (30) and later extended it to 33. Full Article video Sports
men New women's coach Schaefer answering a 'calling' to Texas By sports.yahoo.com Published On :: Tue, 07 Apr 2020 01:57:53 GMT For Vic Schaefer, the decision to take over the Texas women's basketball program was profoundly personal. “It was a calling,” Schaefer said Monday, noting the old Austin hospital building where he was born is just across the street from where the Longhorns play at the Frank Erwin Center. Texas quickly snatched up Schaefer on Sunday, just two days after athletic director Chris Del Conte announced coach Karen Aston would not be retained after eight seasons. Full Article article Sports
men Mississippi State hires Nikki McCray-Penson as women's coach By sports.yahoo.com Published On :: Sat, 11 Apr 2020 19:32:26 GMT Mississippi State hired former Old Dominion women’s basketball coach Nikki McCray-Penson to replace Vic Schaefer as the Bulldogs’ head coach. Athletic director John Cohen called McCray-Penson “a proven winner who will lead one of the best programs in the nation” on the department’s website. McCray-Penson, a former Tennessee star and Women’s Basketball Hall of Famer, said it’s been a dream to coach in the Southeastern Conference and she’s “grateful and blessed for this incredible honor and opportunity.” Full Article article Sports
men Kentucky women add guards Massengill, Benton as transfers By sports.yahoo.com Published On :: Thu, 16 Apr 2020 00:04:47 GMT LEXINGTON, Ky. (AP) -- Sophomore guards Jazmine Massengill and Robyn Benton transferred to Kentucky from Southeastern Conference rivals Wednesday. Full Article article Sports
men Dr. Michelle Tom shares journey from ASU women's hoops to treating COVID-19 patients By sports.yahoo.com Published On :: Thu, 16 Apr 2020 23:44:26 GMT Pac-12 Networks' Ashley Adamson speaks with former Arizona State women's basketball player Michelle Tom, who is now a doctor treating COVID-19 patients Winslow Indian Health Care Center and Little Colorado Medical Center in Eastern Arizona. Full Article video Sports
men Chicago State women's basketball coach Misty Opat resigns By sports.yahoo.com Published On :: Fri, 17 Apr 2020 17:37:52 GMT CHICAGO (AP) -- Chicago State women’s coach Misty Opat resigned Thursday after two seasons and a 3-55 record. Full Article article Sports
men Baylor women sign transfer point guard for 3rd year in row By sports.yahoo.com Published On :: Mon, 20 Apr 2020 18:27:10 GMT Baylor has signed a transfer point guard for the third year in a row, and this one can play multiple seasons with the Lady Bears. Jaden Owens is transferring from UCLA after signing a national letter of intent with Baylor, which had graduate transfers at point guard each of the past two seasons. The Texas native just completed her freshman season with the Bruins and has three seasons of eligibility remaining. Full Article article Sports
men 'A pioneer, a trailblazer' - Reaction to McGraw's retirement By sports.yahoo.com Published On :: Wed, 22 Apr 2020 21:42:02 GMT Notre Dame coach Muffet McGraw retired after 33 seasons Wednesday. What she did for me in those four years, I came in as a girl and left as a woman.'' - WNBA player Kayla McBride, who played for Notre Dame from 2010-14. Full Article article Sports
men Detroit Mercy hires Gilbert as women's basketball coach By sports.yahoo.com Published On :: Fri, 24 Apr 2020 20:51:14 GMT DETROIT (AP) -- Detroit Mercy hired AnnMarie Gilbert as women’s basketball coach. Full Article article Sports
men NCAA women's hoops committee moves away from RPI to NET By sports.yahoo.com Published On :: Mon, 04 May 2020 20:31:26 GMT The women's basketball committee will start using the NCAA Evaluation Tool instead of RPI to help evaluate teams for the tournament starting with the upcoming season. “It’s an exciting time for the game as we look to the future,” said Nina King, senior deputy athletics director and chief of staff at Duke, who chair the Division I Women’s Basketball Committee next season. “We felt after much analysis that the women’s basketball NET, which will be determined by who you played, where you played, how efficiently you played and the result of the game, is a more accurate tool and should be used by the committee going forward.” Full Article article Sports
men Oregon State women's basketball receives Pac-12 Sportsmanship Award for supporting rival Oregon in tragedy By sports.yahoo.com Published On :: Thu, 07 May 2020 15:58:09 GMT On the day Kobe Bryant suddenly passed away, the Beavers embraced their rivals at midcourt in a moment of strength to support the Ducks, many of whom had personal connections to Bryant and his daughter, Gigi. For this, Oregon State is the 2020 recipient of the Pac-12 Sportsmanship Award. Full Article video Sports
men Pac-12 women's basketball student-athletes reflect on the influence of their moms ahead of Mother's Day By sports.yahoo.com Published On :: Fri, 08 May 2020 21:24:08 GMT Pac-12 student-athletes give shout-outs to their moms ahead of Mother's Day on May 10th, 2020 including UCLA's Michaela Onyenwere, Oregon's Sabrina Ionescu and Satou Sabally, Arizona's Aari McDonald, Cate Reese, and Lacie Hull, Stanford's Kiana Williams, USC's Endyia Rogers, and Aliyah Jeune, and Utah's Brynna Maxwell. Full Article video Sports
men Nonparametric confidence intervals for conditional quantiles with large-dimensional covariates By projecteuclid.org Published On :: Tue, 05 May 2020 22:00 EDT Laurent Gardes. Source: Electronic Journal of Statistics, Volume 14, Number 1, 661--701.Abstract: The first part of the paper is dedicated to the construction of a $gamma$ - nonparametric confidence interval for a conditional quantile with a level depending on the sample size. When this level tends to 0 or 1 as the sample size increases, the conditional quantile is said to be extreme and is located in the tail of the conditional distribution. The proposed confidence interval is constructed by approximating the distribution of the order statistics selected with a nearest neighbor approach by a Beta distribution. We show that its coverage probability converges to the preselected probability $gamma $ and its accuracy is illustrated on a simulation study. When the dimension of the covariate increases, the coverage probability of the confidence interval can be very different from $gamma $. This is a well known consequence of the data sparsity especially in the tail of the distribution. In a second part, a dimension reduction procedure is proposed in order to select more appropriate nearest neighbors in the right tail of the distribution and in turn to obtain a better coverage probability for extreme conditional quantiles. This procedure is based on the Tail Conditional Independence assumption introduced in (Gardes, Extremes , pp. 57–95, 18(3) , 2018). Full Article
men On the Letac-Massam conjecture and existence of high dimensional Bayes estimators for graphical models By projecteuclid.org Published On :: Tue, 05 May 2020 22:00 EDT Emanuel Ben-David, Bala Rajaratnam. Source: Electronic Journal of Statistics, Volume 14, Number 1, 580--604.Abstract: The Wishart distribution defined on the open cone of positive-definite matrices plays a central role in multivariate analysis and multivariate distribution theory. Its domain of parameters is often referred to as the Gindikin set. In recent years, varieties of useful extensions of the Wishart distribution have been proposed in the literature for the purposes of studying Markov random fields and graphical models. In particular, generalizations of the Wishart distribution, referred to as Type I and Type II (graphical) Wishart distributions introduced by Letac and Massam in Annals of Statistics (2007) play important roles in both frequentist and Bayesian inference for Gaussian graphical models. These distributions have been especially useful in high-dimensional settings due to the flexibility offered by their multiple-shape parameters. Concerning Type I and Type II Wishart distributions, a conjecture of Letac and Massam concerns the domain of multiple-shape parameters of these distributions. The conjecture also has implications for the existence of Bayes estimators corresponding to these high dimensional priors. The conjecture, which was first posed in the Annals of Statistics, has now been an open problem for about 10 years. In this paper, we give a necessary condition for the Letac and Massam conjecture to hold. More precisely, we prove that if the Letac and Massam conjecture holds on a decomposable graph, then no two separators of the graph can be nested within each other. For this, we analyze Type I and Type II Wishart distributions on appropriate Markov equivalent perfect DAG models and succeed in deriving the aforementioned necessary condition. This condition in particular identifies a class of counterexamples to the conjecture. Full Article
men Estimation of linear projections of non-sparse coefficients in high-dimensional regression By projecteuclid.org Published On :: Mon, 27 Apr 2020 22:02 EDT David Azriel, Armin Schwartzman. Source: Electronic Journal of Statistics, Volume 14, Number 1, 174--206.Abstract: In this work we study estimation of signals when the number of parameters is much larger than the number of observations. A large body of literature assumes for these kind of problems a sparse structure where most of the parameters are zero or close to zero. When this assumption does not hold, one can focus on low-dimensional functions of the parameter vector. In this work we study one-dimensional linear projections. Specifically, in the context of high-dimensional linear regression, the parameter of interest is ${oldsymbol{eta}}$ and we study estimation of $mathbf{a}^{T}{oldsymbol{eta}}$. We show that $mathbf{a}^{T}hat{oldsymbol{eta}}$, where $hat{oldsymbol{eta}}$ is the least squares estimator, using pseudo-inverse when $p>n$, is minimax and admissible. Thus, for linear projections no regularization or shrinkage is needed. This estimator is easy to analyze and confidence intervals can be constructed. We study a high-dimensional dataset from brain imaging where it is shown that the signal is weak, non-sparse and significantly different from zero. Full Article
men Posterior contraction and credible sets for filaments of regression functions By projecteuclid.org Published On :: Tue, 14 Apr 2020 22:01 EDT Wei Li, Subhashis Ghosal. Source: Electronic Journal of Statistics, Volume 14, Number 1, 1707--1743.Abstract: A filament consists of local maximizers of a smooth function $f$ when moving in a certain direction. A filamentary structure is an important feature of the shape of an object and is also considered as an important lower dimensional characterization of multivariate data. There have been some recent theoretical studies of filaments in the nonparametric kernel density estimation context. This paper supplements the current literature in two ways. First, we provide a Bayesian approach to the filament estimation in regression context and study the posterior contraction rates using a finite random series of B-splines basis. Compared with the kernel-estimation method, this has a theoretical advantage as the bias can be better controlled when the function is smoother, which allows obtaining better rates. Assuming that $f:mathbb{R}^{2}mapsto mathbb{R}$ belongs to an isotropic Hölder class of order $alpha geq 4$, with the optimal choice of smoothing parameters, the posterior contraction rates for the filament points on some appropriately defined integral curves and for the Hausdorff distance of the filament are both $(n/log n)^{(2-alpha )/(2(1+alpha ))}$. Secondly, we provide a way to construct a credible set with sufficient frequentist coverage for the filaments. We demonstrate the success of our proposed method in simulations and one application to earthquake data. Full Article
men A fast and consistent variable selection method for high-dimensional multivariate linear regression with a large number of explanatory variables By projecteuclid.org Published On :: Fri, 27 Mar 2020 22:00 EDT Ryoya Oda, Hirokazu Yanagihara. Source: Electronic Journal of Statistics, Volume 14, Number 1, 1386--1412.Abstract: We put forward a variable selection method for selecting explanatory variables in a normality-assumed multivariate linear regression. It is cumbersome to calculate variable selection criteria for all subsets of explanatory variables when the number of explanatory variables is large. Therefore, we propose a fast and consistent variable selection method based on a generalized $C_{p}$ criterion. The consistency of the method is provided by a high-dimensional asymptotic framework such that the sample size and the sum of the dimensions of response vectors and explanatory vectors divided by the sample size tend to infinity and some positive constant which are less than one, respectively. Through numerical simulations, it is shown that the proposed method has a high probability of selecting the true subset of explanatory variables and is fast under a moderate sample size even when the number of dimensions is large. Full Article
men Conditional density estimation with covariate measurement error By projecteuclid.org Published On :: Wed, 19 Feb 2020 22:06 EST Xianzheng Huang, Haiming Zhou. Source: Electronic Journal of Statistics, Volume 14, Number 1, 970--1023.Abstract: We consider estimating the density of a response conditioning on an error-prone covariate. Motivated by two existing kernel density estimators in the absence of covariate measurement error, we propose a method to correct the existing estimators for measurement error. Asymptotic properties of the resultant estimators under different types of measurement error distributions are derived. Moreover, we adjust bandwidths readily available from existing bandwidth selection methods developed for error-free data to obtain bandwidths for the new estimators. Extensive simulation studies are carried out to compare the proposed estimators with naive estimators that ignore measurement error, which also provide empirical evidence for the effectiveness of the proposed bandwidth selection methods. A real-life data example is used to illustrate implementation of these methods under practical scenarios. An R package, lpme, is developed for implementing all considered methods, which we demonstrate via an R code example in Appendix B.2. Full Article
men On the distribution, model selection properties and uniqueness of the Lasso estimator in low and high dimensions By projecteuclid.org Published On :: Mon, 17 Feb 2020 22:06 EST Karl Ewald, Ulrike Schneider. Source: Electronic Journal of Statistics, Volume 14, Number 1, 944--969.Abstract: We derive expressions for the finite-sample distribution of the Lasso estimator in the context of a linear regression model in low as well as in high dimensions by exploiting the structure of the optimization problem defining the estimator. In low dimensions, we assume full rank of the regressor matrix and present expressions for the cumulative distribution function as well as the densities of the absolutely continuous parts of the estimator. Our results are presented for the case of normally distributed errors, but do not hinge on this assumption and can easily be generalized. Additionally, we establish an explicit formula for the correspondence between the Lasso and the least-squares estimator. We derive analogous results for the distribution in less explicit form in high dimensions where we make no assumptions on the regressor matrix at all. In this setting, we also investigate the model selection properties of the Lasso and show that possibly only a subset of models might be selected by the estimator, completely independently of the observed response vector. Finally, we present a condition for uniqueness of the estimator that is necessary as well as sufficient. Full Article
men Online Sufficient Dimension Reduction Through Sliced Inverse Regression By Published On :: 2020 Sliced inverse regression is an effective paradigm that achieves the goal of dimension reduction through replacing high dimensional covariates with a small number of linear combinations. It does not impose parametric assumptions on the dependence structure. More importantly, such a reduction of dimension is sufficient in that it does not cause loss of information. In this paper, we adapt the stationary sliced inverse regression to cope with the rapidly changing environments. We propose to implement sliced inverse regression in an online fashion. This online learner consists of two steps. In the first step we construct an online estimate for the kernel matrix; in the second step we propose two online algorithms, one is motivated by the perturbation method and the other is originated from the gradient descent optimization, to perform online singular value decomposition. The theoretical properties of this online learner are established. We demonstrate the numerical performance of this online learner through simulations and real world applications. All numerical studies confirm that this online learner performs as well as the batch learner. Full Article
men Neyman-Pearson classification: parametrics and sample size requirement By Published On :: 2020 The Neyman-Pearson (NP) paradigm in binary classification seeks classifiers that achieve a minimal type II error while enforcing the prioritized type I error controlled under some user-specified level $alpha$. This paradigm serves naturally in applications such as severe disease diagnosis and spam detection, where people have clear priorities among the two error types. Recently, Tong, Feng, and Li (2018) proposed a nonparametric umbrella algorithm that adapts all scoring-type classification methods (e.g., logistic regression, support vector machines, random forest) to respect the given type I error (i.e., conditional probability of classifying a class $0$ observation as class $1$ under the 0-1 coding) upper bound $alpha$ with high probability, without specific distributional assumptions on the features and the responses. Universal the umbrella algorithm is, it demands an explicit minimum sample size requirement on class $0$, which is often the more scarce class, such as in rare disease diagnosis applications. In this work, we employ the parametric linear discriminant analysis (LDA) model and propose a new parametric thresholding algorithm, which does not need the minimum sample size requirements on class $0$ observations and thus is suitable for small sample applications such as rare disease diagnosis. Leveraging both the existing nonparametric and the newly proposed parametric thresholding rules, we propose four LDA-based NP classifiers, for both low- and high-dimensional settings. On the theoretical front, we prove NP oracle inequalities for one proposed classifier, where the rate for excess type II error benefits from the explicit parametric model assumption. Furthermore, as NP classifiers involve a sample splitting step of class $0$ observations, we construct a new adaptive sample splitting scheme that can be applied universally to NP classifiers, and this adaptive strategy reduces the type II error of these classifiers. The proposed NP classifiers are implemented in the R package nproc. Full Article
men On lp-Support Vector Machines and Multidimensional Kernels By Published On :: 2020 In this paper, we extend the methodology developed for Support Vector Machines (SVM) using the $ell_2$-norm ($ell_2$-SVM) to the more general case of $ell_p$-norms with $p>1$ ($ell_p$-SVM). We derive second order cone formulations for the resulting dual and primal problems. The concept of kernel function, widely applied in $ell_2$-SVM, is extended to the more general case of $ell_p$-norms with $p>1$ by defining a new operator called multidimensional kernel. This object gives rise to reformulations of dual problems, in a transformed space of the original data, where the dependence on the original data always appear as homogeneous polynomials. We adapt known solution algorithms to efficiently solve the primal and dual resulting problems and some computational experiments on real-world datasets are presented showing rather good behavior in terms of the accuracy of $ell_p$-SVM with $p>1$. Full Article
men High-Dimensional Interactions Detection with Sparse Principal Hessian Matrix By Published On :: 2020 In statistical learning framework with regressions, interactions are the contributions to the response variable from the products of the explanatory variables. In high-dimensional problems, detecting interactions is challenging due to combinatorial complexity and limited data information. We consider detecting interactions by exploring their connections with the principal Hessian matrix. Specifically, we propose a one-step synthetic approach for estimating the principal Hessian matrix by a penalized M-estimator. An alternating direction method of multipliers (ADMM) is proposed to efficiently solve the encountered regularized optimization problem. Based on the sparse estimator, we detect the interactions by identifying its nonzero components. Our method directly targets at the interactions, and it requires no structural assumption on the hierarchy of the interactions effects. We show that our estimator is theoretically valid, computationally efficient, and practically useful for detecting the interactions in a broad spectrum of scenarios. Full Article
men Targeted Fused Ridge Estimation of Inverse Covariance Matrices from Multiple High-Dimensional Data Classes By Published On :: 2020 We consider the problem of jointly estimating multiple inverse covariance matrices from high-dimensional data consisting of distinct classes. An $ell_2$-penalized maximum likelihood approach is employed. The suggested approach is flexible and generic, incorporating several other $ell_2$-penalized estimators as special cases. In addition, the approach allows specification of target matrices through which prior knowledge may be incorporated and which can stabilize the estimation procedure in high-dimensional settings. The result is a targeted fused ridge estimator that is of use when the precision matrices of the constituent classes are believed to chiefly share the same structure while potentially differing in a number of locations of interest. It has many applications in (multi)factorial study designs. We focus on the graphical interpretation of precision matrices with the proposed estimator then serving as a basis for integrative or meta-analytic Gaussian graphical modeling. Situations are considered in which the classes are defined by data sets and subtypes of diseases. The performance of the proposed estimator in the graphical modeling setting is assessed through extensive simulation experiments. Its practical usability is illustrated by the differential network modeling of 12 large-scale gene expression data sets of diffuse large B-cell lymphoma subtypes. The estimator and its related procedures are incorporated into the R-package rags2ridges. Full Article
men The Maximum Separation Subspace in Sufficient Dimension Reduction with Categorical Response By Published On :: 2020 Sufficient dimension reduction (SDR) is a very useful concept for exploratory analysis and data visualization in regression, especially when the number of covariates is large. Many SDR methods have been proposed for regression with a continuous response, where the central subspace (CS) is the target of estimation. Various conditions, such as the linearity condition and the constant covariance condition, are imposed so that these methods can estimate at least a portion of the CS. In this paper we study SDR for regression and discriminant analysis with categorical response. Motivated by the exploratory analysis and data visualization aspects of SDR, we propose a new geometric framework to reformulate the SDR problem in terms of manifold optimization and introduce a new concept called Maximum Separation Subspace (MASES). The MASES naturally preserves the “sufficiency” in SDR without imposing additional conditions on the predictor distribution, and directly inspires a semi-parametric estimator. Numerical studies show MASES exhibits superior performance as compared with competing SDR methods in specific settings. Full Article
men Noise Accumulation in High Dimensional Classification and Total Signal Index By Published On :: 2020 Great attention has been paid to Big Data in recent years. Such data hold promise for scientific discoveries but also pose challenges to analyses. One potential challenge is noise accumulation. In this paper, we explore noise accumulation in high dimensional two-group classification. First, we revisit a previous assessment of noise accumulation with principal component analyses, which yields a different threshold for discriminative ability than originally identified. Then we extend our scope to its impact on classifiers developed with three common machine learning approaches---random forest, support vector machine, and boosted classification trees. We simulate four scenarios with differing amounts of signal strength to evaluate each method. After determining noise accumulation may affect the performance of these classifiers, we assess factors that impact it. We conduct simulations by varying sample size, signal strength, signal strength proportional to the number predictors, and signal magnitude with random forest classifiers. These simulations suggest that noise accumulation affects the discriminative ability of high-dimensional classifiers developed using common machine learning methods, which can be modified by sample size, signal strength, and signal magnitude. We developed the measure total signal index (TSI) to track the trends of total signal and noise accumulation. Full Article
men Latent Simplex Position Model: High Dimensional Multi-view Clustering with Uncertainty Quantification By Published On :: 2020 High dimensional data often contain multiple facets, and several clustering patterns can co-exist under different variable subspaces, also known as the views. While multi-view clustering algorithms were proposed, the uncertainty quantification remains difficult --- a particular challenge is in the high complexity of estimating the cluster assignment probability under each view, and sharing information among views. In this article, we propose an approximate Bayes approach --- treating the similarity matrices generated over the views as rough first-stage estimates for the co-assignment probabilities; in its Kullback-Leibler neighborhood, we obtain a refined low-rank matrix, formed by the pairwise product of simplex coordinates. Interestingly, each simplex coordinate directly encodes the cluster assignment uncertainty. For multi-view clustering, we let each view draw a parameterization from a few candidates, leading to dimension reduction. With high model flexibility, the estimation can be efficiently carried out as a continuous optimization problem, hence enjoys gradient-based computation. The theory establishes the connection of this model to a random partition distribution under multiple views. Compared to single-view clustering approaches, substantially more interpretable results are obtained when clustering brains from a human traumatic brain injury study, using high-dimensional gene expression data. Full Article
men Ancestral Gumbel-Top-k Sampling for Sampling Without Replacement By Published On :: 2020 We develop ancestral Gumbel-Top-$k$ sampling: a generic and efficient method for sampling without replacement from discrete-valued Bayesian networks, which includes multivariate discrete distributions, Markov chains and sequence models. The method uses an extension of the Gumbel-Max trick to sample without replacement by finding the top $k$ of perturbed log-probabilities among all possible configurations of a Bayesian network. Despite the exponentially large domain, the algorithm has a complexity linear in the number of variables and sample size $k$. Our algorithm allows to set the number of parallel processors $m$, to trade off the number of iterations versus the total cost (iterations times $m$) of running the algorithm. For $m = 1$ the algorithm has minimum total cost, whereas for $m = k$ the number of iterations is minimized, and the resulting algorithm is known as Stochastic Beam Search. We provide extensions of the algorithm and discuss a number of related algorithms. We analyze the properties of ancestral Gumbel-Top-$k$ sampling and compare against alternatives on randomly generated Bayesian networks with different levels of connectivity. In the context of (deep) sequence models, we show its use as a method to generate diverse but high-quality translations and statistical estimates of translation quality and entropy. Full Article
men Expected Policy Gradients for Reinforcement Learning By Published On :: 2020 We propose expected policy gradients (EPG), which unify stochastic policy gradients (SPG) and deterministic policy gradients (DPG) for reinforcement learning. Inspired by expected sarsa, EPG integrates (or sums) across actions when estimating the gradient, instead of relying only on the action in the sampled trajectory. For continuous action spaces, we first derive a practical result for Gaussian policies and quadratic critics and then extend it to a universal analytical method, covering a broad class of actors and critics, including Gaussian, exponential families, and policies with bounded support. For Gaussian policies, we introduce an exploration method that uses covariance proportional to the matrix exponential of the scaled Hessian of the critic with respect to the actions. For discrete action spaces, we derive a variant of EPG based on softmax policies. We also establish a new general policy gradient theorem, of which the stochastic and deterministic policy gradient theorems are special cases. Furthermore, we prove that EPG reduces the variance of the gradient estimates without requiring deterministic policies and with little computational overhead. Finally, we provide an extensive experimental evaluation of EPG and show that it outperforms existing approaches on multiple challenging control domains. Full Article
men High-Dimensional Inference for Cluster-Based Graphical Models By Published On :: 2020 Motivated by modern applications in which one constructs graphical models based on a very large number of features, this paper introduces a new class of cluster-based graphical models, in which variable clustering is applied as an initial step for reducing the dimension of the feature space. We employ model assisted clustering, in which the clusters contain features that are similar to the same unobserved latent variable. Two different cluster-based Gaussian graphical models are considered: the latent variable graph, corresponding to the graphical model associated with the unobserved latent variables, and the cluster-average graph, corresponding to the vector of features averaged over clusters. Our study reveals that likelihood based inference for the latent graph, not analyzed previously, is analytically intractable. Our main contribution is the development and analysis of alternative estimation and inference strategies, for the precision matrix of an unobservable latent vector Z. We replace the likelihood of the data by an appropriate class of empirical risk functions, that can be specialized to the latent graphical model and to the simpler, but under-analyzed, cluster-average graphical model. The estimators thus derived can be used for inference on the graph structure, for instance on edge strength or pattern recovery. Inference is based on the asymptotic limits of the entry-wise estimates of the precision matrices associated with the conditional independence graphs under consideration. While taking the uncertainty induced by the clustering step into account, we establish Berry-Esseen central limit theorems for the proposed estimators. It is noteworthy that, although the clusters are estimated adaptively from the data, the central limit theorems regarding the entries of the estimated graphs are proved under the same conditions one would use if the clusters were known in advance. As an illustration of the usage of these newly developed inferential tools, we show that they can be reliably used for recovery of the sparsity pattern of the graphs we study, under FDR control, which is verified via simulation studies and an fMRI data analysis. These experimental results confirm the theoretically established difference between the two graph structures. Furthermore, the data analysis suggests that the latent variable graph, corresponding to the unobserved cluster centers, can help provide more insight into the understanding of the brain connectivity networks relative to the simpler, average-based, graph. Full Article
men WONDER: Weighted One-shot Distributed Ridge Regression in High Dimensions By Published On :: 2020 In many areas, practitioners need to analyze large data sets that challenge conventional single-machine computing. To scale up data analysis, distributed and parallel computing approaches are increasingly needed. Here we study a fundamental and highly important problem in this area: How to do ridge regression in a distributed computing environment? Ridge regression is an extremely popular method for supervised learning, and has several optimality properties, thus it is important to study. We study one-shot methods that construct weighted combinations of ridge regression estimators computed on each machine. By analyzing the mean squared error in a high-dimensional random-effects model where each predictor has a small effect, we discover several new phenomena. Infinite-worker limit: The distributed estimator works well for very large numbers of machines, a phenomenon we call 'infinite-worker limit'. Optimal weights: The optimal weights for combining local estimators sum to more than unity, due to the downward bias of ridge. Thus, all averaging methods are suboptimal. We also propose a new Weighted ONe-shot DistributEd Ridge regression algorithm (WONDER). We test WONDER in simulation studies and using the Million Song Dataset as an example. There it can save at least 100x in computation time, while nearly preserving test accuracy. Full Article
men High-dimensional Gaussian graphical models on network-linked data By Published On :: 2020 Graphical models are commonly used to represent conditional dependence relationships between variables. There are multiple methods available for exploring them from high-dimensional data, but almost all of them rely on the assumption that the observations are independent and identically distributed. At the same time, observations connected by a network are becoming increasingly common, and tend to violate these assumptions. Here we develop a Gaussian graphical model for observations connected by a network with potentially different mean vectors, varying smoothly over the network. We propose an efficient estimation algorithm and demonstrate its effectiveness on both simulated and real data, obtaining meaningful and interpretable results on a statistics coauthorship network. We also prove that our method estimates both the inverse covariance matrix and the corresponding graph structure correctly under the assumption of network “cohesion”, which refers to the empirically observed phenomenon of network neighbors sharing similar traits. Full Article
men Portraits of women in the collection By feedproxy.google.com Published On :: Thu, 20 Feb 2020 00:02:06 +0000 This NSW Women's Week (2–8 March) we're showcasing portraits and stories of 10 significant women from the Lib Full Article
men Have your say on the Highway 404 Employment Corridor Secondary Plan By www.eastgwillimbury.ca Published On :: Mon, 27 Apr 2020 22:16:01 GMT Full Article
men Measuring symmetry and asymmetry of multiplicative distortion measurement errors data By projecteuclid.org Published On :: Mon, 04 May 2020 04:00 EDT Jun Zhang, Yujie Gai, Xia Cui, Gaorong Li. Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 2, 370--393.Abstract: This paper studies the measure of symmetry or asymmetry of a continuous variable under the multiplicative distortion measurement errors setting. The unobservable variable is distorted in a multiplicative fashion by an observed confounding variable. First, two direct plug-in estimation procedures are proposed, and the empirical likelihood based confidence intervals are constructed to measure the symmetry or asymmetry of the unobserved variable. Next, we propose four test statistics for testing whether the unobserved variable is symmetric or not. The asymptotic properties of the proposed estimators and test statistics are examined. We conduct Monte Carlo simulation experiments to examine the performance of the proposed estimators and test statistics. These methods are applied to analyze a real dataset for an illustration. Full Article
men Bayesian modeling and prior sensitivity analysis for zero–one augmented beta regression models with an application to psychometric data By projecteuclid.org Published On :: Mon, 04 May 2020 04:00 EDT Danilo Covaes Nogarotto, Caio Lucidius Naberezny Azevedo, Jorge Luis Bazán. Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 2, 304--322.Abstract: The interest on the analysis of the zero–one augmented beta regression (ZOABR) model has been increasing over the last few years. In this work, we developed a Bayesian inference for the ZOABR model, providing some contributions, namely: we explored the use of Jeffreys-rule and independence Jeffreys prior for some of the parameters, performing a sensitivity study of prior choice, comparing the Bayesian estimates with the maximum likelihood ones and measuring the accuracy of the estimates under several scenarios of interest. The results indicate, in a general way, that: the Bayesian approach, under the Jeffreys-rule prior, was as accurate as the ML one. Also, different from other approaches, we use the predictive distribution of the response to implement Bayesian residuals. To further illustrate the advantages of our approach, we conduct an analysis of a real psychometric data set including a Bayesian residual analysis, where it is shown that misleading inference can be obtained when the data is transformed. That is, when the zeros and ones are transformed to suitable values and the usual beta regression model is considered, instead of the ZOABR model. Finally, future developments are discussed. Full Article
men Adaptive two-treatment three-period crossover design for normal responses By projecteuclid.org Published On :: Mon, 04 May 2020 04:00 EDT Uttam Bandyopadhyay, Shirsendu Mukherjee, Atanu Biswas. Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 2, 291--303.Abstract: In adaptive crossover design, our goal is to allocate more patients to a promising treatment sequence. The present work contains a very simple three period crossover design for two competing treatments where the allocation in period 3 is done on the basis of the data obtained from the first two periods. Assuming normality of response variables we use a reliability functional for the choice between two treatments. We calculate the allocation proportions and their standard errors corresponding to the possible treatment combinations. We also derive some asymptotic results and provide solutions on related inferential problems. Moreover, the proposed procedure is compared with a possible competitor. Finally, we use a data set to illustrate the applicability of the proposed design. Full Article
men Random environment binomial thinning integer-valued autoregressive process with Poisson or geometric marginal By projecteuclid.org Published On :: Mon, 04 May 2020 04:00 EDT Zhengwei Liu, Qi Li, Fukang Zhu. Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 2, 251--272.Abstract: To predict time series of counts with small values and remarkable fluctuations, an available model is the $r$ states random environment process based on the negative binomial thinning operator and the geometric marginal. However, we argue that the aforementioned model may suffer from the following two drawbacks. First, under the condition of no prior information, the overdispersed property of the geometric distribution may cause the predictions fluctuate greatly. Second, because of the constraints on the model parameters, some estimated parameters are close to zero in real-data examples, which may not objectively reveal the correlation relationship. For the first drawback, an $r$ states random environment process based on the binomial thinning operator and the Poisson marginal is introduced. For the second drawback, we propose a generalized $r$ states random environment integer-valued autoregressive model based on the binomial thinning operator to model fluctuations of data. Yule–Walker and conditional maximum likelihood estimates are considered and their performances are assessed via simulation studies. Two real-data sets are conducted to illustrate the better performances of the proposed models compared with some existing models. Full Article
men Recent developments in complex and spatially correlated functional data By projecteuclid.org Published On :: Mon, 04 May 2020 04:00 EDT Israel Martínez-Hernández, Marc G. Genton. Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 2, 204--229.Abstract: As high-dimensional and high-frequency data are being collected on a large scale, the development of new statistical models is being pushed forward. Functional data analysis provides the required statistical methods to deal with large-scale and complex data by assuming that data are continuous functions, for example, realizations of a continuous process (curves) or continuous random field (surfaces), and that each curve or surface is considered as a single observation. Here, we provide an overview of functional data analysis when data are complex and spatially correlated. We provide definitions and estimators of the first and second moments of the corresponding functional random variable. We present two main approaches: The first assumes that data are realizations of a functional random field, that is, each observation is a curve with a spatial component. We call them spatial functional data . The second approach assumes that data are continuous deterministic fields observed over time. In this case, one observation is a surface or manifold, and we call them surface time series . For these two approaches, we describe software available for the statistical analysis. We also present a data illustration, using a high-resolution wind speed simulated dataset, as an example of the two approaches. The functional data approach offers a new paradigm of data analysis, where the continuous processes or random fields are considered as a single entity. We consider this approach to be very valuable in the context of big data. Full Article
men Effects of gene–environment and gene–gene interactions in case-control studies: A novel Bayesian semiparametric approach By projecteuclid.org Published On :: Mon, 03 Feb 2020 04:00 EST Durba Bhattacharya, Sourabh Bhattacharya. Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 1, 71--89.Abstract: Present day bio-medical research is pointing towards the fact that cognizance of gene–environment interactions along with genetic interactions may help prevent or detain the onset of many complex diseases like cardiovascular disease, cancer, type2 diabetes, autism or asthma by adjustments to lifestyle. In this regard, we propose a Bayesian semiparametric model to detect not only the roles of genes and their interactions, but also the possible influence of environmental variables on the genes in case-control studies. Our model also accounts for the unknown number of genetic sub-populations via finite mixtures composed of Dirichlet processes. An effective parallel computing methodology, developed by us harnesses the power of parallel processing technology to increase the efficiencies of our conditionally independent Gibbs sampling and Transformation based MCMC (TMCMC) methods. Applications of our model and methods to simulation studies with biologically realistic genotype datasets and a real, case-control based genotype dataset on early onset of myocardial infarction (MI) have yielded quite interesting results beside providing some insights into the differential effect of gender on MI. Full Article
men A temporal perspective on the rate of convergence in first-passage percolation under a moment condition By projecteuclid.org Published On :: Mon, 04 Mar 2019 04:00 EST Daniel Ahlberg. Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 2, 397--401.Abstract: We study the rate of convergence in the celebrated Shape Theorem in first-passage percolation, obtaining the precise asymptotic rate of decay for the probability of linear order deviations under a moment condition. Our results are presented from a temporal perspective and complement previous work by the same author, in which the rate of convergence was studied from the standard spatial perspective. Full Article
men Necessary and sufficient conditions for the convergence of the consistent maximal displacement of the branching random walk By projecteuclid.org Published On :: Mon, 04 Mar 2019 04:00 EST Bastien Mallein. Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 2, 356--373.Abstract: Consider a supercritical branching random walk on the real line. The consistent maximal displacement is the smallest of the distances between the trajectories followed by individuals at the $n$th generation and the boundary of the process. Fang and Zeitouni, and Faraud, Hu and Shi proved that under some integrability conditions, the consistent maximal displacement grows almost surely at rate $lambda^{*}n^{1/3}$ for some explicit constant $lambda^{*}$. We obtain here a necessary and sufficient condition for this asymptotic behaviour to hold. Full Article
men Documenting rebellions : a study of four lesbian and gay archives in queer times By dal.novanet.ca Published On :: Fri, 1 May 2020 19:34:09 -0300 Author: Sheffield, Rebecka Taves, author.Callnumber: CD 3021 S45 2020ISBN: 9781634000918 paperback Full Article
men Additive monotone regression in high and lower dimensions By projecteuclid.org Published On :: Wed, 19 Jun 2019 22:00 EDT Solveig Engebretsen, Ingrid K. Glad. Source: Statistics Surveys, Volume 13, 1--51.Abstract: In numerous problems where the aim is to estimate the effect of a predictor variable on a response, one can assume a monotone relationship. For example, dose-effect models in medicine are of this type. In a multiple regression setting, additive monotone regression models assume that each predictor has a monotone effect on the response. In this paper, we present an overview and comparison of very recent frequentist methods for fitting additive monotone regression models. Three of the methods we present can be used both in the high dimensional setting, where the number of parameters $p$ exceeds the number of observations $n$, and in the classical multiple setting where $1<pleq n$. However, many of the most recent methods only apply to the classical setting. The methods are compared through simulation experiments in terms of efficiency, prediction error and variable selection properties in both settings, and they are applied to the Boston housing data. We conclude with some recommendations on when the various methods perform best. Full Article
men Fundamentals of cone regression By projecteuclid.org Published On :: Thu, 19 May 2016 09:04 EDT Mariella Dimiccoli. Source: Statistics Surveys, Volume 10, 53--99.Abstract: Cone regression is a particular case of quadratic programming that minimizes a weighted sum of squared residuals under a set of linear inequality constraints. Several important statistical problems such as isotonic, concave regression or ANOVA under partial orderings, just to name a few, can be considered as particular instances of the cone regression problem. Given its relevance in Statistics, this paper aims to address the fundamentals of cone regression from a theoretical and practical point of view. Several formulations of the cone regression problem are considered and, focusing on the particular case of concave regression as an example, several algorithms are analyzed and compared both qualitatively and quantitatively through numerical simulations. Several improvements to enhance numerical stability and bound the computational cost are proposed. For each analyzed algorithm, the pseudo-code and its corresponding code in Matlab are provided. The results from this study demonstrate that the choice of the optimization approach strongly impacts the numerical performances. It is also shown that methods are not currently available to solve efficiently cone regression problems with large dimension (more than many thousands of points). We suggest further research to fill this gap by exploiting and adapting classical multi-scale strategy to compute an approximate solution. Full Article
men A unified treatment for non-asymptotic and asymptotic approaches to minimax signal detection By projecteuclid.org Published On :: Tue, 19 Jan 2016 09:04 EST Clément Marteau, Theofanis Sapatinas. Source: Statistics Surveys, Volume 9, 253--297.Abstract: We are concerned with minimax signal detection. In this setting, we discuss non-asymptotic and asymptotic approaches through a unified treatment. In particular, we consider a Gaussian sequence model that contains classical models as special cases, such as, direct, well-posed inverse and ill-posed inverse problems. Working with certain ellipsoids in the space of squared-summable sequences of real numbers, with a ball of positive radius removed, we compare the construction of lower and upper bounds for the minimax separation radius (non-asymptotic approach) and the minimax separation rate (asymptotic approach) that have been proposed in the literature. Some additional contributions, bringing to light links between non-asymptotic and asymptotic approaches to minimax signal, are also presented. An example of a mildly ill-posed inverse problem is used for illustrative purposes. In particular, it is shown that tools used to derive ‘asymptotic’ results can be exploited to draw ‘non-asymptotic’ conclusions, and vice-versa. In order to enhance our understanding of these two minimax signal detection paradigms, we bring into light hitherto unknown similarities and links between non-asymptotic and asymptotic approaches. Full Article