der

Datenqualität in der medizinischen Forschung: Leitlinie zum adaptiven Management von Datenqualität in Kohortenstudien und Registern / M. Nonnemacher, D. Nasseh, J. Stausberg ; unter Mitwirkung von U. Bauer [and others]

Online Resource




der

Clinical cases in dermatopathology Dong-Lin Xie, editor

Online Resource




der

Epidemics and the modern world / Mitchell L. Hammond

Online Resource




der

Local wound care for dermatologists / Afsaneh Alavi, Howard I. Maibach, editors

Online Resource




der

Advanced Practice Nursing Leadership: A Global Perspective edited by Susan B. Hassmiller, Joyce Pulcini

Online Resource




der

Oculoplastic Surgery: A Practical Guide to Common Disorders / edited by Essam A. El Toukhy

Online Resource




der

New therapies to prevent or cure auditory disorders Sylvie Pucheu, Kelly E. Radziwon, Richard Salvi, editors

Online Resource




der

Pediatric gender identity: gender-affirming care for transgender & gender diverse youth / edited by Michelle Forcier, Gerrit Van Schalkwyk, Jack L. Turban

Online Resource




der

Build an HTML5 Form With on-Off Input Sliders Using jQuery

Mobile app interfaces have been utilizing on/off sliding switches for a while. These are most commonly found on the settings page where users can update preferences for their account. But web designers have taken notice and have built many open platforms to generate your own on/off switch sliders. In this tutorial I want to look […]




der

Semantics to Screen Readers

As a child of the ’90s, one of my favorite movie quotes is from Harriet the Spy: “there are as many ways to live as there are people in this world, and each one deserves a closer look.” Likewise, there are as many ways to browse the web as there are people online. We each bring unique context to our web experience based on our values, technologies, environments, minds, and bodies. Assistive technologies (ATs), which are hardware and software that help us perceive and interact with digital content, come in diverse forms. ATs can use a whole host of user input, ranging from clicks and keystrokes to minor muscle movements. ATs may also present digital content in a variety of forms, such as Braille displays, color-shifted views, and decluttered user interfaces (UIs). One more commonly known type of AT is the screen reader. Programs such as JAWS, Narrator, NVDA, and VoiceOver can take digital content and present it to users through voice output, may display this output visually on the user’s screen, and can have Braille display and/or screen magnification capabilities built in. If you make websites, you may have tested your sites with a screen reader. But how do these and other assistive programs actually access your content? What information do they use? We’ll take a detailed step-by-step view of how the process works. (For simplicity we’ll continue to reference “browsers” and “screen readers” throughout this article. These are essentially shorthands for “browsers and other applications,” and “screen readers and other assistive technologies,” respectively.)

The semantics-to-screen-readers pipeline

Accessibility application programming interfaces (APIs) create a useful link between user applications and the assistive technologies that wish to interact with them. Accessibility APIs facilitate communicating accessibility information about user interfaces (UIs) to the ATs. The API expects information to be structured in a certain way, so that whether a button is properly marked up in web content or is sitting inside a native app taskbar, a button is a button is a button as far as ATs are concerned. That said, screen readers and other ATs can do some app-specific handling if they wish. On the web specifically, there are some browser and screen reader combinations where accessibility API information is supplemented by access to DOM structures. For this article, we’ll focus specifically on accessibility APIs as a link between web content and the screen reader. Here’s the breakdown of how web content reaches screen readers via accessibility APIs: The web developer uses host language markup (HTML, SVG, etc.), and potentially roles, states, and properties from the ARIA suite where needed to provide the semantics of their content. Semantic markup communicates what type an element is, what content it contains, what state it’s in, etc. The browser rendering engine (alternatively referred to as a “user agent”) takes this information and maps it into an accessibility API. Different accessibility APIs are available on different operating systems, so a browser that is available on multiple platforms should support multiple accessibility APIs. Accessibility API mappings are maintained on a lower level than web platform APIs, so web developers don’t directly interact with accessibility APIs. The accessibility API includes a collection of interfaces that browsers and other apps can plumb into, and generally acts as an intermediary between the browser and the screen reader. Accessibility APIs provide interfaces for representing the structure, relationships, semantics, and state of digital content, as well as means to surface dynamic changes to said content. Accessibility APIs also allow screen readers to retrieve and interact with content via the API. Again, web developers don’t interact with these APIs directly; the rendering engine handles translating web content into information useful to accessibility APIs.

Examples of accessibility APIs

The screen reader uses client-side methods from these accessibility APIs to retrieve and handle information exposed by the browser. In browsers where direct access to the Document Object Model (DOM) is permitted, some screen readers may also take additional information from the DOM tree. A screen reader can also interact with apps that use differing accessibility APIs. No matter where they get their information, screen readers can dream up any interaction modes they want to provide to their users (I’ve provided links to screen reader commands at the end of this article). Testing by site creators can help identify content that feels awkward in a particular navigation mode, such as multiple links with the same text (“Learn more”), as one example.

Example of this pipeline: surfacing a button element to screen reader users

Let’s suppose for a moment that a screen reader wants to understand what object is next in the accessibility tree (which I’ll explain further in the next section), so it can surface that object to the user as they navigate to it. The flow will go a little something like this:
Diagram illustrating the steps involved in presenting the next object in a document; detailed list follows
  1. The screen reader requests information from the API about the next accessible object, relative to the current object.
  2. The API (as an intermediary) passes along this request to the browser.
  3. At some point, the browser references DOM and style information, and discovers that the relevant element is a non-hidden button: <button>Do a thing</button>.
  4. The browser maps this HTML button into the format the API expects, such as an accessible object with various properties: Name: Do a thing, Role: Button.
  5. The API returns this information from the browser to the screen reader.
  6. The screen reader can then surface this object to the user, perhaps stating “Button, Do a thing.”
Suppose that the screen reader user would now like to “click” this button. Here’s how their action flows all the way back to web content:
Diagram illustrating the steps involved in routing a screen reader click to web content; detailed list follows
  1. The user provides a particular screen reader command, such as a keystroke or gesture.
  2. The screen reader calls a method into the API to invoke the button.
  3. The API forwards this interaction to the browser.
  4. How a browser may respond to incoming interactions depends on the context, but in this case the browser can raise this as a “click” event through web APIs. The browser should give no indication that the click came from an assistive technology, as doing so would violate the user’s right to privacy.
  5. The web developer has registered a JavaScript event listener for clicks; their callback function is now executed as if the user clicked with a mouse.
Now that we have a general sense of the pipeline, let’s go into a little more detail on the accessibility tree.

The accessibility tree

Dev Tools in Microsoft Edge showing the DOM tree and accessibility tree side by side; there are more nodes in the DOM tree
The accessibility tree is a hierarchical representation of elements in a UI or document, as computed for an accessibility API. In modern browsers, the accessibility tree for a given document is a separate, parallel structure to the DOM tree. “Parallel” does not necessarily mean there is a 1:1 match between the nodes of these two trees. Some elements may be excluded from the accessibility tree, for example if they are hidden or are not semantically useful (think non-focusable wrapper divs without any semantics added by a web developer). This idea of a hierarchical structure is somewhat of an abstraction. The definition of what exactly an accessibility tree is in practice has been debated and partially defined in multiple places, so implementations may differ in various ways. For example, it’s not actually necessary to generate accessible objects for every element in the DOM whenever the DOM tree is constructed. As a performance consideration, a browser could choose to deal with only a subset of objects and their relationships at a time—that is, however much is necessary to fulfill the requests coming from ATs. The rendering engine could make these computations during all user sessions, or only do so when assistive technologies are actively running. Generally speaking, modern web browsers wait until after style computation to build up any accessible objects. Browsers wait in part because generated content (such as ::before and ::after) can contain text that can participate in calculation of the accessible object’s name. CSS styles can also impact accessible objects in other various ways: text styling can come through as attributes on accessible text ranges. Display property values can impact the computation of line text ranges. These are just a few ways in which style can impact accessibility semantics. Browsers may also use different structures as the basis for accessible object computation. One rendering engine may walk the DOM tree and cross-reference style computations to build up parallel tree structures; another engine may use only the nodes that are available in a style tree in order to build up their accessibility tree. User agent participants in the standards community are currently thinking through how we can better document our implementation details, and whether it might make sense to standardize more of these details further down the road. Let’s now focus on the branches of this tree, and explore how individual accessibility objects are computed.

Building up accessible objects

From API to API, an accessible object will generally include a few things:
  • Role, or the type of accessible object (for example, Button). The role tells a user how they can expect to interact with the control. It is typically presented when screen reader focus moves onto the accessible object, and it can be used to provide various other functionalities, such as skipping around content via one type of object.
  • Name, if specified. The name is an (ideally short) identifier that better helps the user identify and understand the purpose of an accessible object. The name is often presented when screen focus moves to the object (more on this later), can be used as an identifier when presenting a list of available objects, and can be used as a hook for functionalities such as voice commands.
  • Description and/or help text, if specified. We’ll use “Description” as a shorthand. The Description can be considered supplemental to the Name; it’s not the main identifier but can provide further information about the accessible object. Sometimes this is presented when moving focus to the accessible object, sometimes not; this variation depends on both the screen reader’s user experience design and the user’s chosen verbosity settings.
  • Properties and methods surfacing additional semantics. For simplicity’s sake, we won’t go through all of these. For your awareness, properties can include details like layout information or available interactions (such as invoking the element or modifying its value).
Let’s walk through an example using markup for a simple mood tracker. We’ll use simplified property names and values, because these can differ between accessibility APIs.
<form>
  <label for="mood">On a scale of 1–10, what is your mood today?</label>
  <input id="mood" type="range"
       min="1" max="10" value="5"
       aria-describedby="helperText" />
  <p id="helperText">Some helpful pointers about how to rate your mood.</p>
  <!-- Using a div with button role for the purposes of showing how the accessibility tree is created. Please use the button element! -->
  <div tabindex="0" role="button">Log Mood</div>
</form>
First up is our form element. This form doesn’t have any attributes that would give it an accessible Name, and a form landmark without a Name isn’t very useful when jumping between landmarks. Therefore, HTML mapping standards specify that it should be mapped as a group. Here’s the beginning of our tree:
  • Role: Group
Next up is the label. This one doesn’t have an accessible Name either, so we’ll just nest it as an object of role “Label” underneath the form:
  • Role: Group
    • Role: Label
Let’s add the range input, which will map into various APIs as a “Slider.” Due to the relationship created by the for attribute on the label and id attribute on the input, this slider will take its Name from the label contents. The aria-describedby attribute is another id reference and points to a paragraph with some text content, which will be used for the slider’s Description. The slider object’s properties will also store “labelledby” and “describedby” relationships pointing to these other elements. And it will specify the current, minimum, and maximum values of the slider. If one of these range values were not available, ARIA standards specify what should be the default value. Our updated tree:
  • Role: Group
    • Role: Label
    • Role: Slider Name: On a scale of 1–10, what is your mood today? Description: Some helpful pointers about how to rate your mood. LabelledBy: [label object] DescribedBy: helperText ValueNow: 5 ValueMin: 1 ValueMax: 10
The paragraph will be added as a simple paragraph object (“Text” or “Group” in some APIs):
  • Role: Group
    • Role: Label
    • Role: Slider Name: On a scale of 1–10, what is your mood today? Description: Some helpful pointers about how to rate your mood. LabelledBy: [label object] DescribedBy: helperText ValueNow: 5 ValueMin: 1 ValueMax: 10
    • Role: Paragraph
The final element is an example of when role semantics are added via the ARIA role attribute. This div will map as a Button with the name “Log Mood,” as buttons can take their name from their children. This button will also be surfaced as “invokable” to screen readers and other ATs; special types of buttons could provide expand/collapse functionality (buttons with the aria-expanded attribute), or toggle functionality (buttons with the aria-pressed attribute). Here’s our tree now:
  • Role: Group
    • Role: Label
    • Role: Slider Name: On a scale of 1–10, what is your mood today? Description: Some helpful pointers about how to rate your mood. LabelledBy: [label object] DescribedBy: helperText ValueNow: 5 ValueMin: 1 ValueMax: 10
    • Role: Paragraph
    • Role: Button Name: Log Mood

On choosing host language semantics

Our sample markup mentions that it is preferred to use the HTML-native button element rather than a div with a role of “button.” Our buttonified div can be operated as a button via accessibility APIs, as the ARIA attribute is doing what it should—conveying semantics. But there’s a lot you can get for free when you choose native elements. In the case of button, that includes focus handling, user input handling, form submission, and basic styling. Aaron Gustafson has what he refers to as an “exhaustive treatise” on buttons in particular, but generally speaking it’s great to let the web platform do the heavy lifting of semantics and interaction for us when we can. ARIA roles, states, and properties are still a great tool to have in your toolbelt. Some good use cases for these are
  • providing further semantics and relationships that are not naturally expressed in the host language;
  • supplementing semantics in markup we perhaps don’t have complete control over;
  • patching potential cross-browser inconsistencies;
  • and making custom elements perceivable and operable to users of assistive technologies.

Notes on inclusion or exclusion in the tree

Standards define some rules around when user agents should exclude elements from the accessibility tree. Excluded elements can include those hidden by CSS, or the aria-hidden or hidden attributes; their children would be excluded as well. Children of particular roles (like checkbox) can also be excluded from the tree, unless they meet special exceptions. The full rules can be found in the “Accessibility Tree” section of the ARIA specification. That being said, there are still some differences between implementers, some of which include more divs and spans in the tree than others do.

Notes on name and description computation

How names and descriptions are computed can be a bit confusing. Some elements have special rules, and some ARIA roles allow name computation from the element’s contents, whereas others do not. Name and description computation could probably be its own article, so we won’t get into all the details here (refer to “Further reading and resources” for some links). Some short pointers:
  • aria-label, aria-labelledby, and aria-describedby take precedence over other means of calculating name and description.
  • If you expect a particular HTML attribute to be used for the name, check the name computation rules for HTML elements. In your scenario, it may be used for the full description instead.
  • Generated content (::before and ::after) can participate in the accessible name when said name is taken from the element’s contents. That being said, web developers should not rely on pseudo-elements for non-decorative content, as this content could be lost when a stylesheet fails to load or user styles are applied to the page.
When in doubt, reach out to the community! Tag questions on social media with “#accessibility.” “#a11y” is a common shorthand; the “11” stands for “11 middle letters in the word ‘accessibility.’” If you find an inconsistency in a particular browser, file a bug! Bug tracker links are provided in “Further reading and resources.”

Not just accessible objects

Besides a hierarchical structure of objects, accessibility APIs also offer interfaces that allow ATs to interact with text. ATs can retrieve content text ranges, text selections, and a variety of text attributes that they can build experiences on top of. For example, if someone writes an email and uses color alone to highlight their added comments, the person reading the email could increase the verbosity of speech output in their screen reader to know when they’re encountering phrases with that styling. However, it would be better for the email author to include very brief text labels in this scenario. The big takeaway here for web developers is to keep in mind that the accessible name of an element may not always be surfaced in every navigation mode in every screen reader. So if your aria-label text isn’t being read out in a particular mode, the screen reader may be primarily using text interfaces and only conditionally stopping on objects. It may be worth your while to consider using text content—even if visually hidden—instead of text via an ARIA attribute. Read more thoughts on aria-label and aria-labelledby.

Accessibility API events

It is the responsibility of browsers to surface changes to content, structure, and user input. Browsers do this by sending the accessibility API notifications about various events, which screen readers can subscribe to; again, for performance reasons, browsers could choose to send notifications only when ATs are active. Let’s suppose that a screen reader wants to surface changes to a live region (an element with role="alert" or aria-live):
Diagram illustrating the steps involved in announcing a live region via a screen reader; detailed list follows
  1. The screen reader subscribes to event notifications; it could subscribe to notifications of all types, or just certain types as categorized by the accessibility API. Let’s assume in our example that the screen reader is at least listening to live region change events.
  2. In the web content, the web developer changes the text content of a live region.
  3. The browser (provider) recognizes this as a live region change event, and sends the accessibility API a notification.
  4. The API passes this notification along to the screen reader.
  5. The screen reader can then use metadata from the notification to look up the relevant accessible objects via the accessibility API, and can surface the changes to the user.
ATs aren’t required to do anything with the information they retrieve. This can make it a bit trickier as a web developer to figure out why a screen reader isn’t announcing a change: it may be that notifications aren’t being raised (for example, because a browser is not sending notifications for a live region dynamically inserted into web content), or the AT is not subscribed or responding to that type of event.

Testing with screen readers and dev tools

While conformance checkers can help catch some basic accessibility issues, it’s ideal to walk through your content manually using a variety of contexts, such as
  • using a keyboard only;
  • with various OS accessibility settings turned on;
  • and at different zoom levels and text sizes, and so on.
As you do this, keep in mind the Web Content Accessibility Guidelines (WCAG 2.1), which give general guidelines around expectations for inclusive web content. If you can test with users after your own manual test passes, all the better! Robust accessibility testing could probably be its own series of articles. In this one, we’ll go over some tips for testing with screen readers, and catching accessibility errors as they are mapped into the accessibility API in a more general sense.

Screen reader testing

Screen readers exist in many forms: some are pre-installed on the operating system and others are separate applications that in some cases are free to download. The WebAIM screen reader user survey provides a list of commonly used screen reader and browser combinations among survey participants. The “Further reading and resources” section at the end of this article includes full screen reader user docs, and Deque University has a great set of screen reader command cheat sheets that you can refer to. Some actions you might take to test your content:
  • Read the next/previous item.
  • Read the next/previous line.
  • Read continuously from a particular point.
  • Jump by headings, landmarks, and links.
  • Tab around focusable elements only.
  • Get a summary of all elements of a particular type within the page.
  • Search the page for specific content.
  • Use table-specific commands to interact with your tables.
  • Jump around by form field; are field instructions discoverable in this navigational mode?
  • Use keyboard commands to interact with all interactive elements. Are your JavaScript-driven interactions still operable with screen readers (which can intercept key input in certain modes)? WAI-ARIA Authoring Practices 1.1 includes notes on expected keyboard interactions for various widgets.
  • Try out anything that creates a content change or results in navigating elsewhere. Would it be obvious, via screen reader output, that a change occurred?

Tracking down the source of unexpected behavior

If a screen reader does not announce something as you’d expect, here are a few different checks you can run:
  • Does this reproduce with the same screen reader in multiple browsers on this OS? It may be an issue with the screen reader or your expectation may not match the screen reader’s user experience design. For example, a screen reader may choose to not expose the accessible name of a static, non-interactive element. Checking the user docs or filing a screen reader issue with a simple test case would be a great place to start.
  • Does this reproduce with multiple screen readers in the same browser, but not in other browsers on this OS? The browser in question may have an issue, there may be compatibility differences between browsers (such as a browser doing extra helpful but non-standard computations), or a screen reader’s support for a specific accessibility API may vary. Filing a browser issue with a simple test case would be a great place to start; if it’s not a browser bug, the developer can route it to the right place or make a code suggestion.
  • Does this reproduce with multiple screen readers in multiple browsers? There may be something you can adjust in your code, or your expectations may differ from standards and common practices.
  • How does this element’s accessibility properties and structure show up in browser dev tools?

Inspecting accessibility trees and properties in dev tools

Major modern browsers provide dev tools to help you observe the structure of the accessibility tree as well as a given element’s accessibility properties. By observing which accessible objects are generated for your elements and which properties are exposed on a given element, you may be able to pinpoint issues that are occurring either in front-end code or in how the browser is mapping your content into the accessibility API. Let’s suppose that we are testing this piece of code in Microsoft Edge with a screen reader:
<div class="form-row">
  <label>Favorite color</label>
  <input id="myTextInput" type="text" />
</div>
We’re navigating the page by form field, and when we land on this text field, the screen reader just tells us this is an “edit” control—it doesn’t mention a name for this element. Let’s check the tools for the element’s accessible name. 1. Inspect the element to bring up the dev tools.
The Microsoft Edge dev tools, with an input element highlighted in the DOM tree
2. Bring up the accessibility tree for this page by clicking the accessibility tree button (a circle with two arrows) or pressing Ctrl+Shift+A (Windows).
The accessibility tree button activated in the Microsoft Edge dev tools
Reviewing the accessibility tree is an extra step for this particular flow but can be helpful to do. When the Accessibility Tree pane comes up, we notice there’s a tree node that just says “textbox:,” with nothing after the colon. That suggests there’s not a name for this element. (Also notice that the div around our form input didn’t make it into the accessibility tree; it was not semantically useful). 3. Open the Accessibility Properties pane, which is a sibling of the Styles pane. If we scroll down to the Name property—aha! It’s blank. No name is provided to the accessibility API. (Side note: some other accessibility properties are filtered out of this list by default; toggle the filter button—which looks like a funnel—in the pane to get the full list).
The Accessibility Properties pane open in Microsoft Edge dev tools, in the same area as the Styles pane
4. Check the code. We realize that we didn’t associate the label with the text field; that is one strategy for providing an accessible name for a text input. We add for="myTextInput" to the label:
<div class="form-row">
  <label for="myTextInput">Favorite color</label>
  <input id="myTextInput" type="text" />
</div>
And now the field has a name:
The accessible Name property set to the value of “Favorite color” inside Microsoft Edge dev tools
In another use case, we have a breadcrumb component, where the current page link is marked with aria-current="page":
<nav class="breadcrumb" aria-label="Breadcrumb">
  <ol>
    <li>
      <a href="/cat/">Category</a>
    </li>
    <li>
      <a href="/cat/sub/">Sub-Category</a>
    </li>
    <li>
      <a aria-current="page" href="/cat/sub/page/">Page</a>
    </li>
  </ol>
</nav>
When navigating onto the current page link, however, we don’t get any indication that this is the current page. We’re not exactly sure how this maps into accessibility properties, so we can reference a specification like Core Accessibility API Mappings 1.2 (Core-AAM). Under the “State and Property Mapping” table, we find mappings for “aria-current with non-false allowed value.” We can check for these listed properties in the Accessibility Properties pane. Microsoft Edge, at the time of writing, maps into UIA (UI Automation), so when we check AriaProperties, we find that yes, “current=page” is included within this property value.
The accessible Name property set to the value of “Favorite color” inside Microsoft Edge dev tools
Now we know that the value is presented correctly to the accessibility API, but the particular screen reader is not using the information. As a side note, Microsoft Edge’s current dev tools expose these accessibility API properties quite literally. Other browsers’ dev tools may simplify property names and values to make them easier to read, particularly if they support more than one accessibility API. The important bit is to find if there’s a property with roughly the name you expect and whether its value is what you expect. You can also use this method of checking through the property names and values if mapping specs, like Core-AAM, are a bit intimidating!

Advanced accessibility tools

While browser dev tools can tell us a lot about the accessibility semantics of our markup, they don’t generally include representations of text ranges or event notifications. On Windows, the Windows SDK includes advanced tools that can help debug these parts of MSAA or UIA mappings: Inspect and AccEvent (Accessible Event Watcher). Using these tools presumes knowledge of the Windows accessibility APIs, so if this is too granular for you and you’re stuck on an issue, please reach out to the relevant browser team! There is also an Accessibility Inspector in Xcode on MacOS, with which you can inspect web content in Safari. This tool can be accessed by going to Xcode > Open Developer Tool > Accessibility Inspector.

Diversity of experience

Equipped with an accessibility tree, detailed object information, event notifications, and methods for interacting with accessible objects, screen readers can craft a browsing experience tailored to their audiences. In this article, we’ve used the term “screen readers” as a proxy for a whole host of tools that may use accessibility APIs to provide the best user experience possible. Assistive technologies can use the APIs to augment presentation or support varying types of user input. Examples of other ATs include screen magnifiers, cognitive support tools, speech command programs, and some brilliant new app that hasn’t been dreamed up yet. Further, assistive technologies of the same “type” may differ in how they present information, and users who share the same tool may further adjust settings to their liking. As web developers, we don’t necessarily need to make sure that each instance surfaces information identically, because each user’s preferences will not be exactly the same. Our aim is to ensure that no matter how a user chooses to explore our sites, content is perceivable, operable, understandable, and robust. By testing with a variety of assistive technologies—including but not limited to screen readers—we can help create a better web for all the many people who use it.

Further reading and resources




der

Accessibility for Vestibular Disorders: How My Temporary Disability Changed My Perspective

Accessibility can be tricky. There are plenty of conditions to take into consideration, and many technical limitations and weird exceptions that make it quite hard to master for most designers and developers.

I never considered myself an accessibility expert, but I took great pride in making my projects Web Content Accessibility Guidelines (WCAG) compliant…ish. They would pass most automated tests, show perfectly in the accessibility tree, and work quite well with keyboard navigation. I would even try (and fail) to use a screen reader every now and then.

But life would give me a lesson I would probably never learn otherwise: last October, my abled life took a drastic change—I started to feel extremely dizzy, with a constant sensation of falling or spinning to the right. I was suffering from a bad case of vertigo caused by labyrinthitis that made it impossible to get anything done.

Vertigo can have a wide range of causes, the most common being a viral infection or tiny calcium crystal free floating in the inner ear, which is pretty much our body’s accelerometer. Any disruption in there sends the brain confusing signals about the body’s position, which causes really heavy nausea, dizziness, and headaches. If you’ve ever felt seasick, it’s quite a similar vibe. If not, think about that feeling when you just get off a rollercoaster…it’s like that, only all day long.

For most people, vertigo is something they’ll suffer just once in a lifetime, and it normally goes away in a week or two. Incidence is really high, with some estimates claiming that up to 40% of the population suffers vertigo at least once in their lifetime. Some people live all their lives with it (or with similar symptoms caused by a range of diseases and syndromes grouped under the umbrella term of vestibular disorders), with 4% of US adults reporting chronic problems with balance, and an additional 1.1% reporting chronic dizziness, according to the American Speech-Language-Hearing Association.

In my case, it was a little over a month. Here’s what I learned while going through it.

Slants can trigger vestibular symptoms

It all started as I was out for my daily jog. I felt slightly dizzy, then suddenly my vision got totally distorted. Everything appeared further away, like looking at a fun house’s distortion mirror. I stumbled back home and rested; at that moment I believed I might have over-exercised, and that hydration, food, and rest were all I needed. Time would prove me wrong.

What I later learned was that experiencing vertigo is a constant war between one of your inner ears telling the brain “everything is fine, we’re level and still” and the other ear shouting “oh my God, we’re falling, we’re falling!!!” Visual stimuli can act as an intermediary, supporting one ear’s message or the other’s. Vertigo can also work in the opposite way, with the dizziness interfering with your vision.

I quickly found that when symptoms peaked, staring at a distant object would ease the falling sensation somewhat.

In the same fashion, some visual stimuli would worsen it.

Vertical slants were a big offender in that sense. For instance, looking at a subtle vertical slant (the kind that you’d have to look at twice to make sure it’s not perfectly vertical) on a webpage would instantly trigger symptoms for me. Whether it was a page-long slant used to create some interest beside text or a tiny decoration to mark active tabs, looking at anything with slight slants would instantly send me into the rollercoaster.

Horizontal slants (whatever the degree) and harder vertical slants wouldn’t cause these issues.

My best guess is that slight vertical slants can look like forced perspective and therefore reinforce the falling-from-height sensation, so I would recommend avoiding vertical slants if you can, or make them super obvious. A slight slant looks like perspective, a harder one looks like a triangle.

Target size matters (even on mouse-assisted devices)

After a magnetic resonance imaging (MRI) scan, some tests to discard neurological conditions, and other treatments that proved ineffective, I was prescribed Cinnarizine.

Cinnarizine is a calcium channel blocker—to put it simply, it prevents the malfunctioning inner ear “accelerometer” from sending incorrect info to the brain. 
And it worked wonders. After ten days of being barely able to get out of bed, I was finally getting something closer to my normal life. I would still feel dizzy all the time, with some peaks throughout the day, but for the most part, it was much easier.

At this point, I was finally able to use the computer (but still unable to produce any code at all). To make the best of it, I set on a mission to self-experiment on accessibility for vestibular disorders. In testing, I found that one of the first things that struck me was that I would always miss targets (links and buttons).

I’m from the generation that grew up with desktop computers, so using a mouse is second nature. The pointer is pretty much an extension of my mind, as it is for many who use it regularly. But while Cinnarizine helped with the dizziness, it has a common side effect of negatively impacting coordination and fine motor skills (it is recommended not to drive or operate machinery while under treatment). It was not a surprise when I realized it would be much harder to get the pointer to do what I intended.

The common behavior would be: moving the pointer past the link I intended to click, clicking before reaching it at all, or having to try multiple times to click on smaller targets.

Success Criterion 2.5.5 Target Size (Level AAA) of the World Wide Web Consortium (W3C)’s WCAG recommends bigger target sizes so users can activate them easily. The obvious reason for this is that it’s harder to pinpoint targets on smaller screens with coarser inputs (i.e., touchscreens of mobile devices). A fairly common practice for developers is to set bigger target sizes for smaller viewport widths (assuming that control challenges are only touch-related), while neglecting the issue on big screens expected to be used with mouse input. I know I’m guilty of that myself.

Instead of targeting this behavior for just smaller screen sizes, there are plenty of reasons to create larger target sizes on all devices: it will benefit users with limited vision (when text is scaled up accordingly and colors are of sufficient contrast), users with mobility impairments such as hand tremors, and of course, users with difficulty with fine motor skills.

Font size and spacing

Even while “enjoying” the ease of symptoms provided by the treatment, reading anything still proved to be a challenge for the following three weeks.

I was completely unable to use mobile devices while suffering vertigo due to the smaller font sizes and spacing, so I was forced to use my desktop computer for everything.

I can say I was experiencing something similar to users with mild forms of dyslexia or attention disorders: whenever I got to a website that didn’t follow good font styling, I would find myself reading the same line over and over again.

This proves once again that accessibility is intersectional: when we improve things for a particular purpose it usually benefits users with other challenges as well. I used to believe recommendations on font styles were mostly intended for the nearsighted and those who have dyslexia. Turns out they are also critical for those with vertigo, and even for those with some cognitive differences. At the end of the day, everybody benefits from better readability.

Some actions you can take to improve readability are:

  • Keep line height to at least 1.5 times the font size (i.e., line-height: 1.5).
  • Set the spacing between paragraphs to at least 2.0 times the font size. We can do this by adjusting the margins using relative units such as em.
  • Letter spacing should be at least 0.12 times the font size. We can adjust this by using the letter-spacing CSS property, perhaps setting it in a relative unit.
  • Make sure to have good contrast between text and its background.
  • Keep font-weight at a reasonable level for the given font-family. Some fonts have thin strokes that make them harder to read. When using thinner fonts, try to improve contrast and font size accordingly, even more than what WCAG would suggest.
  • Choose fonts that are easy to read. There has been a large and still inconclusive debate on which font styles are better for users, but one thing I can say for sure is that popular fonts (as in fonts that the user might be already familiar with) are generally the least challenging for users with reading issues.

WCAG recommendations on text are fairly clear and fortunately are the most commonly implemented of recommendations, but even they can still fall short sometimes. So, better to follow specific guides on accessible text and your best judgement. Passing automated tests does not guarantee actual accessibility.

Another issue on which my experience with vertigo proved to be similar to that of people with dyslexia and attention disorders was how hard it was for me to keep my attention in just one place. In that sense…

Animations are bad (and parallax is pure evil)

Val Head has already covered visually-triggered vestibular disorders in an outstanding article, so I would recommend giving it a good read if you haven’t already.

To summarize, animations can trigger nausea, dizziness, and headaches in some users, so we should use them purposely and responsibly.

While most animations did not trigger my symptoms, parallax scrolling did. I’d never been a fan of parallax to begin with, as I found it confusing. And when you’re experiencing vertigo, the issues introduced by parallax scrolling compound.

Really, there are no words to describe just how bad a simple parallax effect, scrolljacking, or even background-attachment: fixed would make me feel. I would rather jump on one of those 20-G centrifuges astronauts use than look at a website with parallax scrolling.

Every time I encountered it, I would put the bucket beside me to good use and be forced to lie in bed for hours as I felt the room spinning around me, and no meds could get me out of it. It was THAT bad.

Though normal animations did not trigger a reaction as severe, they still posed a big problem. The extreme, conscious, focused effort it took to read would make it such that anything moving on the screen would instantly break my focus, and force me to start the paragraph all over. And I mean anything.

I would constantly find myself reading a website only to have the typical collapsing navigation bar on scroll distract me just enough that I’d totally lose count of where I was at. Autoplaying carousels were so annoying I would delete them using dev tools as soon as they showed up. Background videos would make me get out of the website desperately.

Over time I started using mouse selection as a pointer; a visual indication of what I’d already read so I could get back to it whenever something distracted me. Then I tried custom stylesheets to disable transforms and animations whenever possible, but that also meant many websites having critical elements not appear at all, as they were implemented to start off-screen or otherwise invisible, and show up on scroll.

Of course, deleting stuff via dev tools or using custom stylesheets is not something we can expect 99.99% of our users to even know about.

So if anything, consider reducing animations to a minimum. Provide users with controls to turn off non-essential animations (WCAG 2.2.3 Animation from Interactions) and to pause, stop, or hide them (WCAG 2.2.2 Pause, Stop, Hide). Implement animations and transitions in such a way that if the user disables them, critical elements still display.

And be extra careful with parallax: my recommendation is to, at the very least, try limiting its use to the header (“hero”) only, and be mindful of getting a smooth, realistic parallax experience. My vertigo self would have said, “just don’t freaking use parallax. Never. EVER.” But I guess that might be a hard idea to sell to stakeholders and designers.

Also consider learning how to use the prefers-reduced-motion feature query. This is a newer addition to the specs (it’s part of the Media Queries Level 5 module , which is at an early Editor’s Draft stage) that allows authors to apply selective styling depending on whether the user has requested the system to minimize the use of animations. OS and browser support for it is still quite limited, but the day will come when we will set any moving thing inside a query for when the user has no-preference, blocking animations from those who choose reduce.

After about a week of wrestling websites to provide a static experience, I remembered something that would prove to be my biggest ally while the vertigo lasted:

Reader mode

Some browsers include a “reader mode” that strips the content from any styling choices, isolates it from any distraction, and provides a perfect WCAG compliant layout for the text to maximize readability.

It is extremely helpful to provide a clear and consistent reading experience throughout multiple websites, especially for users with any kind of reading impairment.

I have to confess: before experiencing my vestibular disorder, I had never used Reader Mode (the formal name varies in browsers) or even checked if my projects were compatible with it. I didn’t even think it was such a useful feature, as a quick search for “reader mode” actually returned quite a few threads by users asking how to disable it or how to take the button for it out of Firefox’s address bar. (It seems some people are unwittingly activating it…perhaps the icon is not clear enough.)

Displaying the button to access Reader Mode is toggled by browser heuristics, which are based on the use (or not) of semantic tags in a page’s HTML. Unfortunately this meant not all websites provided such a “luxury.”

I really wish I wouldn’t have to say this in 2019…but please, please use semantic tags. Correct conversational semantics allow your website to be displayed in Reader Mode, and provide a better experience for users of screen readers. Again, accessibility is intersectional.

Reader Mode proved to be extremely useful while my vertigo lasted. But there was something even better:

Dark color schemes

By the fourth week, I started feeling mostly fine. I opened Visual Studio Code to try to get back to work. In doing so, it served me well to find one more revelation: a light-text-on-dark-background scheme was SO much easier for me to read. (Though I still was not able to return to work at this time.)

I was quite surprised, as I had always preferred light mode with dark-text-on-light-background for reading, and dark mode, with light-text-on-dark for coding. I didn’t know at the time that I was suffering from photophobia (which is a sensitivity to light), which was one of the reasons I found it hard to read on my desktop and to use my mobile device at all.

As far as I know, photophobia is not a common symptom of vestibular disorders, but there are many conditions that will trigger it, so it’s worth looking into for our projects’ accessibility.

CSS is also planning a media query to switch color schemes. Known as prefers-color-scheme, it allows applying styles based on the user’s stated preference for dark or light theming. It’s also part of the Media Queries Level 5 spec, and at the time of writing this article it’s only available in Safari Technology Preview, with Mozilla planning to ship it in the upcoming Firefox 67. Luckily there’s a PostCSS plugin that allows us to use it in most modern browsers by turning prefers-color-schemequeries into color-index queries, which have much better support.

If PostCSS is not your cup of tea, or for whatever reason you cannot use that approach to automate switching color schemes to a user’s preference, try at least to provide a theming option in your app’s configuration. Theming has become extremely simple since the release of CSS Custom Properties, so implementing this sort of switch is relatively easy and will greatly benefit anyone experiencing photophobia.

Moving on

After a month and some days, the vertigo disappeared completely, and I was able to return to work without needing any meds or further treatment. It should stay that way, as for most people it’s a once-in-a-lifetime occurrence.

I went back to my abled life, but the experience changed my mindset for good.

As I said before, I always cared for making my projects compatible for people using keyboard navigation and screen readers. But I learned the hard way that there are plenty of “invisible conditions” that are just as important to take into consideration: vestibular disorders, cognitive differences, dyslexia, and color blindness, just to name a few. I was totally neglecting those most of the time, barely addressing the issues in order to pass automated tests, which means I was unintentionally annoying some users by making websites inaccessible to them.

After my experience with vertigo, I’ve turned to an accessibility-first approach to design and development. Now I ask myself, “am I leaving anyone behind with this decision?,” before dropping a single line of code. Accessibility should never be an afterthought.

Making sure my projects work from the start for those with difficulties also improves the experience for everyone else. Think about how improving text styles for users with dyslexia, vertigo, or visual problems improves readability for all users, or how being able to control animations or choose a color scheme can be critical for users with attention disorders and photophobia, respectively, while also a nice feature for everybody.

It also turned my workflow into a much smoother development experience, as addressing accessibility issues from the beginning can mean a slower start, but it’s also much easier and faster than trying to fix broken accessibility afterwards.

I hope that by sharing my personal experience with vertigo, I’ve illustrated how we can all design and develop a better web for everybody. Remember, we’re all just temporarily abled.





der

The Oxford handbook of consumption / edited by Frederick F. Wherry and Ian Woodward

Dewey Library - HC79.C6 O938 2019




der

Demystifying economic markets and prices: understanding patterns and practices in everyday life / Gregory R. Woirol

Dewey Library - HB221.W64 2019




der

Failure / Arjun Appadurai and Neta Alexander

Dewey Library - HC79.T4 A66 2020




der

Managing socio-ecological production landscapes and seascapes for sustainable communities in Asia: mapping and navigating stakeholders, policy and action / Osamu Saito, Suneetha M Subramanian, Shizuka Hashimoto, Kazuhiko Takeuchi, editors

Online Resource




der

The guide to entrepreneurship: how to create wealth for your company and stakeholders / Michael Szycher

Online Resource




der

The humachine: humankind, machines, and the future of enterprise / Nada R. Sanders and John D. Wood

Dewey Library - HC79.A9 S26 2020




der

The real economy: essays in ethnographic theory / edited by Federico Neiburg and Jane I. Guyer

Online Resource




der

The enchantments of Mammon: how capitalism became the religion of modernity / Eugene McCarraher

Dewey Library - HB501.M443 2019




der

The Political Economy of Southeast Asia: Politics and Uneven Development under Hyperglobalisation / Toby Carroll, Shahar Hameiri, Lee Jones, editors

Online Resource




der

Rescheduling Under Disruptions in Manufacturing Systems: Models and Algorithms / by Dujuan Wang, Yunqiang Yin, Yaochu Jin

Online Resource




der

Extended working life policies: international gender and health perspectives / edited by Áine Ní Léime, Jim Ogg, Martina Rašticová, Debra Street, Clary Krekula, Monika Bédiová, Ignacio Madero-Cabib

Online Resource




der

Economic development under climate change: economy-wide and regional analysis for Ethiopia / Amsalu Woldie Yalew

Online Resource




der

People's car: industrial India and the riddles of populism / Sarasij Majumder

Dewey Library - HC435.3.M35 2019




der

Hotels and highways: the construction of modernization theory in Cold War Turkey / Begüm Adalet

Dewey Library - HC492.A354 2018




der

Imperial metropolis: Los Angeles, Mexico, and the borderlands of American empire, 1865-1941 / Jessica M. Kim

Dewey Library - HC108.L55 K56 2019




der

Globalization under and after socialism: the evolution of transnational capital in Central and Eastern Europe / Besnik Pula

Dewey Library - HC244.P97 2018




der

Political economy in the modern state / Harold A. Innis ; edited and introduced by Robert E. Babe and Edward A. Comor

Dewey Library - HB171.5.I54 2018




der

Expectations: theory and applications from historical perspectives / Arie Arnon, Warren Young, Karine van der Beek, editors

Online Resource




der

Resurgent Asia: diversity in development / Deepak Nayyar ; a study prepared by the United Nations University World Institute for Development Economics Research (UNU-WIDER)

Dewey Library - HC412.N39 2019




der

Transfer state: the idea of a guaranteed income and the politics of redistribution in modern Britain / Peter Sloman.

Dewey Library - HC79.I5 S56 2019




der

AI superpowers: China, Silicon Valley, and the new world order / Kai-Fu Lee

Dewey Library - HC79.I55 L435 2018




der

Hyderabad Airport

Hyderabad Airport




der

LPG cylinders

LPG cylinders




der

Neptune Builders and Developers

Neptune Builders and Developers




der

Turnkey Solutions Provider India

Turnkey Solutions Provider India




der

Logistics Services Providers India

Logistics Services Providers India




der

Confederation of Indian Industry

Confederation of Indian Industry




der

Roads Completed under PMGSY

Roads Completed under PMGSY




der

Berco Undercarriages India

Berco Undercarriages India




der

Bagodara-Vasad under BOT Project

Bagodara-Vasad under BOT Project




der

Federation of Indian Mineral Industries

Federation of Indian Mineral Industries




der

Projects under PPP Model

Projects under PPP Model




der

Order Inflow

Order Inflow





der

Projects comes under EPC Mode

Projects comes under EPC Mode




der

IIT Hyderabad

IIT Hyderabad




der

under-recoveries

under-recoveries




der

Highway Builders

Highway Builders




der

HITEC City Hyderabad

HITEC City Hyderabad