4

Sequential Aggregation of Probabilistic Forecasts -- Applicaton to Wind Speed Ensemble Forecasts. (arXiv:2005.03540v1 [stat.AP])

In the field of numerical weather prediction (NWP), the probabilistic distribution of the future state of the atmosphere is sampled with Monte-Carlo-like simulations, called ensembles. These ensembles have deficiencies (such as conditional biases) that can be corrected thanks to statistical post-processing methods. Several ensembles exist and may be corrected with different statistiscal methods. A further step is to combine these raw or post-processed ensembles. The theory of prediction with expert advice allows us to build combination algorithms with theoretical guarantees on the forecast performance. This article adapts this theory to the case of probabilistic forecasts issued as step-wise cumulative distribution functions (CDF). The theory is applied to wind speed forecasting, by combining several raw or post-processed ensembles, considered as CDFs. The second goal of this study is to explore the use of two forecast performance criteria: the Continous ranked probability score (CRPS) and the Jolliffe-Primo test. Comparing the results obtained with both criteria leads to reconsidering the usual way to build skillful probabilistic forecasts, based on the minimization of the CRPS. Minimizing the CRPS does not necessarily produce reliable forecasts according to the Jolliffe-Primo test. The Jolliffe-Primo test generally selects reliable forecasts, but could lead to issuing suboptimal forecasts in terms of CRPS. It is proposed to use both criterion to achieve reliable and skillful probabilistic forecasts.




4

Modeling High-Dimensional Unit-Root Time Series. (arXiv:2005.03496v1 [stat.ME])

In this paper, we propose a new procedure to build a structural-factor model for a vector unit-root time series. For a $p$-dimensional unit-root process, we assume that each component consists of a set of common factors, which may be unit-root non-stationary, and a set of stationary components, which contain the cointegrations among the unit-root processes. To further reduce the dimensionality, we also postulate that the stationary part of the series is a nonsingular linear transformation of certain common factors and idiosyncratic white noise components as in Gao and Tsay (2019a, b). The estimation of linear loading spaces of the unit-root factors and the stationary components is achieved by an eigenanalysis of some nonnegative definite matrix, and the separation between the stationary factors and the white noises is based on an eigenanalysis and a projected principal component analysis. Asymptotic properties of the proposed method are established for both fixed $p$ and diverging $p$ as the sample size $n$ tends to infinity. Both simulated and real examples are used to demonstrate the performance of the proposed method in finite samples.




4

Generative Feature Replay with Orthogonal Weight Modification for Continual Learning. (arXiv:2005.03490v1 [cs.LG])

The ability of intelligent agents to learn and remember multiple tasks sequentially is crucial to achieving artificial general intelligence. Many continual learning (CL) methods have been proposed to overcome catastrophic forgetting. Catastrophic forgetting notoriously impedes the sequential learning of neural networks as the data of previous tasks are unavailable. In this paper we focus on class incremental learning, a challenging CL scenario, in which classes of each task are disjoint and task identity is unknown during test. For this scenario, generative replay is an effective strategy which generates and replays pseudo data for previous tasks to alleviate catastrophic forgetting. However, it is not trivial to learn a generative model continually for relatively complex data. Based on recently proposed orthogonal weight modification (OWM) algorithm which can keep previously learned input-output mappings invariant approximately when learning new tasks, we propose to directly generate and replay feature. Empirical results on image and text datasets show our method can improve OWM consistently by a significant margin while conventional generative replay always results in a negative effect. Our method also beats a state-of-the-art generative replay method and is competitive with a strong baseline based on real data storage.




4

A stochastic user-operator assignment game for microtransit service evaluation: A case study of Kussbus in Luxembourg. (arXiv:2005.03465v1 [physics.soc-ph])

This paper proposes a stochastic variant of the stable matching model from Rasulkhani and Chow [1] which allows microtransit operators to evaluate their operation policy and resource allocations. The proposed model takes into account the stochastic nature of users' travel utility perception, resulting in a probabilistic stable operation cost allocation outcome to design ticket price and ridership forecasting. We applied the model for the operation policy evaluation of a microtransit service in Luxembourg and its border area. The methodology for the model parameters estimation and calibration is developed. The results provide useful insights for the operator and the government to improve the ridership of the service.




4

Transfer Learning for sEMG-based Hand Gesture Classification using Deep Learning in a Master-Slave Architecture. (arXiv:2005.03460v1 [eess.SP])

Recent advancements in diagnostic learning and development of gesture-based human machine interfaces have driven surface electromyography (sEMG) towards significant importance. Analysis of hand gestures requires an accurate assessment of sEMG signals. The proposed work presents a novel sequential master-slave architecture consisting of deep neural networks (DNNs) for classification of signs from the Indian sign language using signals recorded from multiple sEMG channels. The performance of the master-slave network is augmented by leveraging additional synthetic feature data generated by long short term memory networks. Performance of the proposed network is compared to that of a conventional DNN prior to and after the addition of synthetic data. Up to 14% improvement is observed in the conventional DNN and up to 9% improvement in master-slave network on addition of synthetic data with an average accuracy value of 93.5% asserting the suitability of the proposed approach.




4

Deep learning of physical laws from scarce data. (arXiv:2005.03448v1 [cs.LG])

Harnessing data to discover the underlying governing laws or equations that describe the behavior of complex physical systems can significantly advance our modeling, simulation and understanding of such systems in various science and engineering disciplines. Recent advances in sparse identification show encouraging success in distilling closed-form governing equations from data for a wide range of nonlinear dynamical systems. However, the fundamental bottleneck of this approach lies in the robustness and scalability with respect to data scarcity and noise. This work introduces a novel physics-informed deep learning framework to discover governing partial differential equations (PDEs) from scarce and noisy data for nonlinear spatiotemporal systems. In particular, this approach seamlessly integrates the strengths of deep neural networks for rich representation learning, automatic differentiation and sparse regression to approximate the solution of system variables, compute essential derivatives, as well as identify the key derivative terms and parameters that form the structure and explicit expression of the PDEs. The efficacy and robustness of this method are demonstrated on discovering a variety of PDE systems with different levels of data scarcity and noise. The resulting computational framework shows the potential for closed-form model discovery in practical applications where large and accurate datasets are intractable to capture.




4

Feature Selection Methods for Uplift Modeling. (arXiv:2005.03447v1 [cs.LG])

Uplift modeling is a predictive modeling technique that estimates the user-level incremental effect of a treatment using machine learning models. It is often used for targeting promotions and advertisements, as well as for the personalization of product offerings. In these applications, there are often hundreds of features available to build such models. Keeping all the features in a model can be costly and inefficient. Feature selection is an essential step in the modeling process for multiple reasons: improving the estimation accuracy by eliminating irrelevant features, accelerating model training and prediction speed, reducing the monitoring and maintenance workload for feature data pipeline, and providing better model interpretation and diagnostics capability. However, feature selection methods for uplift modeling have been rarely discussed in the literature. Although there are various feature selection methods for standard machine learning models, we will demonstrate that those methods are sub-optimal for solving the feature selection problem for uplift modeling. To address this problem, we introduce a set of feature selection methods designed specifically for uplift modeling, including both filter methods and embedded methods. To evaluate the effectiveness of the proposed feature selection methods, we use different uplift models and measure the accuracy of each model with a different number of selected features. We use both synthetic and real data to conduct these experiments. We also implemented the proposed filter methods in an open source Python package (CausalML).




4

Interpreting Deep Models through the Lens of Data. (arXiv:2005.03442v1 [cs.LG])

Identification of input data points relevant for the classifier (i.e. serve as the support vector) has recently spurred the interest of researchers for both interpretability as well as dataset debugging. This paper presents an in-depth analysis of the methods which attempt to identify the influence of these data points on the resulting classifier. To quantify the quality of the influence, we curated a set of experiments where we debugged and pruned the dataset based on the influence information obtained from different methods. To do so, we provided the classifier with mislabeled examples that hampered the overall performance. Since the classifier is a combination of both the data and the model, therefore, it is essential to also analyze these influences for the interpretability of deep learning models. Analysis of the results shows that some interpretability methods can detect mislabels better than using a random approach, however, contrary to the claim of these methods, the sample selection based on the training loss showed a superior performance.




4

Curious Hierarchical Actor-Critic Reinforcement Learning. (arXiv:2005.03420v1 [cs.LG])

Hierarchical abstraction and curiosity-driven exploration are two common paradigms in current reinforcement learning approaches to break down difficult problems into a sequence of simpler ones and to overcome reward sparsity. However, there is a lack of approaches that combine these paradigms, and it is currently unknown whether curiosity also helps to perform the hierarchical abstraction. As a novelty and scientific contribution, we tackle this issue and develop a method that combines hierarchical reinforcement learning with curiosity. Herein, we extend a contemporary hierarchical actor-critic approach with a forward model to develop a hierarchical notion of curiosity. We demonstrate in several continuous-space environments that curiosity approximately doubles the learning performance and success rates for most of the investigated benchmarking problems.




4

Relevance Vector Machine with Weakly Informative Hyperprior and Extended Predictive Information Criterion. (arXiv:2005.03419v1 [stat.ML])

In the variational relevance vector machine, the gamma distribution is representative as a hyperprior over the noise precision of automatic relevance determination prior. Instead of the gamma hyperprior, we propose to use the inverse gamma hyperprior with a shape parameter close to zero and a scale parameter not necessary close to zero. This hyperprior is associated with the concept of a weakly informative prior. The effect of this hyperprior is investigated through regression to non-homogeneous data. Because it is difficult to capture the structure of such data with a single kernel function, we apply the multiple kernel method, in which multiple kernel functions with different widths are arranged for input data. We confirm that the degrees of freedom in a model is controlled by adjusting the scale parameter and keeping the shape parameter close to zero. A candidate for selecting the scale parameter is the predictive information criterion. However the estimated model using this criterion seems to cause over-fitting. This is because the multiple kernel method makes the model a situation where the dimension of the model is larger than the data size. To select an appropriate scale parameter even in such a situation, we also propose an extended prediction information criterion. It is confirmed that a multiple kernel relevance vector regression model with good predictive accuracy can be obtained by selecting the scale parameter minimizing extended prediction information criterion.




4

SmartExchange: Trading Higher-cost Memory Storage/Access for Lower-cost Computation. (arXiv:2005.03403v1 [cs.LG])

We present SmartExchange, an algorithm-hardware co-design framework to trade higher-cost memory storage/access for lower-cost computation, for energy-efficient inference of deep neural networks (DNNs). We develop a novel algorithm to enforce a specially favorable DNN weight structure, where each layerwise weight matrix can be stored as the product of a small basis matrix and a large sparse coefficient matrix whose non-zero elements are all power-of-2. To our best knowledge, this algorithm is the first formulation that integrates three mainstream model compression ideas: sparsification or pruning, decomposition, and quantization, into one unified framework. The resulting sparse and readily-quantized DNN thus enjoys greatly reduced energy consumption in data movement as well as weight storage. On top of that, we further design a dedicated accelerator to fully utilize the SmartExchange-enforced weights to improve both energy efficiency and latency performance. Extensive experiments show that 1) on the algorithm level, SmartExchange outperforms state-of-the-art compression techniques, including merely sparsification or pruning, decomposition, and quantization, in various ablation studies based on nine DNN models and four datasets; and 2) on the hardware level, the proposed SmartExchange based accelerator can improve the energy efficiency by up to 6.7$ imes$ and the speedup by up to 19.2$ imes$ over four state-of-the-art DNN accelerators, when benchmarked on seven DNN models (including four standard DNNs, two compact DNN models, and one segmentation model) and three datasets.




4

Training and Classification using a Restricted Boltzmann Machine on the D-Wave 2000Q. (arXiv:2005.03247v1 [cs.LG])

Restricted Boltzmann Machine (RBM) is an energy based, undirected graphical model. It is commonly used for unsupervised and supervised machine learning. Typically, RBM is trained using contrastive divergence (CD). However, training with CD is slow and does not estimate exact gradient of log-likelihood cost function. In this work, the model expectation of gradient learning for RBM has been calculated using a quantum annealer (D-Wave 2000Q), which is much faster than Markov chain Monte Carlo (MCMC) used in CD. Training and classification results are compared with CD. The classification accuracy results indicate similar performance of both methods. Image reconstruction as well as log-likelihood calculations are used to compare the performance of quantum and classical algorithms for RBM training. It is shown that the samples obtained from quantum annealer can be used to train a RBM on a 64-bit `bars and stripes' data set with classification performance similar to a RBM trained with CD. Though training based on CD showed improved learning performance, training using a quantum annealer eliminates computationally expensive MCMC steps of CD.




4

Fast multivariate empirical cumulative distribution function with connection to kernel density estimation. (arXiv:2005.03246v1 [cs.DS])

This paper revisits the problem of computing empirical cumulative distribution functions (ECDF) efficiently on large, multivariate datasets. Computing an ECDF at one evaluation point requires $mathcal{O}(N)$ operations on a dataset composed of $N$ data points. Therefore, a direct evaluation of ECDFs at $N$ evaluation points requires a quadratic $mathcal{O}(N^2)$ operations, which is prohibitive for large-scale problems. Two fast and exact methods are proposed and compared. The first one is based on fast summation in lexicographical order, with a $mathcal{O}(N{log}N)$ complexity and requires the evaluation points to lie on a regular grid. The second one is based on the divide-and-conquer principle, with a $mathcal{O}(Nlog(N)^{(d-1){vee}1})$ complexity and requires the evaluation points to coincide with the input points. The two fast algorithms are described and detailed in the general $d$-dimensional case, and numerical experiments validate their speed and accuracy. Secondly, the paper establishes a direct connection between cumulative distribution functions and kernel density estimation (KDE) for a large class of kernels. This connection paves the way for fast exact algorithms for multivariate kernel density estimation and kernel regression. Numerical tests with the Laplacian kernel validate the speed and accuracy of the proposed algorithms. A broad range of large-scale multivariate density estimation, cumulative distribution estimation, survival function estimation and regression problems can benefit from the proposed numerical methods.




4

Classification of pediatric pneumonia using chest X-rays by functional regression. (arXiv:2005.03243v1 [stat.AP])

An accurate and prompt diagnosis of pediatric pneumonia is imperative for successful treatment intervention. One approach to diagnose pneumonia cases is using radiographic data. In this article, we propose a novel parsimonious scalar-on-image classification model adopting the ideas of functional data analysis. Our main idea is to treat images as functional measurements and exploit underlying covariance structures to select basis functions; these bases are then used in approximating both image profiles and corresponding regression coefficient. We re-express the regression model into a standard generalized linear model where the functional principal component scores are treated as covariates. We apply the method to (1) classify pneumonia against healthy and viral against bacterial pneumonia patients, and (2) test the null effect about the association between images and responses. Extensive simulation studies show excellent numerical performance in terms of classification, hypothesis testing, and efficient computation.




4

Multi-Label Sampling based on Local Label Imbalance. (arXiv:2005.03240v1 [cs.LG])

Class imbalance is an inherent characteristic of multi-label data that hinders most multi-label learning methods. One efficient and flexible strategy to deal with this problem is to employ sampling techniques before training a multi-label learning model. Although existing multi-label sampling approaches alleviate the global imbalance of multi-label datasets, it is actually the imbalance level within the local neighbourhood of minority class examples that plays a key role in performance degradation. To address this issue, we propose a novel measure to assess the local label imbalance of multi-label datasets, as well as two multi-label sampling approaches based on the local label imbalance, namely MLSOL and MLUL. By considering all informative labels, MLSOL creates more diverse and better labeled synthetic instances for difficult examples, while MLUL eliminates instances that are harmful to their local region. Experimental results on 13 multi-label datasets demonstrate the effectiveness of the proposed measure and sampling approaches for a variety of evaluation metrics, particularly in the case of an ensemble of classifiers trained on repeated samples of the original data.




4

Towards Frequency-Based Explanation for Robust CNN. (arXiv:2005.03141v1 [cs.LG])

Current explanation techniques towards a transparent Convolutional Neural Network (CNN) mainly focuses on building connections between the human-understandable input features with models' prediction, overlooking an alternative representation of the input, the frequency components decomposition. In this work, we present an analysis of the connection between the distribution of frequency components in the input dataset and the reasoning process the model learns from the data. We further provide quantification analysis about the contribution of different frequency components toward the model's prediction. We show that the vulnerability of the model against tiny distortions is a result of the model is relying on the high-frequency features, the target features of the adversarial (black and white-box) attackers, to make the prediction. We further show that if the model develops stronger association between the low-frequency component with true labels, the model is more robust, which is the explanation of why adversarially trained models are more robust against tiny distortions.




4

Adaptive Invariance for Molecule Property Prediction. (arXiv:2005.03004v1 [q-bio.QM])

Effective property prediction methods can help accelerate the search for COVID-19 antivirals either through accurate in-silico screens or by effectively guiding on-going at-scale experimental efforts. However, existing prediction tools have limited ability to accommodate scarce or fragmented training data currently available. In this paper, we introduce a novel approach to learn predictors that can generalize or extrapolate beyond the heterogeneous data. Our method builds on and extends recently proposed invariant risk minimization, adaptively forcing the predictor to avoid nuisance variation. We achieve this by continually exercising and manipulating latent representations of molecules to highlight undesirable variation to the predictor. To test the method we use a combination of three data sources: SARS-CoV-2 antiviral screening data, molecular fragments that bind to SARS-CoV-2 main protease and large screening data for SARS-CoV-1. Our predictor outperforms state-of-the-art transfer learning methods by significant margin. We also report the top 20 predictions of our model on Broad drug repurposing hub.




4

Entries open for $40,000 award for female scriptwriters

Friday 6 March 2020
Nominations opened for the 2020 Mona Brand Award for Women Stage and Screen Writers.




4

Trusted computing and information security : 13th Chinese conference, CTCIS 2019, Shanghai, China, October 24-27, 2019

Chinese Conference on Trusted Computing and Information Security (13th : 2019 : Shanghai, China)
9789811534188 (eBook)




4

Space information networks : 4th International Conference, SINC 2019, Wuzhen, China, September 19-20, 2019, Revised Selected Papers

SINC (Conference) (4th : 2019 : Wuzhen, China)
9789811534423 (electronic bk.)




4

Requirements engineering : 26th International Working Conference, REFSQ 2020, Pisa, Italy, March 24-27, 2020, Proceedings

REFSQ (Conference) (26th : 2020 : Pisa, Italy)
9783030444297




4

Computational processing of the Portuguese language : 14th International Conference, PROPOR 2020, Evora, Portugal, March 2-4, 2020, Proceedings

PROPOR (Conference) (14th : 2020 : Evora, Portugal)
9783030415051 (electronic bk.)




4

Communications and networking : 14th EAI International Conference, ChinaCom 2019, Shanghai, China, November 29 - December 1, 2019, proceedings.

ChinaCom (Conference) (14th : 2019 : Shanghai, China)
9783030411176




4

The Kuerschner story : 1848 - 1999 / compiled by Gerald Kuerschner.

Kuerschner (Family)




4

4 Ways to Help Students Cultivate Meaningful Connections Through Tech

The CEO of Move This World isn't big on screen time, but in the midst of the coronavirus pandemic, technology--when used with care--can help strengthen relationships.

The post 4 Ways to Help Students Cultivate Meaningful Connections Through Tech appeared first on Market Brief.




4

Item 02: William Hilton Saunders WWI diary, 1 January 1917 - 24 October 1917




4

Item 04: William Hilton Saunders WWI diary, 18 February 1919 - 8 July 1919




4

Item 04: Notebook of Colonel Alfred Hobart Sturdee, 8 August 1914 to 25 February 1918




4

Item 07: A Journal of ye [the] Proceedings of his Majesty's Sloop Swallow, Captain Phillip [Philip] Carteret Commander, Commencing ye [the] 23 of July 1766 and ended [4 July 1767]




4

Item 10: Log book of the Swallow from 22 August 1767 to 4 June 1768 / by Philip Carteret




4

Box 4: Children's book illustrations by various artists, Dorothy Wall, ca. 1932




4

Box 6: Children's book illustrations by various artists, Dorothy Wall and Noela Young, ca. 1932-1964




4

Volume 24 Item 04: William Thomas Manners and customs of Aborigines - Miscellaneous scraps, ca. 1858




4

Item 01: Autograph letter signed, from Hume, Appin, to William E. Riley, concerning an account for money owed by Riley, 4 September 1834




4

Sydney in 1848 : illustrated by copper-plate engravings of its principal streets, public buildings, churches, chapels, etc. / from drawings by Joseph Fowles.




4

Almost 12,000 meatpacking and food plant workers have reportedly contracted COVID-19. At least 48 have died.

The infections and deaths are spread across roughly two farms and 189 meat and processed food factories.





4

Bayesian Zero-Inflated Negative Binomial Regression Based on Pólya-Gamma Mixtures

Brian Neelon.

Source: Bayesian Analysis, Volume 14, Number 3, 849--875.

Abstract:
Motivated by a study examining spatiotemporal patterns in inpatient hospitalizations, we propose an efficient Bayesian approach for fitting zero-inflated negative binomial models. To facilitate posterior sampling, we introduce a set of latent variables that are represented as scale mixtures of normals, where the precision terms follow independent Pólya-Gamma distributions. Conditional on the latent variables, inference proceeds via straightforward Gibbs sampling. For fixed-effects models, our approach is comparable to existing methods. However, our model can accommodate more complex data structures, including multivariate and spatiotemporal data, settings in which current approaches often fail due to computational challenges. Using simulation studies, we highlight key features of the method and compare its performance to other estimation procedures. We apply the approach to a spatiotemporal analysis examining the number of annual inpatient admissions among United States veterans with type 2 diabetes.




4

Gracias por no fumar / deseño : Biman Mullick.

[London] : Cleanair, Campaña para un Medio Ambiente Libre de Humo, [198-?]




4

No fumar es la moda / deseño : Biman Mullick.

[London] : Cleanair, Campaña para un Medio Ambiente Libre de Humo, [198-?]




4

Zona de no fumar / deseño : Biman Mullick.

London : Cleanair Campaña para un Medio Ambiente Libre de Humo, [198-?]




4

[Silhouette of a pregant woman smoking with death skull inside womb, 29 January 1994] / design: Biman Mullick.

London, [29 January 1994]




4

Danny Smith from No Human Being Is Illegal (in all our glory). Collaged photograph by Deborah Kelly and collaborators, 2014-2018.

[London], 2019.




4

Amazon Just Launched an Exclusive Clothing Collection Full of Warm and Comfy Basics Under $45

The womenswear line is new, and there’s already a variety of items to shop.




4

Effects of Attention on Orientation-Tuning Functions of Single Neurons in Macaque Cortical Area V4

Carrie J. McAdams
Jan 1, 1999; 19:431-441
Articles




4

Mice Deficient in Cellular Glutathione Peroxidase Show Increased Vulnerability to Malonate, 3-Nitropropionic Acid, and 1-Methyl-4-Phenyl-1,2,5,6-Tetrahydropyridine

Peter Klivenyi
Jan 1, 2000; 20:1-7
Cellular




4

High-Level Neuronal Expression of A{beta}1-42 in Wild-Type Human Amyloid Protein Precursor Transgenic Mice: Synaptotoxicity without Plaque Formation

Lennart Mucke
Jun 1, 2000; 20:4050-4058
Cellular




4

Gamma (40-100 Hz) oscillation in the hippocampus of the behaving rat

A Bragin
Jan 1, 1995; 15:47-60
Articles




4

A fronte della diffusione delle criptovalute, le autorità devono essere pronte ad agire - Agustín Carstens

Italian translation of Press Release about BIS General Manager Agustín Carstens giving a speech on "Money in the digital age: what role for central banks?" (6 February 2018)




4

Rassegna trimestrale BRI marzo 2018: La volatilità ritorna sulla scena in seguito alle tensioni dei mercati azionari

Italian translation of the BIS press release about the BIS Quarterly Review, March 2018




4

Il cammino a ostacoli verso la normalità: Rassegna trimestrale BRI

Italian translation of the BIS press release about the BIS Quarterly Review, December 2018