two Optimality for the two-parameter quadratic sieve. (arXiv:2005.03162v1 [math.NT]) By arxiv.org Published On :: We study the two-parameter quadratic sieve for a general test function. We prove, under some very general assumptions, that the function considered by Barban and Vehov [BV68] and Graham [Gra78] for this problem is optimal up to the second-order term. We determine that second-order term explicitly. Full Article
two Multi-task pre-training of deep neural networks for digital pathology. (arXiv:2005.02561v2 [eess.IV] UPDATED) By arxiv.org Published On :: In this work, we investigate multi-task learning as a way of pre-training models for classification tasks in digital pathology. It is motivated by the fact that many small and medium-size datasets have been released by the community over the years whereas there is no large scale dataset similar to ImageNet in the domain. We first assemble and transform many digital pathology datasets into a pool of 22 classification tasks and almost 900k images. Then, we propose a simple architecture and training scheme for creating a transferable model and a robust evaluation and selection protocol in order to evaluate our method. Depending on the target task, we show that our models used as feature extractors either improve significantly over ImageNet pre-trained models or provide comparable performance. Fine-tuning improves performance over feature extraction and is able to recover the lack of specificity of ImageNet features, as both pre-training sources yield comparable performance. Full Article
two Recurrent Neural Network Language Models Always Learn English-Like Relative Clause Attachment. (arXiv:2005.00165v3 [cs.CL] UPDATED) By arxiv.org Published On :: A standard approach to evaluating language models analyzes how models assign probabilities to valid versus invalid syntactic constructions (i.e. is a grammatical sentence more probable than an ungrammatical sentence). Our work uses ambiguous relative clause attachment to extend such evaluations to cases of multiple simultaneous valid interpretations, where stark grammaticality differences are absent. We compare model performance in English and Spanish to show that non-linguistic biases in RNN LMs advantageously overlap with syntactic structure in English but not Spanish. Thus, English models may appear to acquire human-like syntactic preferences, while models trained on Spanish fail to acquire comparable human-like preferences. We conclude by relating these results to broader concerns about the relationship between comprehension (i.e. typical language model use cases) and production (which generates the training data for language models), suggesting that necessary linguistic biases are not present in the training signal at all. Full Article
two Generative Adversarial Networks in Digital Pathology: A Survey on Trends and Future Potential. (arXiv:2004.14936v2 [eess.IV] UPDATED) By arxiv.org Published On :: Image analysis in the field of digital pathology has recently gained increased popularity. The use of high-quality whole slide scanners enables the fast acquisition of large amounts of image data, showing extensive context and microscopic detail at the same time. Simultaneously, novel machine learning algorithms have boosted the performance of image analysis approaches. In this paper, we focus on a particularly powerful class of architectures, called Generative Adversarial Networks (GANs), applied to histological image data. Besides improving performance, GANs also enable application scenarios in this field, which were previously intractable. However, GANs could exhibit a potential for introducing bias. Hereby, we summarize the recent state-of-the-art developments in a generalizing notation, present the main applications of GANs and give an outlook of some chosen promising approaches and their possible future applications. In addition, we identify currently unavailable methods with potential for future applications. Full Article
two SCAttNet: Semantic Segmentation Network with Spatial and Channel Attention Mechanism for High-Resolution Remote Sensing Images. (arXiv:1912.09121v2 [cs.CV] UPDATED) By arxiv.org Published On :: High-resolution remote sensing images (HRRSIs) contain substantial ground object information, such as texture, shape, and spatial location. Semantic segmentation, which is an important task for element extraction, has been widely used in processing mass HRRSIs. However, HRRSIs often exhibit large intraclass variance and small interclass variance due to the diversity and complexity of ground objects, thereby bringing great challenges to a semantic segmentation task. In this paper, we propose a new end-to-end semantic segmentation network, which integrates lightweight spatial and channel attention modules that can refine features adaptively. We compare our method with several classic methods on the ISPRS Vaihingen and Potsdam datasets. Experimental results show that our method can achieve better semantic segmentation results. The source codes are available at https://github.com/lehaifeng/SCAttNet. Full Article
two IPG-Net: Image Pyramid Guidance Network for Small Object Detection. (arXiv:1912.00632v3 [cs.CV] UPDATED) By arxiv.org Published On :: For Convolutional Neural Network-based object detection, there is a typical dilemma: the spatial information is well kept in the shallow layers which unfortunately do not have enough semantic information, while the deep layers have a high semantic concept but lost a lot of spatial information, resulting in serious information imbalance. To acquire enough semantic information for shallow layers, Feature Pyramid Networks (FPN) is used to build a top-down propagated path. In this paper, except for top-down combining of information for shallow layers, we propose a novel network called Image Pyramid Guidance Network (IPG-Net) to make sure both the spatial information and semantic information are abundant for each layer. Our IPG-Net has two main parts: the image pyramid guidance transformation module and the image pyramid guidance fusion module. Our main idea is to introduce the image pyramid guidance into the backbone stream to solve the information imbalance problem, which alleviates the vanishment of the small object features. This IPG transformation module promises even in the deepest stage of the backbone, there is enough spatial information for bounding box regression and classification. Furthermore, we designed an effective fusion module to fuse the features from the image pyramid and features from the backbone stream. We have tried to apply this novel network to both one-stage and two-stage detection models, state of the art results are obtained on the most popular benchmark data sets, i.e. MS COCO and Pascal VOC. Full Article
two Two-Stream FCNs to Balance Content and Style for Style Transfer. (arXiv:1911.08079v2 [cs.CV] UPDATED) By arxiv.org Published On :: Style transfer is to render given image contents in given styles, and it has an important role in both computer vision fundamental research and industrial applications. Following the success of deep learning based approaches, this problem has been re-launched recently, but still remains a difficult task because of trade-off between preserving contents and faithful rendering of styles. Indeed, how well-balanced content and style are is crucial in evaluating the quality of stylized images. In this paper, we propose an end-to-end two-stream Fully Convolutional Networks (FCNs) aiming at balancing the contributions of the content and the style in rendered images. Our proposed network consists of the encoder and decoder parts. The encoder part utilizes a FCN for content and a FCN for style where the two FCNs have feature injections and are independently trained to preserve the semantic content and to learn the faithful style representation in each. The semantic content feature and the style representation feature are then concatenated adaptively and fed into the decoder to generate style-transferred (stylized) images. In order to train our proposed network, we employ a loss network, the pre-trained VGG-16, to compute content loss and style loss, both of which are efficiently used for the feature injection as well as the feature concatenation. Our intensive experiments show that our proposed model generates more balanced stylized images in content and style than state-of-the-art methods. Moreover, our proposed network achieves efficiency in speed. Full Article
two Seismic Shot Gather Noise Localization Using a Multi-Scale Feature-Fusion-Based Neural Network. (arXiv:2005.03626v1 [cs.CV]) By arxiv.org Published On :: Deep learning-based models, such as convolutional neural networks, have advanced various segments of computer vision. However, this technology is rarely applied to seismic shot gather noise localization problem. This letter presents an investigation on the effectiveness of a multi-scale feature-fusion-based network for seismic shot-gather noise localization. Herein, we describe the following: (1) the construction of a real-world dataset of seismic noise localization based on 6,500 seismograms; (2) a multi-scale feature-fusion-based detector that uses the MobileNet combined with the Feature Pyramid Net as the backbone; and (3) the Single Shot multi-box detector for box classification/regression. Additionally, we propose the use of the Focal Loss function that improves the detector's prediction accuracy. The proposed detector achieves an AP@0.5 of 78.67\% in our empirical evaluation. Full Article
two Efficient Exact Verification of Binarized Neural Networks. (arXiv:2005.03597v1 [cs.AI]) By arxiv.org Published On :: We present a new system, EEV, for verifying binarized neural networks (BNNs). We formulate BNN verification as a Boolean satisfiability problem (SAT) with reified cardinality constraints of the form $y = (x_1 + cdots + x_n le b)$, where $x_i$ and $y$ are Boolean variables possibly with negation and $b$ is an integer constant. We also identify two properties, specifically balanced weight sparsity and lower cardinality bounds, that reduce the verification complexity of BNNs. EEV contains both a SAT solver enhanced to handle reified cardinality constraints natively and novel training strategies designed to reduce verification complexity by delivering networks with improved sparsity properties and cardinality bounds. We demonstrate the effectiveness of EEV by presenting the first exact verification results for $ell_{infty}$-bounded adversarial robustness of nontrivial convolutional BNNs on the MNIST and CIFAR10 datasets. Our results also show that, depending on the dataset and network architecture, our techniques verify BNNs between a factor of ten to ten thousand times faster than the best previous exact verification techniques for either binarized or real-valued networks. Full Article
two A Tale of Two Perplexities: Sensitivity of Neural Language Models to Lexical Retrieval Deficits in Dementia of the Alzheimer's Type. (arXiv:2005.03593v1 [cs.CL]) By arxiv.org Published On :: In recent years there has been a burgeoning interest in the use of computational methods to distinguish between elicited speech samples produced by patients with dementia, and those from healthy controls. The difference between perplexity estimates from two neural language models (LMs) - one trained on transcripts of speech produced by healthy participants and the other trained on transcripts from patients with dementia - as a single feature for diagnostic classification of unseen transcripts has been shown to produce state-of-the-art performance. However, little is known about why this approach is effective, and on account of the lack of case/control matching in the most widely-used evaluation set of transcripts (DementiaBank), it is unclear if these approaches are truly diagnostic, or are sensitive to other variables. In this paper, we interrogate neural LMs trained on participants with and without dementia using synthetic narratives previously developed to simulate progressive semantic dementia by manipulating lexical frequency. We find that perplexity of neural LMs is strongly and differentially associated with lexical frequency, and that a mixture model resulting from interpolating control and dementia LMs improves upon the current state-of-the-art for models trained on transcript text exclusively. Full Article
two Two Efficient Device Independent Quantum Dialogue Protocols. (arXiv:2005.03518v1 [quant-ph]) By arxiv.org Published On :: Quantum dialogue is a process of two way secure and simultaneous communication using a single channel. Recently, a Measurement Device Independent Quantum Dialogue (MDI-QD) protocol has been proposed (Quantum Information Processing 16.12 (2017): 305). To make the protocol secure against information leakage, the authors have discarded almost half of the qubits remaining after the error estimation phase. In this paper, we propose two modified versions of the MDI-QD protocol such that the number of discarded qubits is reduced to almost one-fourth of the remaining qubits after the error estimation phase. We use almost half of their discarded qubits along with their used qubits to make our protocol more efficient in qubits count. We show that both of our protocols are secure under the same adversarial model given in MDI-QD protocol. Full Article
two Bundle Recommendation with Graph Convolutional Networks. (arXiv:2005.03475v1 [cs.IR]) By arxiv.org Published On :: Bundle recommendation aims to recommend a bundle of items for a user to consume as a whole. Existing solutions integrate user-item interaction modeling into bundle recommendation by sharing model parameters or learning in a multi-task manner, which cannot explicitly model the affiliation between items and bundles, and fail to explore the decision-making when a user chooses bundles. In this work, we propose a graph neural network model named BGCN (short for extit{ extBF{B}undle extBF{G}raph extBF{C}onvolutional extBF{N}etwork}) for bundle recommendation. BGCN unifies user-item interaction, user-bundle interaction and bundle-item affiliation into a heterogeneous graph. With item nodes as the bridge, graph convolutional propagation between user and bundle nodes makes the learned representations capture the item level semantics. Through training based on hard-negative sampler, the user's fine-grained preferences for similar bundles are further distinguished. Empirical results on two real-world datasets demonstrate the strong performance gains of BGCN, which outperforms the state-of-the-art baselines by 10.77\% to 23.18\%. Full Article
two ExpDNN: Explainable Deep Neural Network. (arXiv:2005.03461v1 [cs.LG]) By arxiv.org Published On :: In recent years, deep neural networks have been applied to obtain high performance of prediction, classification, and pattern recognition. However, the weights in these deep neural networks are difficult to be explained. Although a linear regression method can provide explainable results, the method is not suitable in the case of input interaction. Therefore, an explainable deep neural network (ExpDNN) with explainable layers is proposed to obtain explainable results in the case of input interaction. Three cases were given to evaluate the proposed ExpDNN, and the results showed that the absolute value of weight in an explainable layer can be used to explain the weight of corresponding input for feature extraction. Full Article
two Lifted Regression/Reconstruction Networks. (arXiv:2005.03452v1 [cs.LG]) By arxiv.org Published On :: In this work we propose lifted regression/reconstruction networks (LRRNs), which combine lifted neural networks with a guaranteed Lipschitz continuity property for the output layer. Lifted neural networks explicitly optimize an energy model to infer the unit activations and therefore---in contrast to standard feed-forward neural networks---allow bidirectional feedback between layers. So far lifted neural networks have been modelled around standard feed-forward architectures. We propose to take further advantage of the feedback property by letting the layers simultaneously perform regression and reconstruction. The resulting lifted network architecture allows to control the desired amount of Lipschitz continuity, which is an important feature to obtain adversarially robust regression and classification methods. We analyse and numerically demonstrate applications for unsupervised and supervised learning. Full Article
two An Experimental Study of Reduced-Voltage Operation in Modern FPGAs for Neural Network Acceleration. (arXiv:2005.03451v1 [cs.LG]) By arxiv.org Published On :: We empirically evaluate an undervolting technique, i.e., underscaling the circuit supply voltage below the nominal level, to improve the power-efficiency of Convolutional Neural Network (CNN) accelerators mapped to Field Programmable Gate Arrays (FPGAs). Undervolting below a safe voltage level can lead to timing faults due to excessive circuit latency increase. We evaluate the reliability-power trade-off for such accelerators. Specifically, we experimentally study the reduced-voltage operation of multiple components of real FPGAs, characterize the corresponding reliability behavior of CNN accelerators, propose techniques to minimize the drawbacks of reduced-voltage operation, and combine undervolting with architectural CNN optimization techniques, i.e., quantization and pruning. We investigate the effect of environmental temperature on the reliability-power trade-off of such accelerators. We perform experiments on three identical samples of modern Xilinx ZCU102 FPGA platforms with five state-of-the-art image classification CNN benchmarks. This approach allows us to study the effects of our undervolting technique for both software and hardware variability. We achieve more than 3X power-efficiency (GOPs/W) gain via undervolting. 2.6X of this gain is the result of eliminating the voltage guardband region, i.e., the safe voltage region below the nominal level that is set by FPGA vendor to ensure correct functionality in worst-case environmental and circuit conditions. 43% of the power-efficiency gain is due to further undervolting below the guardband, which comes at the cost of accuracy loss in the CNN accelerator. We evaluate an effective frequency underscaling technique that prevents this accuracy loss, and find that it reduces the power-efficiency gain from 43% to 25%. Full Article
two Detection and Feeder Identification of the High Impedance Fault at Distribution Networks Based on Synchronous Waveform Distortions. (arXiv:2005.03411v1 [eess.SY]) By arxiv.org Published On :: Diagnosis of high impedance fault (HIF) is a challenge for nowadays distribution network protections. The fault current of a HIF is much lower than that of a normal load, and fault feature is significantly affected by fault scenarios. A detection and feeder identification algorithm for HIFs is proposed in this paper, based on the high-resolution and synchronous waveform data. In the algorithm, an interval slope is defined to describe the waveform distortions, which guarantees a uniform feature description under various HIF nonlinearities and noise interferences. For three typical types of network neutrals, i.e.,isolated neutral, resonant neutral, and low-resistor-earthed neutral, differences of the distorted components between the zero-sequence currents of healthy and faulty feeders are mathematically deduced, respectively. As a result, the proposed criterion, which is based on the distortion relationships between zero-sequence currents of feeders and the zero-sequence voltage at the substation, is theoretically supported. 28 HIFs grounded to various materials are tested in a 10kV distribution networkwith three neutral types, and are utilized to verify the effectiveness of the proposed algorithm. Full Article
two Energy-efficient topology to enhance the wireless sensor network lifetime using connectivity control. (arXiv:2005.03370v1 [cs.NI]) By arxiv.org Published On :: Wireless sensor networks have attracted much attention because of many applications in the fields of industry, military, medicine, agriculture, and education. In addition, the vast majority of researches has been done to expand its applications and improve its efficiency. However, there are still many challenges for increasing the efficiency in different parts of this network. One of the most important parts is to improve the network lifetime in the wireless sensor network. Since the sensor nodes are generally powered by batteries, the most important issue to consider in these types of networks is to reduce the power consumption of the nodes in such a way as to increase the network lifetime to an acceptable level. The contribution of this paper is using topology control, the threshold for the remaining energy in nodes, and two of the meta-algorithms include SA (Simulated annealing) and VNS (Variable Neighbourhood Search) to increase the energy remaining in the sensors. Moreover, using a low-cost spanning tree, an appropriate connectivity control among nodes is created in the network in order to increase the network lifetime. The results of simulations show that the proposed method improves the sensor lifetime and reduces the energy consumed. Full Article
two DMCP: Differentiable Markov Channel Pruning for Neural Networks. (arXiv:2005.03354v1 [cs.CV]) By arxiv.org Published On :: Recent works imply that the channel pruning can be regarded as searching optimal sub-structure from unpruned networks. However, existing works based on this observation require training and evaluating a large number of structures, which limits their application. In this paper, we propose a novel differentiable method for channel pruning, named Differentiable Markov Channel Pruning (DMCP), to efficiently search the optimal sub-structure. Our method is differentiable and can be directly optimized by gradient descent with respect to standard task loss and budget regularization (e.g. FLOPs constraint). In DMCP, we model the channel pruning as a Markov process, in which each state represents for retaining the corresponding channel during pruning, and transitions between states denote the pruning process. In the end, our method is able to implicitly select the proper number of channels in each layer by the Markov process with optimized transitions. To validate the effectiveness of our method, we perform extensive experiments on Imagenet with ResNet and MobilenetV2. Results show our method can achieve consistent improvement than state-of-the-art pruning methods in various FLOPs settings. The code is available at https://github.com/zx55/dmcp Full Article
two Pricing under a multinomial logit model with non linear network effects. (arXiv:2005.03352v1 [cs.GT]) By arxiv.org Published On :: We study the problem of pricing under a Multinomial Logit model where we incorporate network effects over the consumer's decisions. We analyse both cases, when sellers compete or collaborate. In particular, we pay special attention to the overall expected revenue and how the behaviour of the no purchase option is affected under variations of a network effect parameter. Where for example we prove that the market share for the no purchase option, is decreasing in terms of the value of the network effect, meaning that stronger communication among costumers increases the expected amount of sales. We also analyse how the customer's utility is altered when network effects are incorporated into the market, comparing the cases where both competitive and monopolistic prices are displayed. We use tools from stochastic approximation algorithms to prove that the probability of purchasing the available products converges to a unique stationary distribution. We model that the sellers can use this stationary distribution to establish their strategies. Finding that under those settings, a pure Nash Equilibrium represents the pricing strategies in the case of competition, and an optimal (that maximises the total revenue) fixed price characterise the case of collaboration. Full Article
two Causal Paths in Temporal Networks of Face-to-Face Human Interactions. (arXiv:2005.03333v1 [cs.SI]) By arxiv.org Published On :: In a temporal network causal paths are characterized by the fact that links from a source to a target must respect the chronological order. In this article we study the causal paths structure in temporal networks of human face to face interactions in different social contexts. In a static network paths are transitive i.e. the existence of a link from $a$ to $b$ and from $b$ to $c$ implies the existence of a path from $a$ to $c$ via $b$. In a temporal network the chronological constraint introduces time correlations that affects transitivity. A probabilistic model based on higher order Markov chains shows that correlations that can invalidate transitivity are present only when the time gap between consecutive events is larger than the average value and are negligible below such a value. The comparison between the densities of the temporal and static accessibility matrices shows that the static representation can be used with good approximation. Moreover, we quantify the extent of the causally connected region of the networks over time. Full Article
two A Review of Computer Vision Methods in Network Security. (arXiv:2005.03318v1 [cs.NI]) By arxiv.org Published On :: Network security has become an area of significant importance more than ever as highlighted by the eye-opening numbers of data breaches, attacks on critical infrastructure, and malware/ransomware/cryptojacker attacks that are reported almost every day. Increasingly, we are relying on networked infrastructure and with the advent of IoT, billions of devices will be connected to the internet, providing attackers with more opportunities to exploit. Traditional machine learning methods have been frequently used in the context of network security. However, such methods are more based on statistical features extracted from sources such as binaries, emails, and packet flows. On the other hand, recent years witnessed a phenomenal growth in computer vision mainly driven by the advances in the area of convolutional neural networks. At a glance, it is not trivial to see how computer vision methods are related to network security. Nonetheless, there is a significant amount of work that highlighted how methods from computer vision can be applied in network security for detecting attacks or building security solutions. In this paper, we provide a comprehensive survey of such work under three topics; i) phishing attempt detection, ii) malware detection, and iii) traffic anomaly detection. Next, we review a set of such commercial products for which public information is available and explore how computer vision methods are effectively used in those products. Finally, we discuss existing research gaps and future research directions, especially focusing on how network security research community and the industry can leverage the exponential growth of computer vision methods to build much secure networked systems. Full Article
two Constructing Accurate and Efficient Deep Spiking Neural Networks with Double-threshold and Augmented Schemes. (arXiv:2005.03231v1 [cs.NE]) By arxiv.org Published On :: Spiking neural networks (SNNs) are considered as a potential candidate to overcome current challenges such as the high-power consumption encountered by artificial neural networks (ANNs), however there is still a gap between them with respect to the recognition accuracy on practical tasks. A conversion strategy was thus introduced recently to bridge this gap by mapping a trained ANN to an SNN. However, it is still unclear that to what extent this obtained SNN can benefit both the accuracy advantage from ANN and high efficiency from the spike-based paradigm of computation. In this paper, we propose two new conversion methods, namely TerMapping and AugMapping. The TerMapping is a straightforward extension of a typical threshold-balancing method with a double-threshold scheme, while the AugMapping additionally incorporates a new scheme of augmented spike that employs a spike coefficient to carry the number of typical all-or-nothing spikes occurring at a time step. We examine the performance of our methods based on MNIST, Fashion-MNIST and CIFAR10 datasets. The results show that the proposed double-threshold scheme can effectively improve accuracies of the converted SNNs. More importantly, the proposed AugMapping is more advantageous for constructing accurate, fast and efficient deep SNNs as compared to other state-of-the-art approaches. Our study therefore provides new approaches for further integration of advanced techniques in ANNs to improve the performance of SNNs, which could be of great merit to applied developments with spike-based neuromorphic computing. Full Article
two End-to-End Domain Adaptive Attention Network for Cross-Domain Person Re-Identification. (arXiv:2005.03222v1 [cs.CV]) By arxiv.org Published On :: Person re-identification (re-ID) remains challenging in a real-world scenario, as it requires a trained network to generalise to totally unseen target data in the presence of variations across domains. Recently, generative adversarial models have been widely adopted to enhance the diversity of training data. These approaches, however, often fail to generalise to other domains, as existing generative person re-identification models have a disconnect between the generative component and the discriminative feature learning stage. To address the on-going challenges regarding model generalisation, we propose an end-to-end domain adaptive attention network to jointly translate images between domains and learn discriminative re-id features in a single framework. To address the domain gap challenge, we introduce an attention module for image translation from source to target domains without affecting the identity of a person. More specifically, attention is directed to the background instead of the entire image of the person, ensuring identifying characteristics of the subject are preserved. The proposed joint learning network results in a significant performance improvement over state-of-the-art methods on several benchmark datasets. Full Article
two Hierarchical Attention Network for Action Segmentation. (arXiv:2005.03209v1 [cs.CV]) By arxiv.org Published On :: The temporal segmentation of events is an essential task and a precursor for the automatic recognition of human actions in the video. Several attempts have been made to capture frame-level salient aspects through attention but they lack the capacity to effectively map the temporal relationships in between the frames as they only capture a limited span of temporal dependencies. To this end we propose a complete end-to-end supervised learning approach that can better learn relationships between actions over time, thus improving the overall segmentation performance. The proposed hierarchical recurrent attention framework analyses the input video at multiple temporal scales, to form embeddings at frame level and segment level, and perform fine-grained action segmentation. This generates a simple, lightweight, yet extremely effective architecture for segmenting continuous video streams and has multiple application domains. We evaluate our system on multiple challenging public benchmark datasets, including MERL Shopping, 50 salads, and Georgia Tech Egocentric datasets, and achieves state-of-the-art performance. The evaluated datasets encompass numerous video capture settings which are inclusive of static overhead camera views and dynamic, ego-centric head-mounted camera views, demonstrating the direct applicability of the proposed framework in a variety of settings. Full Article
two A Stochastic Geometry Approach to Doppler Characterization in a LEO Satellite Network. (arXiv:2005.03205v1 [cs.IT]) By arxiv.org Published On :: A Non-terrestrial Network (NTN) comprising Low Earth Orbit (LEO) satellites can enable connectivity to underserved areas, thus complementing existing telecom networks. The high-speed satellite motion poses several challenges at the physical layer such as large Doppler frequency shifts. In this paper, an analytical framework is developed for statistical characterization of Doppler shift in an NTN where LEO satellites provide communication services to terrestrial users. Using tools from stochastic geometry, the users within a cell are grouped into disjoint clusters to limit the differential Doppler across users. Under some simplifying assumptions, the cumulative distribution function (CDF) and the probability density function are derived for the Doppler shift magnitude at a random user within a cluster. The CDFs are also provided for the minimum and the maximum Doppler shift magnitude within a cluster. Leveraging the analytical results, the interplay between key system parameters such as the cluster size and satellite altitude is examined. Numerical results validate the insights obtained from the analysis. Full Article
two ContextNet: Improving Convolutional Neural Networks for Automatic Speech Recognition with Global Context. (arXiv:2005.03191v1 [eess.AS]) By arxiv.org Published On :: Convolutional neural networks (CNN) have shown promising results for end-to-end speech recognition, albeit still behind other state-of-the-art methods in performance. In this paper, we study how to bridge this gap and go beyond with a novel CNN-RNN-transducer architecture, which we call ContextNet. ContextNet features a fully convolutional encoder that incorporates global context information into convolution layers by adding squeeze-and-excitation modules. In addition, we propose a simple scaling method that scales the widths of ContextNet that achieves good trade-off between computation and accuracy. We demonstrate that on the widely used LibriSpeech benchmark, ContextNet achieves a word error rate (WER) of 2.1\%/4.6\% without external language model (LM), 1.9\%/4.1\% with LM and 2.9\%/7.0\% with only 10M parameters on the clean/noisy LibriSpeech test sets. This compares to the previous best published system of 2.0\%/4.6\% with LM and 3.9\%/11.3\% with 20M parameters. The superiority of the proposed ContextNet model is also verified on a much larger internal dataset. Full Article
two Evolutionary Multi Objective Optimization Algorithm for Community Detection in Complex Social Networks. (arXiv:2005.03181v1 [cs.NE]) By arxiv.org Published On :: Most optimization-based community detection approaches formulate the problem in a single or bi-objective framework. In this paper, we propose two variants of a three-objective formulation using a customized non-dominated sorting genetic algorithm III (NSGA-III) to find community structures in a network. In the first variant, named NSGA-III-KRM, we considered Kernel k means, Ratio cut, and Modularity, as the three objectives, whereas the second variant, named NSGA-III-CCM, considers Community score, Community fitness and Modularity, as three objective functions. Experiments are conducted on four benchmark network datasets. Comparison with state-of-the-art approaches along with decomposition-based multi-objective evolutionary algorithm variants (MOEA/D-KRM and MOEA/D-CCM) indicates that the proposed variants yield comparable or better results. This is particularly significant because the addition of the third objective does not worsen the results of the other two objectives. We also propose a simple method to rank the Pareto solutions so obtained by proposing a new measure, namely the ratio of the hyper-volume and inverted generational distance (IGD). The higher the ratio, the better is the Pareto set. This strategy is particularly useful in the absence of empirical attainment function in the multi-objective framework, where the number of objectives is more than two. Full Article
two Evaluation, Tuning and Interpretation of Neural Networks for Meteorological Applications. (arXiv:2005.03126v1 [physics.ao-ph]) By arxiv.org Published On :: Neural networks have opened up many new opportunities to utilize remotely sensed images in meteorology. Common applications include image classification, e.g., to determine whether an image contains a tropical cyclone, and image translation, e.g., to emulate radar imagery for satellites that only have passive channels. However, there are yet many open questions regarding the use of neural networks in meteorology, such as best practices for evaluation, tuning and interpretation. This article highlights several strategies and practical considerations for neural network development that have not yet received much attention in the meteorological community, such as the concept of effective receptive fields, underutilized meteorological performance measures, and methods for NN interpretation, such as synthetic experiments and layer-wise relevance propagation. We also consider the process of neural network interpretation as a whole, recognizing it as an iterative scientist-driven discovery process, and breaking it down into individual steps that researchers can take. Finally, while most work on neural network interpretation in meteorology has so far focused on networks for image classification tasks, we expand the focus to also include networks for image translation. Full Article
two Near-optimal Detector for SWIPT-enabled Differential DF Relay Networks with SER Analysis. (arXiv:2005.03096v1 [cs.IT]) By arxiv.org Published On :: In this paper, we analyze the symbol error rate (SER) performance of the simultaneous wireless information and power transfer (SWIPT) enabled three-node differential decode-and-forward (DDF) relay networks, which adopt the power splitting (PS) protocol at the relay. The use of non-coherent differential modulation eliminates the need for sending training symbols to estimate the instantaneous channel state informations (CSIs) at all network nodes, and therefore improves the power efficiency, as compared with the coherent modulation. However, performance analysis results are not yet available for the state-of-the-art detectors such as the approximate maximum-likelihood detector. Existing works rely on Monte-Carlo simulation to show that there exists an optimal PS ratio that minimizes the overall SER. In this work, we propose a near-optimal detector with linear complexity with respect to the modulation size. We derive an accurate approximate SER expression, based on which the optimal PS ratio can be accurately estimated without requiring any Monte-Carlo simulation. Full Article
two Robust Trajectory and Transmit Power Optimization for Secure UAV-Enabled Cognitive Radio Networks. (arXiv:2005.03091v1 [cs.IT]) By arxiv.org Published On :: Cognitive radio is a promising technology to improve spectral efficiency. However, the secure performance of a secondary network achieved by using physical layer security techniques is limited by its transmit power and channel fading. In order to tackle this issue, a cognitive unmanned aerial vehicle (UAV) communication network is studied by exploiting the high flexibility of a UAV and the possibility of establishing line-of-sight links. The average secrecy rate of the secondary network is maximized by robustly optimizing the UAV's trajectory and transmit power. Our problem formulation takes into account two practical inaccurate location estimation cases, namely, the worst case and the outage-constrained case. In order to solve those challenging non-convex problems, an iterative algorithm based on $mathcal{S}$-Procedure is proposed for the worst case while an iterative algorithm based on Bernstein-type inequalities is proposed for the outage-constrained case. The proposed algorithms can obtain effective suboptimal solutions of the corresponding problems. Our simulation results demonstrate that the algorithm under the outage-constrained case can achieve a higher average secrecy rate with a low computational complexity compared to that of the algorithm under the worst case. Moreover, the proposed schemes can improve the secure communication performance significantly compared to other benchmark schemes. Full Article
two Two-Grid Deflated Krylov Methods for Linear Equations. (arXiv:2005.03070v1 [math.NA]) By arxiv.org Published On :: An approach is given for solving large linear systems that combines Krylov methods with use of two different grid levels. Eigenvectors are computed on the coarse grid and used to deflate eigenvalues on the fine grid. GMRES-type methods are first used on both the coarse and fine grids. Then another approach is given that has a restarted BiCGStab (or IDR) method on the fine grid. While BiCGStab is generally considered to be a non-restarted method, it works well in this context with deflating and restarting. Tests show this new approach can be very efficient for difficult linear equations problems. Full Article
two Learning, transferring, and recommending performance knowledge with Monte Carlo tree search and neural networks. (arXiv:2005.03063v1 [cs.LG]) By arxiv.org Published On :: Making changes to a program to optimize its performance is an unscalable task that relies entirely upon human intuition and experience. In addition, companies operating at large scale are at a stage where no single individual understands the code controlling its systems, and for this reason, making changes to improve performance can become intractably difficult. In this paper, a learning system is introduced that provides AI assistance for finding recommended changes to a program. Specifically, it is shown how the evaluative feedback, delayed-reward performance programming domain can be effectively formulated via the Monte Carlo tree search (MCTS) framework. It is then shown that established methods from computational games for using learning to expedite tree-search computation can be adapted to speed up computing recommended program alterations. Estimates of expected utility from MCTS trees built for previous problems are used to learn a sampling policy that remains effective across new problems, thus demonstrating transferability of optimization knowledge. This formulation is applied to the Apache Spark distributed computing environment, and a preliminary result is observed that the time required to build a search tree for finding recommendations is reduced by up to a factor of 10x. Full Article
two 2019-2020 network TV schedule By feedproxy.google.com Published On :: Thu, 26 Sep 2019 19:56:22 -0500 It’s that time of the year again. A new TV season is upon us. With some shows beginning to air this week, I thought it best to post my “to watch” schedule for the fall. Unlike last year, I… Full Article
two Clint Eastwood's true-life drama Richard Jewell takes aims at big targets, and misses By www.inlander.com Published On :: Thu, 12 Dec 2019 01:30:00 -0800 Once upon a time, Clint Eastwood, a notoriously outspoken conservative in supposedly liberal Hollywood, had no problem at all with cops who employed their own unconventional extra-legal brand of law enforcement (see: Dirty Harry). Today, in Richard Jewell, he really doesn't like the FBI.… Full Article Film/Film News
two Two more residents of the Spokane Veterans Home have died, bringing death toll to five By www.inlander.com Published On :: Wed, 06 May 2020 17:54:35 -0700 Two more residents who were staying at the Spokane Veterans Home have died of complications related to COVID-19, according to the Washington State Department of Veterans Affairs. There have now been five residents of the home who have died following their diagnosis of COVID-19.… Full Article Local News
two Try it Yourself: Two Thai Dishes from Thai Bamboo's May Burgess By www.inlander.com Published On :: Wed, 08 Apr 2020 18:30:00 -0700 Miang Goong Miang is the Thai version of lettuce wraps, in this case featuring goong, or shrimp.… Full Article Food & Cooking
two Multiple two-state classifier output fusion system and method By www.freepatentsonline.com Published On :: Tue, 19 May 2015 08:00:00 EDT A system and method for providing more than two levels of classification distinction of a user state are provided. The first and second general states of a user are sensed. The first general state is classified as either a first state or a second state, and the second general state is classified as either a third state or a fourth state. The user state of the user is then classified as one of at least three different classification states. Full Article
two Systems and methods for analysis of network equipment command line interface (CLI) and runtime management of user interface (UI) generation for same By www.freepatentsonline.com Published On :: Tue, 26 May 2015 08:00:00 EDT Systems and methods are disclosed that may be implemented for network management system (NMS) configuration management support for network devices using a learning and natural language processing application to capture the usage and behavior of the Command Line Interface (CLI) of a network device with the aid of a CLI knowledge model, which in one example may be ontology-based. Full Article
two Composition for cosmetics, cosmetic, method for producing oil-in-water emulsion cosmetic, and two separate layer-type cosmetic By www.freepatentsonline.com Published On :: Tue, 12 May 2015 08:00:00 EDT The present invention relates to a composition for cosmetics including a polyglycerol fatty acid ester, which is an ester of polyglycerol having an average degree of polymerization of 4 to 100 with a fatty acid having 2 to 18 carbon atoms, has a hydroxyl value equal to or less than 15 mgKOH/g, and has a specific gravity at 20° C. of 0.96 to 1.15; a cosmetic which includes the composition for cosmetics; a method for producing an oil-in-water emulsion cosmetic which includes mixing the composition for cosmetics; and a two-separate-layer-type cosmetic, which comprises the composition for cosmetics. The present invention relates to the composition for cosmetics which can be appropriately used in producing a cosmetic giving a highly excellent feel in using and having a very good texture, a cosmetic showing a very high stability over time as an emulsion, and a two-separate-layer-type cosmetic. Full Article
two Composition for cosmetics, cosmetic, method for producing oil-in-water emulsion cosmetic, and two separate layer-type cosmetic By www.freepatentsonline.com Published On :: Tue, 12 May 2015 08:00:00 EDT The present invention relates to a composition for cosmetics including a polyglycerol fatty acid ester, which is an ester of polyglycerol having an average degree of polymerization of 4 to 100 with a fatty acid having 2 to 18 carbon atoms, has a hydroxyl value equal to or less than 15 mgKOH/g, and has a specific gravity at 20° C. of 0.96 to 1.15; a cosmetic which includes the composition for cosmetics; a method for producing an oil-in-water emulsion cosmetic which includes mixing the composition for cosmetics; and a two-separate-layer-type cosmetic, which comprises the composition for cosmetics. The present invention relates to the composition for cosmetics which can be appropriately used in producing a cosmetic giving a highly excellent feel in using and having a very good texture, a cosmetic showing a very high stability over time as an emulsion, and a two-separate-layer-type cosmetic. Full Article
two Method for efficient control signaling of two codeword to one codeword transmission By www.freepatentsonline.com Published On :: Tue, 26 May 2015 08:00:00 EDT In a wireless communication system, a compact control signaling scheme is provided for signaling the selected retransmission mode and codeword identifier for a codeword retransmission when one of a plurality of codewords being transmitted over two codeword pipes to a receiver fails the transmission and when the base station/transmitter switches from a higher order channel rank to a lower order channel rank, either by including one or more additional signaling bits in the control signal to identify the retransmitted codeword, or by re-using existing control signal information in a way that can be recognized by the subscriber station/receiver to identify the retransmitted codeword. With the compact control signal, the receiver is able to determine which codeword is being retransmitted and to determine the corresponding time-frequency resource allocation for the retransmitted codeword. Full Article
two Method for transmitting data from an infrastructure of a radio communication network to user devices, and devices for implementing the method By www.freepatentsonline.com Published On :: Tue, 26 May 2015 08:00:00 EDT Within a radio communication network infrastructure transmitting data organized into a sequence of symbols to a receiving device over a plurality of radio links, data to be transmitted is encoded according to an error correction coding scheme in order to produce a set of systematic symbols and a set of corresponding redundancy symbols; the systematic symbols and a first subset of the corresponding redundancy symbols are transmitted, over a first radio link among said plurality of radio links, in broadcast mode, and a second subset of the corresponding redundancy symbols, distinct from the first one, is transmitted over a second radio link among said plurality of radio links. Full Article
two Method for preparing a degradable polymer network By www.freepatentsonline.com Published On :: Tue, 09 Sep 2014 08:00:00 EDT The present invention relates to methods for preparing a degradable polymer network. The methods for preparing a degradable polymer network comprise a) preparing a polymer composition comprising monomers of cyclic carbonates and/or cyclic esters and/or linear carbonates and/or linear esters and/or cyclic ethers and/or linear hydroxycarboxylic acids at a temperature between 20° C. and 200° C.; b) adding a cross-linking reagent comprising at least one double or triple C—C bond and/or a cross-linking radical initiator; c) processing the polymer composition (that contains the crosslinking reagent into a desired shape; d) Crosslinking by irradiating the mixture. Further, the present invention relates to a degradable polymer network. Furthermore, the present invention relates to the use of the degradable polymer network. Full Article
two Scalable network security with fast response protocol By www.freepatentsonline.com Published On :: Tue, 19 May 2015 08:00:00 EDT This disclosure provides a network security architecture that permits installation of different software security products as virtual machines (VMs). By relying on a standardized data format and communication structure, a general architecture can be created and used to dynamically build and reconfigure interaction between both similar and dissimilar security products. Use of an integration scheme having defined message types and specified query response framework provides for real-time response and easy adaptation for cross-vendor communication. Examples are provided where an intrusion detection system (IDS) can be used to detect network threats based on distributed threat analytics, passing detected threats to other security products (e.g., products with different capabilities from different vendors) to trigger automatic, dynamically configured communication and reaction. A network security provider using this infrastructure can provide hosted or managed boundary security to a diverse set of clients, each on a customized basis. Full Article
two Modifying a dispersed storage network memory data access response plan By www.freepatentsonline.com Published On :: Tue, 26 May 2015 08:00:00 EDT A dispersed storage network memory includes a pool of storage nodes, where the pool of storage nodes stores a multitude of encoded data files. A storage node obtains and analyzes data access response performance data for each of the storage nodes to produce a modified data access response plan that includes identity of an undesired performing storage node and an alternative data access response for the undesired performing storage node. The storage nodes receive corresponding portions of a data access request for at least a portion of one of the multitude of encoded data files. The undesired performing storage node or another storage node processes one of the corresponding portions of the data access request in accordance with the alternative data access response. Full Article
two Network control apparatus and method for port isolation By www.freepatentsonline.com Published On :: Tue, 26 May 2015 08:00:00 EDT Some embodiments provide a method for managing a logical switching element that includes several logical ports. The logical switching element receives and sends data packets through the logical ports. The logical switching element is implemented in a set of managed switching elements that forward data packets in a network. The method provides a set of tables for specifying forwarding behaviors of the logical switching element. The method performs a set of database join operations on the tables to specify in the tables that the logical forwarding element drops a data packet received through a first logical port when the data packet is headed to a second logical port different than the first logical port. Full Article
two Two-tiered dynamic load balancing using sets of distributed thread pools By www.freepatentsonline.com Published On :: Tue, 26 May 2015 08:00:00 EDT By employing a two-tier load balancing scheme, embodiments of the present invention may reduce the overhead of shared resource management, while increasing the potential aggregate throughput of a thread pool. As a result, the techniques presented herein may lead to increased performance in many computing environments, such as graphics intensive gaming. Full Article
two Low latency variable transfer network communicating variable written to source processing core variable register allocated to destination thread to destination processing core variable register allocated to source thread By www.freepatentsonline.com Published On :: Tue, 28 Apr 2015 08:00:00 EDT A method and circuit arrangement utilize a low latency variable transfer network between the register files of multiple processing cores in a multi-core processor chip to support fine grained parallelism of virtual threads across multiple hardware threads. The communication of a variable over the variable transfer network may be initiated by a move from a local register in a register file of a source processing core to a variable register that is allocated to a destination hardware thread in a destination processing core, so that the destination hardware thread can then move the variable from the variable register to a local register in the destination processing core. Full Article
two Shared load-store unit to monitor network activity and external memory transaction status for thread switching By www.freepatentsonline.com Published On :: Tue, 19 May 2015 08:00:00 EDT An array of a plurality of processing elements (PEs) are in a data packet-switched network interconnecting the PEs and memory to enable any of the PEs to access the memory. The network connects the PEs and their local memories to a common controller. The common controller may include a shared load/store (SLS) unit and an array control unit. A shared read may be addressed to an external device via the common controller. The SLS unit can continue activity as if a normal shared read operation has taken place, except that the transactions that have been sent externally may take more cycles to complete than the local shared reads. Hence, a number of transaction-enabled flags may not have been deactivated even though there is no more bus activity. The SLS unit can use this state to indicate to the array control unit that a thread switch may now take place. Full Article
two Automated generation of two-tier mobile applications By www.freepatentsonline.com Published On :: Tue, 26 May 2015 08:00:00 EDT The disclosure generally describes computer-implemented methods, software, and systems for creating and using two-tier mobile applications. A computer-implemented method includes identifying at least a portion of a database to be associated with a mobile application, retrieving a set of metadata associated with the at least a portion of the identified database, automatically generating a set of mobile application source code for directly accessing the at least a portion of the database based on the set of retrieved metadata, and compiling the set of mobile application source code into a distributable mobile application, the distributable mobile application configured to directly access the identified database associated with the mobile application. In some instances, the identifying, retrieving, generating, and compiling operations are performed at design time, while at runtime, the mobile application is executable by a mobile device and, during runtime execution, can request database-related information directly from the identified database. Full Article