ut

The Visual Evolution of the “Flattening the Curve” Information Graphic

Communication has been quite a challenge during the COVID-19 pandemic, and data visualization hasn't been the most helpful given the low quality of the data – see Amanda Makulec's plea to think harder about making another coronavirus chart. A great example of how to do things right is the widely-circulated Flatten the Curve information graphic/cartoon. […]




ut

The entropy of holomorphic correspondences: exact computations and rational semigroups. (arXiv:2004.13691v1 [math.DS] CROSS LISTED)

We study two notions of topological entropy of correspondences introduced by Friedland and Dinh-Sibony. Upper bounds are known for both. We identify a class of holomorphic correspondences whose entropy in the sense of Dinh-Sibony equals the known upper bound. This provides an exact computation of the entropy for rational semigroups. We also explore a connection between these two notions of entropy.




ut

Solutions for nonlinear Fokker-Planck equations with measures as initial data and McKean-Vlasov equations. (arXiv:2005.02311v2 [math.AP] UPDATED)

One proves the existence and uniqueness of a generalized (mild) solution for the nonlinear Fokker--Planck equation (FPE) egin{align*} &u_t-Delta (eta(u))+{mathrm{ div}}(D(x)b(u)u)=0, quad tgeq0, xinmathbb{R}^d, d e2, \ &u(0,cdot)=u_0,mbox{in }mathbb{R}^d, end{align*} where $u_0in L^1(mathbb{R}^d)$, $etain C^2(mathbb{R})$ is a nondecreasing function, $bin C^1$, bounded, $bgeq 0$, $Din(L^2cap L^infty)(mathbb{R}^d;mathbb{R}^d)$ with ${ m div}, Din L^infty(mathbb{R}^d)$, and ${ m div},Dgeq0$, $eta$ strictly increasing, if $b$ is not constant. Moreover, $t o u(t,u_0)$ is a semigroup of contractions in $L^1(mathbb{R}^d)$, which leaves invariant the set of probability density functions in $mathbb{R}^d$. If ${ m div},Dgeq0$, $eta'(r)geq a|r|^{alpha-1}$, and $|eta(r)|leq C r^alpha$, $alphageq1,$ $alpha>frac{d-2}d$, $dgeq3$, then $|u(t)|_{L^infty}le Ct^{-frac d{d+(alpha-1)d}} |u_0|^{frac2{2+(m-1)d}},$ $t>0$, and the existence extends to initial data $u_0$ in the space $mathcal{M}_b$ of bounded measures in $mathbb{R}^d$. The solution map $mumapsto S(t)mu$, $tgeq0$, is a Lipschitz contractions on $mathcal{M}_b$ and weakly continuous in $tin[0,infty)$. As a consequence for arbitrary initial laws, we obtain weak solutions to a class of McKean-Vlasov SDEs with coefficients which have singular dependence on the time marginal laws.




ut

Triangles in graphs without bipartite suspensions. (arXiv:2004.11930v2 [math.CO] UPDATED)

Given graphs $T$ and $H$, the generalized Tur'an number ex$(n,T,H)$ is the maximum number of copies of $T$ in an $n$-vertex graph with no copies of $H$. Alon and Shikhelman, using a result of ErdH os, determined the asymptotics of ex$(n,K_3,H)$ when the chromatic number of $H$ is greater than 3 and proved several results when $H$ is bipartite. We consider this problem when $H$ has chromatic number 3. Even this special case for the following relatively simple 3-chromatic graphs appears to be challenging.

The suspension $widehat H$ of a graph $H$ is the graph obtained from $H$ by adding a new vertex adjacent to all vertices of $H$. We give new upper and lower bounds on ex$(n,K_3,widehat{H})$ when $H$ is a path, even cycle, or complete bipartite graph. One of the main tools we use is the triangle removal lemma, but it is unclear if much stronger statements can be proved without using the removal lemma.




ut

Automorphisms of shift spaces and the Higman--Thomspon groups: the one-sided case. (arXiv:2004.08478v2 [math.GR] UPDATED)

Let $1 le r < n$ be integers. We give a proof that the group $mathop{mathrm{Aut}}({X_{n}^{mathbb{N}}, sigma_{n}})$ of automorphisms of the one-sided shift on $n$ letters embeds naturally as a subgroup $mathcal{h}_{n}$ of the outer automorphism group $mathop{mathrm{Out}}(G_{n,r})$ of the Higman-Thompson group $G_{n,r}$. From this, we can represent the elements of $mathop{mathrm{Aut}}({X_{n}^{mathbb{N}}, sigma_{n}})$ by finite state non-initial transducers admitting a very strong synchronizing condition.

Let $H in mathcal{H}_{n}$ and write $|H|$ for the number of states of the minimal transducer representing $H$. We show that $H$ can be written as a product of at most $|H|$ torsion elements. This result strengthens a similar result of Boyle, Franks and Kitchens, where the decomposition involves more complex torsion elements and also does not support practical extit{a priori} estimates of the length of the resulting product.

We also give new proofs of some known results about $mathop{mathrm{Aut}}({X_{n}^{mathbb{N}}, sigma_{n}})$.




ut

Output feedback stochastic MPC with packet losses. (arXiv:2004.02591v2 [math.OC] UPDATED)

The paper considers constrained linear systems with stochastic additive disturbances and noisy measurements transmitted over a lossy communication channel. We propose a model predictive control (MPC) law that minimizes a discounted cost subject to a discounted expectation constraint. Sensor data is assumed to be lost with known probability, and data losses are accounted for by expressing the predicted control policy as an affine function of future observations, which results in a convex optimal control problem. An online constraint-tightening technique ensures recursive feasibility of the online optimization and satisfaction of the expectation constraint without bounds on the distributions of the noise and disturbance inputs. The cost evaluated along trajectories of the closed loop system is shown to be bounded by the optimal predicted cost. A numerical example is given to illustrate these results.




ut

The $kappa$-Newtonian and $kappa$-Carrollian algebras and their noncommutative spacetimes. (arXiv:2003.03921v2 [hep-th] UPDATED)

We derive the non-relativistic $c oinfty$ and ultra-relativistic $c o 0$ limits of the $kappa$-deformed symmetries and corresponding spacetime in (3+1) dimensions, with and without a cosmological constant. We apply the theory of Lie bialgebra contractions to the Poisson version of the $kappa$-(A)dS quantum algebra, and quantize the resulting contracted Poisson-Hopf algebras, thus giving rise to the $kappa$-deformation of the Newtonian (Newton-Hooke and Galilei) and Carrollian (Para-Poincar'e, Para-Euclidean and Carroll) quantum symmetries, including their deformed quadratic Casimir operators. The corresponding $kappa$-Newtonian and $kappa$-Carrollian noncommutative spacetimes are also obtained as the non-relativistic and ultra-relativistic limits of the $kappa$-(A)dS noncommutative spacetime. These constructions allow us to analyze the non-trivial interplay between the quantum deformation parameter $kappa$, the curvature parameter $eta$ and the speed of light parameter $c$.




ut

Solitary wave solutions and global well-posedness for a coupled system of gKdV equations. (arXiv:2002.09531v2 [math.AP] UPDATED)

In this work we consider the initial-value problem associated with a coupled system of generalized Korteweg-de Vries equations. We present a relationship between the best constant for a Gagliardo-Nirenberg type inequality and a criterion for the existence of global solutions in the energy space. We prove that such a constant is directly related to the existence problem of solitary-wave solutions with minimal mass, the so called ground state solutions. To guarantee the existence of ground states we use a variational method.




ut

Linear Convergence of First- and Zeroth-Order Primal-Dual Algorithms for Distributed Nonconvex Optimization. (arXiv:1912.12110v2 [math.OC] UPDATED)

This paper considers the distributed nonconvex optimization problem of minimizing a global cost function formed by a sum of local cost functions by using local information exchange. We first propose a distributed first-order primal-dual algorithm. We show that it converges sublinearly to the stationary point if each local cost function is smooth and linearly to the global optimum under an additional condition that the global cost function satisfies the Polyak-{L}ojasiewicz condition. This condition is weaker than strong convexity, which is a standard condition for proving the linear convergence of distributed optimization algorithms, and the global minimizer is not necessarily unique or finite. Motivated by the situations where the gradients are unavailable, we then propose a distributed zeroth-order algorithm, derived from the proposed distributed first-order algorithm by using a deterministic gradient estimator, and show that it has the same convergence properties as the proposed first-order algorithm under the same conditions. The theoretical results are illustrated by numerical simulations.




ut

Quasistatic evolution for dislocation-free finite plasticity. (arXiv:1912.10118v2 [math.AP] UPDATED)

We investigate quasistatic evolution in finite plasticity under the assumption that the plastic strain is compatible. This assumption is well-suited to describe the special case of dislocation-free plasticity and entails that the plastic strain is the gradient of a plastic deformation map. The total deformation can be then seen as the composition of a plastic and an elastic deformation. This opens the way to an existence theory for the quasistatic evolution problem featuring both Lagrangian and Eulerian variables. A remarkable trait of the result is that it does not require second-order gradients.




ut

On boundedness, gradient estimate, blow-up and convergence in a two-species and two-stimuli chemotaxis system with/without loop. (arXiv:1909.04587v4 [math.AP] UPDATED)

In this work, we study dynamic properties of classical solutions to a homogenous Neumann initial-boundary value problem (IBVP) for a two-species and two-stimuli chemotaxis model with/without chemical signalling loop in a 2D bounded and smooth domain. We successfully detect the product of two species masses as a feature to determine boundedness, gradient estimates, blow-up and $W^{j,infty}(1leq jleq 3)$-exponential convergence of classical solutions for the corresponding IBVP. More specifically, we first show generally a smallness on the product of both species masses, thus allowing one species mass to be suitably large, is sufficient to guarantee global boundedness, higher order gradient estimates and $W^{j,infty}$-convergence with rates of convergence to constant equilibria; and then, in a special case, we detect a straight line of masses on which blow-up occurs for large product of masses. Our findings provide new understandings about the underlying model, and thus, improve and extend greatly the existing knowledge relevant to this model.




ut

Convolutions on the complex torus. (arXiv:1908.11815v3 [math.RA] UPDATED)

"Quasi-elliptic" functions can be given a ring structure in two different ways, using either ordinary multiplication, or convolution. The map between the corresponding standard bases is calculated and given by Eisenstein series. A related structure has appeared recently in the computation of Feynman integrals. The two approaches are related by a sequence of polynomials with interlacing zeroes.




ut

Nonlinear stability of explicit self-similar solutions for the timelike extremal hypersurfaces in R^{1+3}. (arXiv:1907.01126v2 [math.AP] UPDATED)

This paper is devoted to the study of the singularity phenomenon of timelike extremal hypersurfaces in Minkowski spacetime $mathbb{R}^{1+3}$. We find that there are two explicit lightlike self-similar solutions to a graph representation of timelike extremal hypersurfaces in Minkowski spacetime $mathbb{R}^{1+3}$, the geometry of them are two spheres. The linear mode unstable of those lightlike self-similar solutions for the radially symmetric membranes equation is given. After that, we show those self-similar solutions of the radially symmetric membranes equation are nonlinearly stable inside a strictly proper subset of the backward lightcone. This means that the dynamical behavior of those two spheres is as attractors. Meanwhile, we overcome the double roots case (the theorem of Poincar'{e} can't be used) in solving the difference equation by construction of a Newton's polygon when we carry out the analysis of spectrum for the linear operator.




ut

On the automorphic sheaves for GSp_4. (arXiv:1901.04447v6 [math.RT] UPDATED)

In this paper we first review the setting for the geometric Langlands functoriality and establish a result for the `backward' functoriality functor. We illustrate this by known examples of the geometric theta-lifting. We then apply the above result to obtain new Hecke eigen-sheaves. The most important application is a construction of the automorphic sheaf for G=GSp_4 attached to a G^L-local system on a curve X such that its standard representation is an irreducible local system of rank 4 on X.




ut

On $p$-groups with automorphism groups related to the exceptional Chevalley groups. (arXiv:1810.08365v3 [math.GR] UPDATED)

Let $hat G$ be the finite simply connected version of an exceptional Chevalley group, and let $V$ be a nontrivial irreducible module, of minimal dimension, for $hat G$ over its field of definition. We explore the overgroup structure of $hat G$ in $mathrm{GL}(V)$, and the submodule structure of the exterior square (and sometimes the third Lie power) of $V$. When $hat G$ is defined over a field of odd prime order $p$, this allows us to construct the smallest (with respect to certain properties) $p$-groups $P$ such that the group induced by $mathrm{Aut}(P)$ on $P/Phi(P)$ is either $hat G$ or its normaliser in $mathrm{GL}(V)$.




ut

A Forward-Backward Splitting Method for Monotone Inclusions Without Cocoercivity. (arXiv:1808.04162v4 [math.OC] UPDATED)

In this work, we propose a simple modification of the forward-backward splitting method for finding a zero in the sum of two monotone operators. Our method converges under the same assumptions as Tseng's forward-backward-forward method, namely, it does not require cocoercivity of the single-valued operator. Moreover, each iteration only requires one forward evaluation rather than two as is the case for Tseng's method. Variants of the method incorporating a linesearch, relaxation and inertia, or a structured three operator inclusion are also discussed.




ut

On the asymptotic behavior of solutions to the Vlasov-Poisson system. (arXiv:2005.03617v1 [math.AP])

We prove small data modified scattering for the Vlasov-Poisson system in dimension $d=3$ using a method inspired from dispersive analysis. In particular, we identify a simple asymptotic dynamic related to the scattering mass.




ut

Off-diagonal estimates for bi-commutators. (arXiv:2005.03548v1 [math.CA])

We study the bi-commutators $[T_1, [b, T_2]]$ of pointwise multiplication and Calder'on-Zygmund operators, and characterize their $L^{p_1}L^{p_2} o L^{q_1}L^{q_2}$ boundedness for several off-diagonal regimes of the mixed-norm integrability exponents $(p_1,p_2) eq(q_1,q_2)$. The strategy is based on a bi-parameter version of the recent approximate weak factorization method.




ut

Continuity in a parameter of solutions to boundary-value problems in Sobolev spaces. (arXiv:2005.03494v1 [math.CA])

We consider the most general class of linear inhomogeneous boundary-value problems for systems of ordinary differential equations of an arbitrary order whose solutions and right-hand sides belong to appropriate Sobolev spaces. For parameter-dependent problems from this class, we prove a constructive criterion for their solutions to be continuous in the Sobolev space with respect to the parameter. We also prove a two-sided estimate for the degree of convergence of these solutions to the solution of the nonperturbed problem.




ut

A theory of stacks with twisted fields and resolution of moduli of genus two stable maps. (arXiv:2005.03384v1 [math.AG])

We construct a smooth moduli stack of tuples consisting of genus two nodal curves, line bundles, and twisted fields. It leads to a desingularization of the moduli of genus two stable maps to projective spaces. The construction of this new moduli is based on systematical application of the theory of stacks with twisted fields (STF), which has its prototype appeared in arXiv:1906.10527 and arXiv:1201.2427 and is fully developed in this article. The results of this article are the second step of a series of works toward the resolutions of the moduli of stable maps of higher genera.




ut

Converging outer approximations to global attractors using semidefinite programming. (arXiv:2005.03346v1 [math.OC])

This paper develops a method for obtaining guaranteed outer approximations for global attractors of continuous and discrete time nonlinear dynamical systems. The method is based on a hierarchy of semidefinite programming problems of increasing size with guaranteed convergence to the global attractor. The approach taken follows an established line of reasoning, where we first characterize the global attractor via an infinite dimensional linear programming problem (LP) in the space of Borel measures. The dual to this LP is in the space of continuous functions and its feasible solutions provide guaranteed outer approximations to the global attractor. For systems with polynomial dynamics, a hierarchy of finite-dimensional sum-of-squares tightenings of the dual LP provides a sequence of outer approximations to the global attractor with guaranteed convergence in the sense of volume discrepancy tending to zero. The method is very simple to use and based purely on convex optimization. Numerical examples with the code available online demonstrate the method.




ut

Gaussian invariant measures and stationary solutions of 2D Primitive Equations. (arXiv:2005.03339v1 [math.PR])

We introduce a Gaussian measure formally preserved by the 2-dimensional Primitive Equations driven by additive Gaussian noise. Under such measure the stochastic equations under consideration are singular: we propose a solution theory based on the techniques developed by Gubinelli and Jara in cite{GuJa13} for a hyperviscous version of the equations.




ut

An Issue Raised in 1978 by a Then-Future Editor-in-Chief of the Journal "Order": Does the Endomorphism Poset of a Finite Connected Poset Tell Us That the Poset Is Connected?. (arXiv:2005.03255v1 [math.CO])

In 1978, Dwight Duffus---editor-in-chief of the journal "Order" from 2010 to 2018 and chair of the Mathematics Department at Emory University from 1991 to 2005---wrote that "it is not obvious that $P$ is connected and $P^P$ isomorphic to $Q^Q$ implies that $Q$ is connected," where $P$ and $Q$ are finite non-empty posets. We show that, indeed, under these hypotheses $Q$ is connected and $Pcong Q$.




ut

Hydrodynamic limit of Robinson-Schensted-Knuth algorithm. (arXiv:2005.03147v1 [math.CO])

We investigate the evolution in time of the position of a fixed number inthe insertion tableau when the Robinson-Schensted-Knuth algorithm is applied to asequence of random numbers. When the length of the sequence tends to infinity, a typical trajectory after scaling converges uniformly in probability to some deterministiccurve.




ut

Anti-symplectic involutions on rational symplectic 4-manifolds. (arXiv:2005.03142v1 [math.SG])

This is an expanded version of the talk given be the first author at the conference "Topology, Geometry, and Dynamics: Rokhlin - 100". The purpose of this talk was to explain our current results on classification of rational symplectic 4-manifolds equipped with an anti-symplectic involution. Detailed exposition will appear elsewhere.




ut

Exponential decay for negative feedback loop with distributed delay. (arXiv:2005.03136v1 [math.DS])

We derive sufficient conditions for exponential decay of solutions of the delay negative feedback equation with distributed delay. The conditions are written in terms of exponential moments of the distribution. Our method only uses elementary tools of calculus and is robust towards possible extensions to more complex settings, in particular, systems of delay differential equations. We illustrate the applicability of the method to particular distributions - Dirac delta, Gamma distribution, uniform and truncated normal distributions.




ut

Multi-Resolution POMDP Planning for Multi-Object Search in 3D. (arXiv:2005.02878v2 [cs.RO] UPDATED)

Robots operating in household environments must find objects on shelves, under tables, and in cupboards. Previous work often formulate the object search problem as a POMDP (Partially Observable Markov Decision Process), yet constrain the search space in 2D. We propose a new approach that enables the robot to efficiently search for objects in 3D, taking occlusions into account. We model the problem as an object-oriented POMDP, where the robot receives a volumetric observation from a viewing frustum and must produce a policy to efficiently search for objects. To address the challenge of large state and observation spaces, we first propose a per-voxel observation model which drastically reduces the observation size necessary for planning. Then, we present a novel octree-based belief representation which captures beliefs at different resolutions and supports efficient exact belief update. Finally, we design an online multi-resolution planning algorithm that leverages the resolution layers in the octree structure as levels of abstractions to the original POMDP problem. Our evaluation in a simulated 3D domain shows that, as the problem scales, our approach significantly outperforms baselines without resolution hierarchy by 25%-35% in cumulative reward. We demonstrate the practicality of our approach on a torso-actuated mobile robot searching for objects in areas of a cluttered lab environment where objects appear on surfaces at different heights.




ut

Automata Tutor v3. (arXiv:2005.01419v2 [cs.FL] UPDATED)

Computer science class enrollments have rapidly risen in the past decade. With current class sizes, standard approaches to grading and providing personalized feedback are no longer possible and new techniques become both feasible and necessary. In this paper, we present the third version of Automata Tutor, a tool for helping teachers and students in large courses on automata and formal languages. The second version of Automata Tutor supported automatic grading and feedback for finite-automata constructions and has already been used by thousands of users in dozens of countries. This new version of Automata Tutor supports automated grading and feedback generation for a greatly extended variety of new problems, including problems that ask students to create regular expressions, context-free grammars, pushdown automata and Turing machines corresponding to a given description, and problems about converting between equivalent models - e.g., from regular expressions to nondeterministic finite automata. Moreover, for several problems, this new version also enables teachers and students to automatically generate new problem instances. We also present the results of a survey run on a class of 950 students, which shows very positive results about the usability and usefulness of the tool.




ut

Generative Adversarial Networks in Digital Pathology: A Survey on Trends and Future Potential. (arXiv:2004.14936v2 [eess.IV] UPDATED)

Image analysis in the field of digital pathology has recently gained increased popularity. The use of high-quality whole slide scanners enables the fast acquisition of large amounts of image data, showing extensive context and microscopic detail at the same time. Simultaneously, novel machine learning algorithms have boosted the performance of image analysis approaches. In this paper, we focus on a particularly powerful class of architectures, called Generative Adversarial Networks (GANs), applied to histological image data. Besides improving performance, GANs also enable application scenarios in this field, which were previously intractable. However, GANs could exhibit a potential for introducing bias. Hereby, we summarize the recent state-of-the-art developments in a generalizing notation, present the main applications of GANs and give an outlook of some chosen promising approaches and their possible future applications. In addition, we identify currently unavailable methods with potential for future applications.




ut

The growth rate over trees of any family of set defined by a monadic second order formula is semi-computable. (arXiv:2004.06508v3 [cs.DM] UPDATED)

Monadic second order logic can be used to express many classical notions of sets of vertices of a graph as for instance: dominating sets, induced matchings, perfect codes, independent sets or irredundant sets. Bounds on the number of sets of any such family of sets are interesting from a combinatorial point of view and have algorithmic applications. Many such bounds on different families of sets over different classes of graphs are already provided in the literature. In particular, Rote recently showed that the number of minimal dominating sets in trees of order $n$ is at most $95^{frac{n}{13}}$ and that this bound is asymptotically sharp up to a multiplicative constant. We build on his work to show that what he did for minimal dominating sets can be done for any family of sets definable by a monadic second order formula.

We first show that, for any monadic second order formula over graphs that characterizes a given kind of subset of its vertices, the maximal number of such sets in a tree can be expressed as the extit{growth rate of a bilinear system}. This mostly relies on well known links between monadic second order logic over trees and tree automata and basic tree automata manipulations. Then we show that this "growth rate" of a bilinear system can be approximated from above.We then use our implementation of this result to provide bounds on the number of independent dominating sets, total perfect dominating sets, induced matchings, maximal induced matchings, minimal perfect dominating sets, perfect codes and maximal irredundant sets on trees. We also solve a question from D. Y. Kang et al. regarding $r$-matchings and improve a bound from G'orska and Skupie'n on the number of maximal matchings on trees. Remark that this approach is easily generalizable to graphs of bounded tree width or clique width (or any similar class of graphs where tree automata are meaningful).




ut

Transfer Learning for EEG-Based Brain-Computer Interfaces: A Review of Progress Made Since 2016. (arXiv:2004.06286v3 [cs.HC] UPDATED)

A brain-computer interface (BCI) enables a user to communicate with a computer directly using brain signals. Electroencephalograms (EEGs) used in BCIs are weak, easily contaminated by interference and noise, non-stationary for the same subject, and varying across different subjects and sessions. Therefore, it is difficult to build a generic pattern recognition model in an EEG-based BCI system that is optimal for different subjects, during different sessions, for different devices and tasks. Usually, a calibration session is needed to collect some training data for a new subject, which is time consuming and user unfriendly. Transfer learning (TL), which utilizes data or knowledge from similar or relevant subjects/sessions/devices/tasks to facilitate learning for a new subject/session/device/task, is frequently used to reduce the amount of calibration effort. This paper reviews journal publications on TL approaches in EEG-based BCIs in the last few years, i.e., since 2016. Six paradigms and applications -- motor imagery, event-related potentials, steady-state visual evoked potentials, affective BCIs, regression problems, and adversarial attacks -- are considered. For each paradigm/application, we group the TL approaches into cross-subject/session, cross-device, and cross-task settings and review them separately. Observations and conclusions are made at the end of the paper, which may point to future research directions.




ut

Decoding EEG Rhythms During Action Observation, Motor Imagery, and Execution for Standing and Sitting. (arXiv:2004.04107v2 [cs.HC] UPDATED)

Event-related desynchronization and synchronization (ERD/S) and movement-related cortical potential (MRCP) play an important role in brain-computer interfaces (BCI) for lower limb rehabilitation, particularly in standing and sitting. However, little is known about the differences in the cortical activation between standing and sitting, especially how the brain's intention modulates the pre-movement sensorimotor rhythm as they do for switching movements. In this study, we aim to investigate the decoding of continuous EEG rhythms during action observation (AO), motor imagery (MI), and motor execution (ME) for standing and sitting. We developed a behavioral task in which participants were instructed to perform both AO and MI/ME in regard to the actions of sit-to-stand and stand-to-sit. Our results demonstrated that the ERD was prominent during AO, whereas ERS was typical during MI at the alpha band across the sensorimotor area. A combination of the filter bank common spatial pattern (FBCSP) and support vector machine (SVM) for classification was used for both offline and pseudo-online analyses. The offline analysis indicated the classification of AO and MI providing the highest mean accuracy at 82.73$pm$2.38\% in stand-to-sit transition. By applying the pseudo-online analysis, we demonstrated the higher performance of decoding neural intentions from the MI paradigm in comparison to the ME paradigm. These observations led us to the promising aspect of using our developed tasks based on the integration of both AO and MI to build future exoskeleton-based rehabilitation systems.




ut

Hierarchical Neural Architecture Search for Single Image Super-Resolution. (arXiv:2003.04619v2 [cs.CV] UPDATED)

Deep neural networks have exhibited promising performance in image super-resolution (SR). Most SR models follow a hierarchical architecture that contains both the cell-level design of computational blocks and the network-level design of the positions of upsampling blocks. However, designing SR models heavily relies on human expertise and is very labor-intensive. More critically, these SR models often contain a huge number of parameters and may not meet the requirements of computation resources in real-world applications. To address the above issues, we propose a Hierarchical Neural Architecture Search (HNAS) method to automatically design promising architectures with different requirements of computation cost. To this end, we design a hierarchical SR search space and propose a hierarchical controller for architecture search. Such a hierarchical controller is able to simultaneously find promising cell-level blocks and network-level positions of upsampling layers. Moreover, to design compact architectures with promising performance, we build a joint reward by considering both the performance and computation cost to guide the search process. Extensive experiments on five benchmark datasets demonstrate the superiority of our method over existing methods.




ut

Testing Scenario Library Generation for Connected and Automated Vehicles: An Adaptive Framework. (arXiv:2003.03712v2 [eess.SY] UPDATED)

How to generate testing scenario libraries for connected and automated vehicles (CAVs) is a major challenge faced by the industry. In previous studies, to evaluate maneuver challenge of a scenario, surrogate models (SMs) are often used without explicit knowledge of the CAV under test. However, performance dissimilarities between the SM and the CAV under test usually exist, and it can lead to the generation of suboptimal scenario libraries. In this paper, an adaptive testing scenario library generation (ATSLG) method is proposed to solve this problem. A customized testing scenario library for a specific CAV model is generated through an adaptive process. To compensate the performance dissimilarities and leverage each test of the CAV, Bayesian optimization techniques are applied with classification-based Gaussian Process Regression and a new-designed acquisition function. Comparing with a pre-determined library, a CAV can be tested and evaluated in a more efficient manner with the customized library. To validate the proposed method, a cut-in case study was performed and the results demonstrate that the proposed method can further accelerate the evaluation process by a few orders of magnitude.




ut

Evolutionary Dynamics of Higher-Order Interactions. (arXiv:2001.10313v2 [physics.soc-ph] UPDATED)

We live and cooperate in networks. However, links in networks only allow for pairwise interactions, thus making the framework suitable for dyadic games, but not for games that are played in groups of more than two players. To remedy this, we introduce higher-order interactions, where a link can connect more than two individuals, and study their evolutionary dynamics. We first consider a public goods game on a uniform hypergraph, showing that it corresponds to the replicator dynamics in the well-mixed limit, and providing an exact theoretical foundation to study cooperation in networked groups. We also extend the analysis to heterogeneous hypergraphs that describe interactions of groups of different sizes and characterize the evolution of cooperation in such cases. Finally, we apply our new formulation to study the nature of group dynamics in real systems, showing how to extract the actual dependence of the synergy factor on the size of a group from real-world collaboration data in science and technology. Our work is a first step towards the implementation of new actions to boost cooperation in social groups.




ut

SCAttNet: Semantic Segmentation Network with Spatial and Channel Attention Mechanism for High-Resolution Remote Sensing Images. (arXiv:1912.09121v2 [cs.CV] UPDATED)

High-resolution remote sensing images (HRRSIs) contain substantial ground object information, such as texture, shape, and spatial location. Semantic segmentation, which is an important task for element extraction, has been widely used in processing mass HRRSIs. However, HRRSIs often exhibit large intraclass variance and small interclass variance due to the diversity and complexity of ground objects, thereby bringing great challenges to a semantic segmentation task. In this paper, we propose a new end-to-end semantic segmentation network, which integrates lightweight spatial and channel attention modules that can refine features adaptively. We compare our method with several classic methods on the ISPRS Vaihingen and Potsdam datasets. Experimental results show that our method can achieve better semantic segmentation results. The source codes are available at https://github.com/lehaifeng/SCAttNet.




ut

SetRank: Learning a Permutation-Invariant Ranking Model for Information Retrieval. (arXiv:1912.05891v2 [cs.IR] UPDATED)

In learning-to-rank for information retrieval, a ranking model is automatically learned from the data and then utilized to rank the sets of retrieved documents. Therefore, an ideal ranking model would be a mapping from a document set to a permutation on the set, and should satisfy two critical requirements: (1)~it should have the ability to model cross-document interactions so as to capture local context information in a query; (2)~it should be permutation-invariant, which means that any permutation of the inputted documents would not change the output ranking. Previous studies on learning-to-rank either design uni-variate scoring functions that score each document separately, and thus failed to model the cross-document interactions; or construct multivariate scoring functions that score documents sequentially, which inevitably sacrifice the permutation invariance requirement. In this paper, we propose a neural learning-to-rank model called SetRank which directly learns a permutation-invariant ranking model defined on document sets of any size. SetRank employs a stack of (induced) multi-head self attention blocks as its key component for learning the embeddings for all of the retrieved documents jointly. The self-attention mechanism not only helps SetRank to capture the local context information from cross-document interactions, but also to learn permutation-equivariant representations for the inputted documents, which therefore achieving a permutation-invariant ranking model. Experimental results on three large scale benchmarks showed that the SetRank significantly outperformed the baselines include the traditional learning-to-rank models and state-of-the-art Neural IR models.




ut

Over-the-Air Computation Systems: Optimization, Analysis and Scaling Laws. (arXiv:1909.00329v2 [cs.IT] UPDATED)

For future Internet of Things (IoT)-based Big Data applications (e.g., smart cities/transportation), wireless data collection from ubiquitous massive smart sensors with limited spectrum bandwidth is very challenging. On the other hand, to interpret the meaning behind the collected data, it is also challenging for edge fusion centers running computing tasks over large data sets with limited computation capacity. To tackle these challenges, by exploiting the superposition property of a multiple-access channel and the functional decomposition properties, the recently proposed technique, over-the-air computation (AirComp), enables an effective joint data collection and computation from concurrent sensor transmissions. In this paper, we focus on a single-antenna AirComp system consisting of $K$ sensors and one receiver (i.e., the fusion center). We consider an optimization problem to minimize the computation mean-squared error (MSE) of the $K$ sensors' signals at the receiver by optimizing the transmitting-receiving (Tx-Rx) policy, under the peak power constraint of each sensor. Although the problem is not convex, we derive the computation-optimal policy in closed form. Also, we comprehensively investigate the ergodic performance of AirComp systems in terms of the average computation MSE and the average power consumption under Rayleigh fading channels with different Tx-Rx policies. For the computation-optimal policy, we prove that its average computation MSE has a decay rate of $O(1/sqrt{K})$, and our numerical results illustrate that the policy also has a vanishing average power consumption with the increasing $K$, which jointly show the computation effectiveness and the energy efficiency of the policy with a large number of sensors.




ut

Numerical study on the effect of geometric approximation error in the numerical solution of PDEs using a high-order curvilinear mesh. (arXiv:1908.09917v2 [math.NA] UPDATED)

When time-dependent partial differential equations (PDEs) are solved numerically in a domain with curved boundary or on a curved surface, mesh error and geometric approximation error caused by the inaccurate location of vertices and other interior grid points, respectively, could be the main source of the inaccuracy and instability of the numerical solutions of PDEs. The role of these geometric errors in deteriorating the stability and particularly the conservation properties are largely unknown, which seems to necessitate very fine meshes especially to remove geometric approximation error. This paper aims to investigate the effect of geometric approximation error by using a high-order mesh with negligible geometric approximation error, even for high order polynomial of order p. To achieve this goal, the high-order mesh generator from CAD geometry called NekMesh is adapted for surface mesh generation in comparison to traditional meshes with non-negligible geometric approximation error. Two types of numerical tests are considered. Firstly, the accuracy of differential operators is compared for various p on a curved element of the sphere. Secondly, by applying the method of moving frames, four different time-dependent PDEs on the sphere are numerically solved to investigate the impact of geometric approximation error on the accuracy and conservation properties of high-order numerical schemes for PDEs on the sphere.




ut

A Shift Selection Strategy for Parallel Shift-Invert Spectrum Slicing in Symmetric Self-Consistent Eigenvalue Computation. (arXiv:1908.06043v2 [math.NA] UPDATED)

The central importance of large scale eigenvalue problems in scientific computation necessitates the development of massively parallel algorithms for their solution. Recent advances in dense numerical linear algebra have enabled the routine treatment of eigenvalue problems with dimensions on the order of hundreds of thousands on the world's largest supercomputers. In cases where dense treatments are not feasible, Krylov subspace methods offer an attractive alternative due to the fact that they do not require storage of the problem matrices. However, demonstration of scalability of either of these classes of eigenvalue algorithms on computing architectures capable of expressing massive parallelism is non-trivial due to communication requirements and serial bottlenecks, respectively. In this work, we introduce the SISLICE method: a parallel shift-invert algorithm for the solution of the symmetric self-consistent field (SCF) eigenvalue problem. The SISLICE method drastically reduces the communication requirement of current parallel shift-invert eigenvalue algorithms through various shift selection and migration techniques based on density of states estimation and k-means clustering, respectively. This work demonstrates the robustness and parallel performance of the SISLICE method on a representative set of SCF eigenvalue problems and outlines research directions which will be explored in future work.




ut

Single use register automata for data words. (arXiv:1907.10504v2 [cs.FL] UPDATED)

Our starting point are register automata for data words, in the style of Kaminski and Francez. We study the effects of the single-use restriction, which says that a register is emptied immediately after being used. We show that under the single-use restriction, the theory of automata for data words becomes much more robust. The main results are: (a) five different machine models are equivalent as language acceptors, including one-way and two-way single-use register automata; (b) one can recover some of the algebraic theory of languages over finite alphabets, including a version of the Krohn-Rhodes Theorem; (c) there is also a robust theory of transducers, with four equivalent models, including two-way single use transducers and a variant of streaming string transducers for data words. These results are in contrast with automata for data words without the single-use restriction, where essentially all models are pairwise non-equivalent.




ut

Keeping out the Masses: Understanding the Popularity and Implications of Internet Paywalls. (arXiv:1903.01406v4 [cs.CY] UPDATED)

Funding the production of quality online content is a pressing problem for content producers. The most common funding method, online advertising, is rife with well-known performance and privacy harms, and an intractable subject-agent conflict: many users do not want to see advertisements, depriving the site of needed funding.

Because of these negative aspects of advertisement-based funding, paywalls are an increasingly popular alternative for websites. This shift to a "pay-for-access" web is one that has potentially huge implications for the web and society. Instead of a system where information (nominally) flows freely, paywalls create a web where high quality information is available to fewer and fewer people, leaving the rest of the web users with less information, that might be also less accurate and of lower quality. Despite the potential significance of a move from an "advertising-but-open" web to a "paywalled" web, we find this issue understudied.

This work addresses this gap in our understanding by measuring how widely paywalls have been adopted, what kinds of sites use paywalls, and the distribution of policies enforced by paywalls. A partial list of our findings include that (i) paywall use is accelerating (2x more paywalls every 6 months), (ii) paywall adoption differs by country (e.g. 18.75% in US, 12.69% in Australia), (iii) paywalls change how users interact with sites (e.g. higher bounce rates, less incoming links), (iv) the median cost of an annual paywall access is $108 per site, and (v) paywalls are in general trivial to circumvent.

Finally, we present the design of a novel, automated system for detecting whether a site uses a paywall, through the combination of runtime browser instrumentation and repeated programmatic interactions with the site. We intend this classifier to augment future, longitudinal measurements of paywall use and behavior.




ut

Using hierarchical matrices in the solution of the time-fractional heat equation by multigrid waveform relaxation. (arXiv:1706.07632v3 [math.NA] UPDATED)

This work deals with the efficient numerical solution of the time-fractional heat equation discretized on non-uniform temporal meshes. Non-uniform grids are essential to capture the singularities of "typical" solutions of time-fractional problems. We propose an efficient space-time multigrid method based on the waveform relaxation technique, which accounts for the nonlocal character of the fractional differential operator. To maintain an optimal complexity, which can be obtained for the case of uniform grids, we approximate the coefficient matrix corresponding to the temporal discretization by its hierarchical matrix (${cal H}$-matrix) representation. In particular, the proposed method has a computational cost of ${cal O}(k N M log(M))$, where $M$ is the number of time steps, $N$ is the number of spatial grid points, and $k$ is a parameter which controls the accuracy of the ${cal H}$-matrix approximation. The efficiency and the good convergence of the algorithm, which can be theoretically justified by a semi-algebraic mode analysis, are demonstrated through numerical experiments in both one- and two-dimensional spaces.




ut

Compression, inversion, and approximate PCA of dense kernel matrices at near-linear computational complexity. (arXiv:1706.02205v4 [math.NA] UPDATED)

Dense kernel matrices $Theta in mathbb{R}^{N imes N}$ obtained from point evaluations of a covariance function $G$ at locations ${ x_{i} }_{1 leq i leq N} subset mathbb{R}^{d}$ arise in statistics, machine learning, and numerical analysis. For covariance functions that are Green's functions of elliptic boundary value problems and homogeneously-distributed sampling points, we show how to identify a subset $S subset { 1 , dots , N }^2$, with $# S = O ( N log (N) log^{d} ( N /epsilon ) )$, such that the zero fill-in incomplete Cholesky factorisation of the sparse matrix $Theta_{ij} 1_{( i, j ) in S}$ is an $epsilon$-approximation of $Theta$. This factorisation can provably be obtained in complexity $O ( N log( N ) log^{d}( N /epsilon) )$ in space and $O ( N log^{2}( N ) log^{2d}( N /epsilon) )$ in time, improving upon the state of the art for general elliptic operators; we further present numerical evidence that $d$ can be taken to be the intrinsic dimension of the data set rather than that of the ambient space. The algorithm only needs to know the spatial configuration of the $x_{i}$ and does not require an analytic representation of $G$. Furthermore, this factorization straightforwardly provides an approximate sparse PCA with optimal rate of convergence in the operator norm. Hence, by using only subsampling and the incomplete Cholesky factorization, we obtain, at nearly linear complexity, the compression, inversion and approximate PCA of a large class of covariance matrices. By inverting the order of the Cholesky factorization we also obtain a solver for elliptic PDE with complexity $O ( N log^{d}( N /epsilon) )$ in space and $O ( N log^{2d}( N /epsilon) )$ in time, improving upon the state of the art for general elliptic operators.




ut

Mutli-task Learning with Alignment Loss for Far-field Small-Footprint Keyword Spotting. (arXiv:2005.03633v1 [eess.AS])

In this paper, we focus on the task of small-footprint keyword spotting under the far-field scenario. Far-field environments are commonly encountered in real-life speech applications, and it causes serve degradation of performance due to room reverberation and various kinds of noises. Our baseline system is built on the convolutional neural network trained with pooled data of both far-field and close-talking speech. To cope with the distortions, we adopt the multi-task learning scheme with alignment loss to reduce the mismatch between the embedding features learned from different domains of data. Experimental results show that our proposed method maintains the performance on close-talking speech and achieves significant improvement on the far-field test set.




ut

Technical Report of "Deductive Joint Support for Rational Unrestricted Rebuttal". (arXiv:2005.03620v1 [cs.AI])

In ASPIC-style structured argumentation an argument can rebut another argument by attacking its conclusion. Two ways of formalizing rebuttal have been proposed: In restricted rebuttal, the attacked conclusion must have been arrived at with a defeasible rule, whereas in unrestricted rebuttal, it may have been arrived at with a strict rule, as long as at least one of the antecedents of this strict rule was already defeasible. One systematic way of choosing between various possible definitions of a framework for structured argumentation is to study what rationality postulates are satisfied by which definition, for example whether the closure postulate holds, i.e. whether the accepted conclusions are closed under strict rules. While having some benefits, the proposal to use unrestricted rebuttal faces the problem that the closure postulate only holds for the grounded semantics but fails when other argumentation semantics are applied, whereas with restricted rebuttal the closure postulate always holds. In this paper we propose that ASPIC-style argumentation can benefit from keeping track not only of the attack relation between arguments, but also the relation of deductive joint support that holds between a set of arguments and an argument that was constructed from that set using a strict rule. By taking this deductive joint support relation into account while determining the extensions, the closure postulate holds with unrestricted rebuttal under all admissibility-based semantics. We define the semantics of deductive joint support through the flattening method.




ut

p for political: Participation Without Agency Is Not Enough. (arXiv:2005.03534v1 [cs.HC])

Participatory Design's vision of democratic participation assumes participants' feelings of agency in envisioning a collective future. But this assumption may be leaky when dealing with vulnerable populations. We reflect on the results of a series of activities aimed at supporting agentic-future-envisionment with a group of sex-trafficking survivors in Nepal. We observed a growing sense among the survivors that they could play a role in bringing about change in their families. They also became aware of how they could interact with available institutional resources. Reflecting on the observations, we argue that building participant agency on the small and personal interactions is necessary before demanding larger Political participation. In particular, a value of PD, especially for vulnerable populations, can lie in the process itself if it helps participants position themselves as actors in the larger world.




ut

An asynchronous distributed and scalable generalized Nash equilibrium seeking algorithm for strongly monotone games. (arXiv:2005.03507v1 [cs.GT])

In this paper, we present three distributed algorithms to solve a class of generalized Nash equilibrium (GNE) seeking problems in strongly monotone games. The first one (SD-GENO) is based on synchronous updates of the agents, while the second and the third (AD-GEED and AD-GENO) represent asynchronous solutions that are robust to communication delays. AD-GENO can be seen as a refinement of AD-GEED, since it only requires node auxiliary variables, enhancing the scalability of the algorithm. Our main contribution is to prove converge to a variational GNE of the game via an operator-theoretic approach. Finally, we apply the algorithms to network Cournot games and show how different activation sequences and delays affect convergence. We also compare the proposed algorithms to the only other in the literature (ADAGNES), and observe that AD-GENO outperforms the alternative.




ut

Computing with bricks and mortar: Classification of waveforms with a doped concrete blocks. (arXiv:2005.03498v1 [cs.ET])

We present results showing the capability of concrete-based information processing substrate in the signal classification task in accordance with in materio computing paradigm. As the Reservoir Computing is a suitable model for describing embedded in materio computation, we propose that this type of presented basic construction unit can be used as a source for "reservoir of states" necessary for simple tuning of the readout layer. In that perspective, buildings constructed from computing concrete could function as a highly parallel information processor for smart architecture. We present an electrical characterization of the set of samples with different additive concentrations followed by a dynamical analysis of selected specimens showing fingerprints of memfractive properties. Moreover, on the basis of obtained parameters, classification of the signal waveform shapes can be performed in scenarios explicitly tuned for a given device terminal.