4

Flint Children to Be Screened for Disabilities After $4 Million Settlement

The agreement stems from a class-action civil rights lawsuit filed against the Flint schools, Michigan education department and the Genessee County Intermediate School District.




4

Billionaire Elon Musk Donates $480K to Help Flint Schools Deal With Water Crisis

The donation comes as Flint city and school leaders continue to grapple with the fallout from a contaminated-water crisis that began in 2015. The filtration systems, which will be installed by January, should allow students to once again district students and staff to drink from and fill up water bo




4

One More Teacher Wins State Seat, Bringing Count to 43

One more teacher was elected to state legislature in a closely contested race.




4

PHT remembers video games: Hockey on the Nintendo 64

Only so money hockey options on that odd beast of a machine.




4

A 24-team Stanley Cup Playoffs? Latest NHL buzz and a hypothetical Flyers matchup

A 24-team Stanley Cup Playoffs? Here's a look at the latest NHL buzz and a hypothetical Flyers matchup. By Jordan Hall




4

Reports: NHL may skip rest of regular season, jump to 24-team playoff format

One of many possible plans if the league can resume play.




4

III. Ueber "Systemerkrankungen" im Rückenmark : 4. Artikel / P. Flechsig

[Place of publication not identified] : [publisher not identified], [18--?]




4

World Health Organization : 1948-1988 / [World Health Organization]

Geneva, Switzerland : World Health Organization, 1988.




4

Administrative scheme for the County of London made by the London County Council on 18th December, 1934, for discharging the functions transferred to the Council by Part I of the Local Government Act, 1929, and orders made bu the Minister of Health under

England : London County Council, Public Assistance Department, 1935.




4

Veränderbarkeit des Genoms : Herausforderungen für die Zukunft : Vorträge anlässlich der Jahresversammlung am 22. und 23. September 2017 in Halle (Saale) / herausgegeben von: Jörg Hacker.

Halle (Saale) : Deutsche Akademie der Naturforscher Leopoldina - Nationale Akademie der Wissenschaften ; Stuttgart : Wissenschaftliche Verlagsgesellschaft, 2019.




4

Das Apothekenwesen in Baden von 1945 bis 1960 / Ilse Denninger ; mit einem Geleitwort von Christoph Friedrich.

Stuttgart : In Kommission: Wissenschaftliche Verlagsgesellschaft mbH, 2019.




4

Antike Naturwissenschaft und ihre Rezeption : Band XXIX / Jochen Althoff, Sabine Föllinger, Georg Wöhrle (Hg.)

Trier : WVT Wissenschaftlicher Verlag Trier, 2017.




4

The therapeutic community : study of effectiveness : social and psychological adjustment of 400 dropouts and 100 graduates from the Phoenix House Therapeutic Community / by George De Leon.

Rockville, Maryland : National Institute on Drug Abuse, 1984.




4

Evaluation of the NIDA drug abuse prevention campaign, 1983-1984 : final report.

[United States] : National Technical Information Service, United States Department of Commerce, 1984.




4

Questões de saúde reprodutiva : Reproductive health matters.

London : Reproductive Health Matters, 1993-2018.




4

Pam Liell papers relating to ‘Scrolls’ Book Club, 1994-2008 including correspondence with Alex Buzo, 1994-1998




4

Jessie Jean Roberts recipe book, 1940s+




4

David Milliss further papers, 1940s-2010




4

Edna Ryan Award records, 2014




4

Series 04: Contact prints of suburbs of Sydney NSW, ca 1960s-1980s




4

Series 02 Part 01: Sir Augustus Charles Gregory letterbook, 1852-1854




4

Echelet picumne and echelet grimpeur, male / by Jean Gabriel Prêtre, 1824




4

Sydney in 1848 : illustrated by copper-plate engravings of its principal streets, public buildings, churches, chapels, etc. / from drawings by Joseph Fowles.




4

Have your say on the Highway 404 Employment Corridor Secondary Plan




4

Odysseus asleep : uncollected sequences, 1994-2019

Sanger, Peter, 1943- author.
9781554472048




4

Short-term forecasts of COVID-19 spread across Indian states until 1 May 2020. (arXiv:2004.13538v2 [q-bio.PE] UPDATED)

The very first case of corona-virus illness was recorded on 30 January 2020, in India and the number of infected cases, including the death toll, continues to rise. In this paper, we present short-term forecasts of COVID-19 for 28 Indian states and five union territories using real-time data from 30 January to 21 April 2020. Applying Holt's second-order exponential smoothing method and autoregressive integrated moving average (ARIMA) model, we generate 10-day ahead forecasts of the likely number of infected cases and deaths in India for 22 April to 1 May 2020. Our results show that the number of cumulative cases in India will rise to 36335.63 [PI 95% (30884.56, 42918.87)], concurrently the number of deaths may increase to 1099.38 [PI 95% (959.77, 1553.76)] by 1 May 2020. Further, we have divided the country into severity zones based on the cumulative cases. According to this analysis, Maharashtra is likely to be the most affected states with around 9787.24 [PI 95% (6949.81, 13757.06)] cumulative cases by 1 May 2020. However, Kerala and Karnataka are likely to shift from the red zone (i.e. highly affected) to the lesser affected region. On the other hand, Gujarat and Madhya Pradesh will move to the red zone. These results mark the states where lockdown by 3 May 2020, can be loosened.




4

A bimodal gamma distribution: Properties, regression model and applications. (arXiv:2004.12491v2 [stat.ME] UPDATED)

In this paper we propose a bimodal gamma distribution using a quadratic transformation based on the alpha-skew-normal model. We discuss several properties of this distribution such as mean, variance, moments, hazard rate and entropy measures. Further, we propose a new regression model with censored data based on the bimodal gamma distribution. This regression model can be very useful to the analysis of real data and could give more realistic fits than other special regression models. Monte Carlo simulations were performed to check the bias in the maximum likelihood estimation. The proposed models are applied to two real data sets found in literature.




4

A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced Cardiac Magnetic Resonance Imaging. (arXiv:2004.12314v3 [cs.CV] UPDATED)

Segmentation of cardiac images, particularly late gadolinium-enhanced magnetic resonance imaging (LGE-MRI) widely used for visualizing diseased cardiac structures, is a crucial first step for clinical diagnosis and treatment. However, direct segmentation of LGE-MRIs is challenging due to its attenuated contrast. Since most clinical studies have relied on manual and labor-intensive approaches, automatic methods are of high interest, particularly optimized machine learning approaches. To address this, we organized the "2018 Left Atrium Segmentation Challenge" using 154 3D LGE-MRIs, currently the world's largest cardiac LGE-MRI dataset, and associated labels of the left atrium segmented by three medical experts, ultimately attracting the participation of 27 international teams. In this paper, extensive analysis of the submitted algorithms using technical and biological metrics was performed by undergoing subgroup analysis and conducting hyper-parameter analysis, offering an overall picture of the major design choices of convolutional neural networks (CNNs) and practical considerations for achieving state-of-the-art left atrium segmentation. Results show the top method achieved a dice score of 93.2% and a mean surface to a surface distance of 0.7 mm, significantly outperforming prior state-of-the-art. Particularly, our analysis demonstrated that double, sequentially used CNNs, in which a first CNN is used for automatic region-of-interest localization and a subsequent CNN is used for refined regional segmentation, achieved far superior results than traditional methods and pipelines containing single CNNs. This large-scale benchmarking study makes a significant step towards much-improved segmentation methods for cardiac LGE-MRIs, and will serve as an important benchmark for evaluating and comparing the future works in the field.




4

Excess registered deaths in England and Wales during the COVID-19 pandemic, March 2020 and April 2020. (arXiv:2004.11355v4 [stat.AP] UPDATED)

Official counts of COVID-19 deaths have been criticized for potentially including people who did not die of COVID-19 but merely died with COVID-19. I address that critique by fitting a generalized additive model to weekly counts of all registered deaths in England and Wales during the 2010s. The model produces baseline rates of death registrations expected in the absence of the COVID-19 pandemic, and comparing those baselines to recent counts of registered deaths exposes the emergence of excess deaths late in March 2020. Among adults aged 45+, about 38,700 excess deaths were registered in the 5 weeks comprising 21 March through 24 April (612 $pm$ 416 from 21$-$27 March, 5675 $pm$ 439 from 28 March through 3 April, then 9183 $pm$ 468, 12,712 $pm$ 589, and 10,511 $pm$ 567 in April's next 3 weeks). Both the Office for National Statistics's respective count of 26,891 death certificates which mention COVID-19, and the Department of Health and Social Care's hospital-focused count of 21,222 deaths, are appreciably less, implying that their counting methods have underestimated rather than overestimated the pandemic's true death toll. If underreporting rates have held steady, about 45,900 direct and indirect COVID-19 deaths might have been registered by April's end but not yet publicly reported in full.




4

On a phase transition in general order spline regression. (arXiv:2004.10922v2 [math.ST] UPDATED)

In the Gaussian sequence model $Y= heta_0 + varepsilon$ in $mathbb{R}^n$, we study the fundamental limit of approximating the signal $ heta_0$ by a class $Theta(d,d_0,k)$ of (generalized) splines with free knots. Here $d$ is the degree of the spline, $d_0$ is the order of differentiability at each inner knot, and $k$ is the maximal number of pieces. We show that, given any integer $dgeq 0$ and $d_0in{-1,0,ldots,d-1}$, the minimax rate of estimation over $Theta(d,d_0,k)$ exhibits the following phase transition: egin{equation*} egin{aligned} inf_{widetilde{ heta}}sup_{ hetainTheta(d,d_0, k)}mathbb{E}_ heta|widetilde{ heta} - heta|^2 asymp_d egin{cases} kloglog(16n/k), & 2leq kleq k_0,\ klog(en/k), & k geq k_0+1. end{cases} end{aligned} end{equation*} The transition boundary $k_0$, which takes the form $lfloor{(d+1)/(d-d_0) floor} + 1$, demonstrates the critical role of the regularity parameter $d_0$ in the separation between a faster $log log(16n)$ and a slower $log(en)$ rate. We further show that, once encouraging an additional '$d$-monotonicity' shape constraint (including monotonicity for $d = 0$ and convexity for $d=1$), the above phase transition is eliminated and the faster $kloglog(16n/k)$ rate can be achieved for all $k$. These results provide theoretical support for developing $ell_0$-penalized (shape-constrained) spline regression procedures as useful alternatives to $ell_1$- and $ell_2$-penalized ones.




4

A Critical Overview of Privacy-Preserving Approaches for Collaborative Forecasting. (arXiv:2004.09612v3 [cs.LG] UPDATED)

Cooperation between different data owners may lead to an improvement in forecast quality - for instance by benefiting from spatial-temporal dependencies in geographically distributed time series. Due to business competitive factors and personal data protection questions, said data owners might be unwilling to share their data, which increases the interest in collaborative privacy-preserving forecasting. This paper analyses the state-of-the-art and unveils several shortcomings of existing methods in guaranteeing data privacy when employing Vector Autoregressive (VAR) models. The paper also provides mathematical proofs and numerical analysis to evaluate existing privacy-preserving methods, dividing them into three groups: data transformation, secure multi-party computations, and decomposition methods. The analysis shows that state-of-the-art techniques have limitations in preserving data privacy, such as a trade-off between privacy and forecasting accuracy, while the original data in iterative model fitting processes, in which intermediate results are shared, can be inferred after some iterations.




4

Deep transfer learning for improving single-EEG arousal detection. (arXiv:2004.05111v2 [cs.CV] UPDATED)

Datasets in sleep science present challenges for machine learning algorithms due to differences in recording setups across clinics. We investigate two deep transfer learning strategies for overcoming the channel mismatch problem for cases where two datasets do not contain exactly the same setup leading to degraded performance in single-EEG models. Specifically, we train a baseline model on multivariate polysomnography data and subsequently replace the first two layers to prepare the architecture for single-channel electroencephalography data. Using a fine-tuning strategy, our model yields similar performance to the baseline model (F1=0.682 and F1=0.694, respectively), and was significantly better than a comparable single-channel model. Our results are promising for researchers working with small databases who wish to use deep learning models pre-trained on larger databases.




4

Strong Converse for Testing Against Independence over a Noisy channel. (arXiv:2004.00775v2 [cs.IT] UPDATED)

A distributed binary hypothesis testing (HT) problem over a noisy (discrete and memoryless) channel studied previously by the authors is investigated from the perspective of the strong converse property. It was shown by Ahlswede and Csisz'{a}r that a strong converse holds in the above setting when the channel is rate-limited and noiseless. Motivated by this observation, we show that the strong converse continues to hold in the noisy channel setting for a special case of HT known as testing against independence (TAI), under the assumption that the channel transition matrix has non-zero elements. The proof utilizes the blowing up lemma and the recent change of measure technique of Tyagi and Watanabe as the key tools.




4

A Distributionally Robust Area Under Curve Maximization Model. (arXiv:2002.07345v2 [math.OC] UPDATED)

Area under ROC curve (AUC) is a widely used performance measure for classification models. We propose two new distributionally robust AUC maximization models (DR-AUC) that rely on the Kantorovich metric and approximate the AUC with the hinge loss function. We consider the two cases with respectively fixed and variable support for the worst-case distribution. We use duality theory to reformulate the DR-AUC models and derive tractable convex optimization problems. The numerical experiments show that the proposed DR-AUC models -- benchmarked with the standard deterministic AUC and the support vector machine models - perform better in general and in particular improve the worst-case out-of-sample performance over the majority of the considered datasets, thereby showing their robustness. The results are particularly encouraging since our numerical experiments are conducted with training sets of small size which have been known to be conducive to low out-of-sample performance.




4

Statistical aspects of nuclear mass models. (arXiv:2002.04151v3 [nucl-th] UPDATED)

We study the information content of nuclear masses from the perspective of global models of nuclear binding energies. To this end, we employ a number of statistical methods and diagnostic tools, including Bayesian calibration, Bayesian model averaging, chi-square correlation analysis, principal component analysis, and empirical coverage probability. Using a Bayesian framework, we investigate the structure of the 4-parameter Liquid Drop Model by considering discrepant mass domains for calibration. We then use the chi-square correlation framework to analyze the 14-parameter Skyrme energy density functional calibrated using homogeneous and heterogeneous datasets. We show that a quite dramatic parameter reduction can be achieved in both cases. The advantage of Bayesian model averaging for improving uncertainty quantification is demonstrated. The statistical approaches used are pedagogically described; in this context this work can serve as a guide for future applications.




4

Cyclic Boosting -- an explainable supervised machine learning algorithm. (arXiv:2002.03425v2 [cs.LG] UPDATED)

Supervised machine learning algorithms have seen spectacular advances and surpassed human level performance in a wide range of specific applications. However, using complex ensemble or deep learning algorithms typically results in black box models, where the path leading to individual predictions cannot be followed in detail. In order to address this issue, we propose the novel "Cyclic Boosting" machine learning algorithm, which allows to efficiently perform accurate regression and classification tasks while at the same time allowing a detailed understanding of how each individual prediction was made.




4

On the impact of selected modern deep-learning techniques to the performance and celerity of classification models in an experimental high-energy physics use case. (arXiv:2002.01427v3 [physics.data-an] UPDATED)

Beginning from a basic neural-network architecture, we test the potential benefits offered by a range of advanced techniques for machine learning, in particular deep learning, in the context of a typical classification problem encountered in the domain of high-energy physics, using a well-studied dataset: the 2014 Higgs ML Kaggle dataset. The advantages are evaluated in terms of both performance metrics and the time required to train and apply the resulting models. Techniques examined include domain-specific data-augmentation, learning rate and momentum scheduling, (advanced) ensembling in both model-space and weight-space, and alternative architectures and connection methods.

Following the investigation, we arrive at a model which achieves equal performance to the winning solution of the original Kaggle challenge, whilst being significantly quicker to train and apply, and being suitable for use with both GPU and CPU hardware setups. These reductions in timing and hardware requirements potentially allow the use of more powerful algorithms in HEP analyses, where models must be retrained frequently, sometimes at short notice, by small groups of researchers with limited hardware resources. Additionally, a new wrapper library for PyTorch called LUMINis presented, which incorporates all of the techniques studied.




4

Covariance Matrix Adaptation for the Rapid Illumination of Behavior Space. (arXiv:1912.02400v2 [cs.LG] UPDATED)

We focus on the challenge of finding a diverse collection of quality solutions on complex continuous domains. While quality diver-sity (QD) algorithms like Novelty Search with Local Competition (NSLC) and MAP-Elites are designed to generate a diverse range of solutions, these algorithms require a large number of evaluations for exploration of continuous spaces. Meanwhile, variants of the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) are among the best-performing derivative-free optimizers in single-objective continuous domains. This paper proposes a new QD algorithm called Covariance Matrix Adaptation MAP-Elites (CMA-ME). Our new algorithm combines the self-adaptation techniques of CMA-ES with archiving and mapping techniques for maintaining diversity in QD. Results from experiments based on standard continuous optimization benchmarks show that CMA-ME finds better-quality solutions than MAP-Elites; similarly, results on the strategic game Hearthstone show that CMA-ME finds both a higher overall quality and broader diversity of strategies than both CMA-ES and MAP-Elites. Overall, CMA-ME more than doubles the performance of MAP-Elites using standard QD performance metrics. These results suggest that QD algorithms augmented by operators from state-of-the-art optimization algorithms can yield high-performing methods for simultaneously exploring and optimizing continuous search spaces, with significant applications to design, testing, and reinforcement learning among other domains.




4

Sampling random graph homomorphisms and applications to network data analysis. (arXiv:1910.09483v2 [math.PR] UPDATED)

A graph homomorphism is a map between two graphs that preserves adjacency relations. We consider the problem of sampling a random graph homomorphism from a graph $F$ into a large network $mathcal{G}$. We propose two complementary MCMC algorithms for sampling a random graph homomorphisms and establish bounds on their mixing times and concentration of their time averages. Based on our sampling algorithms, we propose a novel framework for network data analysis that circumvents some of the drawbacks in methods based on independent and neigborhood sampling. Various time averages of the MCMC trajectory give us various computable observables, including well-known ones such as homomorphism density and average clustering coefficient and their generalizations. Furthermore, we show that these network observables are stable with respect to a suitably renormalized cut distance between networks. We provide various examples and simulations demonstrating our framework through synthetic networks. We also apply our framework for network clustering and classification problems using the Facebook100 dataset and Word Adjacency Networks of a set of classic novels.




4

Bayesian factor models for multivariate categorical data obtained from questionnaires. (arXiv:1910.04283v2 [stat.AP] UPDATED)

Factor analysis is a flexible technique for assessment of multivariate dependence and codependence. Besides being an exploratory tool used to reduce the dimensionality of multivariate data, it allows estimation of common factors that often have an interesting theoretical interpretation in real problems. However, standard factor analysis is only applicable when the variables are scaled, which is often inappropriate, for example, in data obtained from questionnaires in the field of psychology,where the variables are often categorical. In this framework, we propose a factor model for the analysis of multivariate ordered and non-ordered polychotomous data. The inference procedure is done under the Bayesian approach via Markov chain Monte Carlo methods. Two Monte-Carlo simulation studies are presented to investigate the performance of this approach in terms of estimation bias, precision and assessment of the number of factors. We also illustrate the proposed method to analyze participants' responses to the Motivational State Questionnaire dataset, developed to study emotions in laboratory and field settings.




4

DualSMC: Tunneling Differentiable Filtering and Planning under Continuous POMDPs. (arXiv:1909.13003v4 [cs.LG] UPDATED)

A major difficulty of solving continuous POMDPs is to infer the multi-modal distribution of the unobserved true states and to make the planning algorithm dependent on the perceived uncertainty. We cast POMDP filtering and planning problems as two closely related Sequential Monte Carlo (SMC) processes, one over the real states and the other over the future optimal trajectories, and combine the merits of these two parts in a new model named the DualSMC network. In particular, we first introduce an adversarial particle filter that leverages the adversarial relationship between its internal components. Based on the filtering results, we then propose a planning algorithm that extends the previous SMC planning approach [Piche et al., 2018] to continuous POMDPs with an uncertainty-dependent policy. Crucially, not only can DualSMC handle complex observations such as image input but also it remains highly interpretable. It is shown to be effective in three continuous POMDP domains: the floor positioning domain, the 3D light-dark navigation domain, and a modified Reacher domain.




4

Margin-Based Generalization Lower Bounds for Boosted Classifiers. (arXiv:1909.12518v4 [cs.LG] UPDATED)

Boosting is one of the most successful ideas in machine learning. The most well-accepted explanations for the low generalization error of boosting algorithms such as AdaBoost stem from margin theory. The study of margins in the context of boosting algorithms was initiated by Schapire, Freund, Bartlett and Lee (1998) and has inspired numerous boosting algorithms and generalization bounds. To date, the strongest known generalization (upper bound) is the $k$th margin bound of Gao and Zhou (2013). Despite the numerous generalization upper bounds that have been proved over the last two decades, nothing is known about the tightness of these bounds. In this paper, we give the first margin-based lower bounds on the generalization error of boosted classifiers. Our lower bounds nearly match the $k$th margin bound and thus almost settle the generalization performance of boosted classifiers in terms of margins.




4

Convergence rates for optimised adaptive importance samplers. (arXiv:1903.12044v4 [stat.CO] UPDATED)

Adaptive importance samplers are adaptive Monte Carlo algorithms to estimate expectations with respect to some target distribution which extit{adapt} themselves to obtain better estimators over a sequence of iterations. Although it is straightforward to show that they have the same $mathcal{O}(1/sqrt{N})$ convergence rate as standard importance samplers, where $N$ is the number of Monte Carlo samples, the behaviour of adaptive importance samplers over the number of iterations has been left relatively unexplored. In this work, we investigate an adaptation strategy based on convex optimisation which leads to a class of adaptive importance samplers termed extit{optimised adaptive importance samplers} (OAIS). These samplers rely on the iterative minimisation of the $chi^2$-divergence between an exponential-family proposal and the target. The analysed algorithms are closely related to the class of adaptive importance samplers which minimise the variance of the weight function. We first prove non-asymptotic error bounds for the mean squared errors (MSEs) of these algorithms, which explicitly depend on the number of iterations and the number of samples together. The non-asymptotic bounds derived in this paper imply that when the target belongs to the exponential family, the $L_2$ errors of the optimised samplers converge to the optimal rate of $mathcal{O}(1/sqrt{N})$ and the rate of convergence in the number of iterations are explicitly provided. When the target does not belong to the exponential family, the rate of convergence is the same but the asymptotic $L_2$ error increases by a factor $sqrt{ ho^star} > 1$, where $ ho^star - 1$ is the minimum $chi^2$-divergence between the target and an exponential-family proposal.




4

An n-dimensional Rosenbrock Distribution for MCMC Testing. (arXiv:1903.09556v4 [stat.CO] UPDATED)

The Rosenbrock function is an ubiquitous benchmark problem for numerical optimisation, and variants have been proposed to test the performance of Markov Chain Monte Carlo algorithms. In this work we discuss the two-dimensional Rosenbrock density, its current $n$-dimensional extensions, and their advantages and limitations. We then propose a new extension to arbitrary dimensions called the Hybrid Rosenbrock distribution, which is composed of conditional normal kernels arranged in such a way that preserves the key features of the original kernel. Moreover, due to its structure, the Hybrid Rosenbrock distribution is analytically tractable and possesses several desirable properties, which make it an excellent test model for computational algorithms.




4

FNNC: Achieving Fairness through Neural Networks. (arXiv:1811.00247v3 [cs.LG] UPDATED)

In classification models fairness can be ensured by solving a constrained optimization problem. We focus on fairness constraints like Disparate Impact, Demographic Parity, and Equalized Odds, which are non-decomposable and non-convex. Researchers define convex surrogates of the constraints and then apply convex optimization frameworks to obtain fair classifiers. Surrogates serve only as an upper bound to the actual constraints, and convexifying fairness constraints might be challenging.

We propose a neural network-based framework, emph{FNNC}, to achieve fairness while maintaining high accuracy in classification. The above fairness constraints are included in the loss using Lagrangian multipliers. We prove bounds on generalization errors for the constrained losses which asymptotically go to zero. The network is optimized using two-step mini-batch stochastic gradient descent. Our experiments show that FNNC performs as good as the state of the art, if not better. The experimental evidence supplements our theoretical guarantees. In summary, we have an automated solution to achieve fairness in classification, which is easily extendable to many fairness constraints.




4

Alternating Maximization: Unifying Framework for 8 Sparse PCA Formulations and Efficient Parallel Codes. (arXiv:1212.4137v2 [stat.ML] UPDATED)

Given a multivariate data set, sparse principal component analysis (SPCA) aims to extract several linear combinations of the variables that together explain the variance in the data as much as possible, while controlling the number of nonzero loadings in these combinations. In this paper we consider 8 different optimization formulations for computing a single sparse loading vector; these are obtained by combining the following factors: we employ two norms for measuring variance (L2, L1) and two sparsity-inducing norms (L0, L1), which are used in two different ways (constraint, penalty). Three of our formulations, notably the one with L0 constraint and L1 variance, have not been considered in the literature. We give a unifying reformulation which we propose to solve via a natural alternating maximization (AM) method. We show the the AM method is nontrivially equivalent to GPower (Journ'{e}e et al; JMLR 11:517--553, 2010) for all our formulations. Besides this, we provide 24 efficient parallel SPCA implementations: 3 codes (multi-core, GPU and cluster) for each of the 8 problems. Parallelism in the methods is aimed at i) speeding up computations (our GPU code can be 100 times faster than an efficient serial code written in C++), ii) obtaining solutions explaining more variance and iii) dealing with big data problems (our cluster code is able to solve a 357 GB problem in about a minute).




4

Deep Learning on Point Clouds for False Positive Reduction at Nodule Detection in Chest CT Scans. (arXiv:2005.03654v1 [eess.IV])

The paper focuses on a novel approach for false-positive reduction (FPR) of nodule candidates in Computer-aided detection (CADe) system after suspicious lesions proposing stage. Unlike common decisions in medical image analysis, the proposed approach considers input data not as 2d or 3d image, but as a point cloud and uses deep learning models for point clouds. We found out that models for point clouds require less memory and are faster on both training and inference than traditional CNN 3D, achieves better performance and does not impose restrictions on the size of the input image, thereby the size of the nodule candidate. We propose an algorithm for transforming 3d CT scan data to point cloud. In some cases, the volume of the nodule candidate can be much smaller than the surrounding context, for example, in the case of subpleural localization of the nodule. Therefore, we developed an algorithm for sampling points from a point cloud constructed from a 3D image of the candidate region. The algorithm guarantees to capture both context and candidate information as part of the point cloud of the nodule candidate. An experiment with creating a dataset from an open LIDC-IDRI database for a feature of the FPR task was accurately designed, set up and described in detail. The data augmentation technique was applied to avoid overfitting and as an upsampling method. Experiments are conducted with PointNet, PointNet++ and DGCNN. We show that the proposed approach outperforms baseline CNN 3D models and demonstrates 85.98 FROC versus 77.26 FROC for baseline models.




4

Plan2Vec: Unsupervised Representation Learning by Latent Plans. (arXiv:2005.03648v1 [cs.LG])

In this paper we introduce plan2vec, an unsupervised representation learning approach that is inspired by reinforcement learning. Plan2vec constructs a weighted graph on an image dataset using near-neighbor distances, and then extrapolates this local metric to a global embedding by distilling path-integral over planned path. When applied to control, plan2vec offers a way to learn goal-conditioned value estimates that are accurate over long horizons that is both compute and sample efficient. We demonstrate the effectiveness of plan2vec on one simulated and two challenging real-world image datasets. Experimental results show that plan2vec successfully amortizes the planning cost, enabling reactive planning that is linear in memory and computation complexity rather than exhaustive over the entire state space.




4

Local Cascade Ensemble for Multivariate Data Classification. (arXiv:2005.03645v1 [cs.LG])

We present LCE, a Local Cascade Ensemble for traditional (tabular) multivariate data classification, and its extension LCEM for Multivariate Time Series (MTS) classification. LCE is a new hybrid ensemble method that combines an explicit boosting-bagging approach to handle the usual bias-variance tradeoff faced by machine learning models and an implicit divide-and-conquer approach to individualize classifier errors on different parts of the training data. Our evaluation firstly shows that the hybrid ensemble method LCE outperforms the state-of-the-art classifiers on the UCI datasets and that LCEM outperforms the state-of-the-art MTS classifiers on the UEA datasets. Furthermore, LCEM provides explainability by design and manifests robust performance when faced with challenges arising from continuous data collection (different MTS length, missing data and noise).




4

A simulation study of disaggregation regression for spatial disease mapping. (arXiv:2005.03604v1 [stat.AP])

Disaggregation regression has become an important tool in spatial disease mapping for making fine-scale predictions of disease risk from aggregated response data. By including high resolution covariate information and modelling the data generating process on a fine scale, it is hoped that these models can accurately learn the relationships between covariates and response at a fine spatial scale. However, validating these high resolution predictions can be a challenge, as often there is no data observed at this spatial scale. In this study, disaggregation regression was performed on simulated data in various settings and the resulting fine-scale predictions are compared to the simulated ground truth. Performance was investigated with varying numbers of data points, sizes of aggregated areas and levels of model misspecification. The effectiveness of cross validation on the aggregate level as a measure of fine-scale predictive performance was also investigated. Predictive performance improved as the number of observations increased and as the size of the aggregated areas decreased. When the model was well-specified, fine-scale predictions were accurate even with small numbers of observations and large aggregated areas. Under model misspecification predictive performance was significantly worse for large aggregated areas but remained high when response data was aggregated over smaller regions. Cross-validation correlation on the aggregate level was a moderately good predictor of fine-scale predictive performance. While the simulations are unlikely to capture the nuances of real-life response data, this study gives insight into the effectiveness of disaggregation regression in different contexts.