mode Global Trends in Proteome Remodeling of the Outer Membrane Modulate Antimicrobial Permeability in Klebsiella pneumoniae By mbio.asm.org Published On :: 2020-04-14T01:31:22-07:00 ABSTRACT In Gram-negative bacteria, the permeability of the outer membrane governs rates of antibiotic uptake and thus the efficacy of antimicrobial treatment. Hydrophilic drugs like β-lactam antibiotics depend on diffusion through pore-forming outer membrane proteins to reach their intracellular targets. In this study, we investigated the distribution of porin genes in more than 2,700 Klebsiella isolates and found a widespread loss of OmpK35 functionality, particularly in those strains isolated from clinical environments. Using a defined set of outer-membrane-remodeled mutants, the major porin OmpK35 was shown to be largely responsible for β-lactam permeation. Sequence similarity network analysis characterized the porin protein subfamilies and led to discovery of a new porin family member, OmpK38. Structure-based comparisons of OmpK35, OmpK36, OmpK37, OmpK38, and PhoE showed near-identical pore frameworks but defining differences in the sequence characteristics of the extracellular loops. Antibiotic sensitivity profiles of isogenic Klebsiella pneumoniae strains, each expressing a different porin as its dominant pore, revealed striking differences in the antibiotic permeability characteristics of each channel in a physiological context. Since K. pneumoniae is a nosocomial pathogen with high rates of antimicrobial resistance and concurrent mortality, these experiments elucidate the role of porins in conferring specific drug-resistant phenotypes in a global context, informing future research to combat antimicrobial resistance in K. pneumoniae. IMPORTANCE Klebsiella pneumoniae is a pathogen of humans with high rates of mortality and a recognized global rise in incidence of carbapenem-resistant K. pneumoniae (CRKP). The outer membrane of K. pneumoniae forms a permeability barrier that modulates the ability of antibiotics to reach their intracellular target. OmpK35, OmpK36, OmpK37, OmpK38, PhoE, and OmpK26 are porins in the outer membrane of K. pneumoniae, demonstrated here to have a causative relationship to drug resistance phenotypes in a physiological context. The data highlight that currently trialed combination treatments with a carbapenem and β-lactamase inhibitors could be effective on porin-deficient K. pneumoniae. Together with structural data, the results reveal the role of outer membrane proteome remodeling in antimicrobial resistance of K. pneumoniae and point to the role of extracellular loops, not channel parameters, in drug permeation. This significant finding warrants care in the development of phage therapies for K. pneumoniae infections, given the way porin expression will be modulated to confer phage-resistant—and collateral drug-resistant—phenotypes in K. pneumoniae. Full Article
mode Simian Immunodeficiency Virus-Infected Memory CD4+ T Cells Infiltrate to the Site of Infected Macrophages in the Neuroparenchyma of a Chronic Macaque Model of Neurological Complications of AIDS By mbio.asm.org Published On :: 2020-04-21T01:31:26-07:00 ABSTRACT Simian immunodeficiency virus (SIV)-infected nonhuman primates can serve as a relevant model for AIDS neuropathogenesis. Current SIV-induced encephalitis (SIVE)/neurological complications of AIDS (neuroAIDS) models are generally associated with rapid progression to neuroAIDS, which does not reflect the tempo of neuroAIDS progression in humans. Recently, we isolated a neuropathogenic clone, SIVsm804E-CL757 (CL757), obtained from an SIV-infected rhesus macaque (RM). CL757 causes a more protracted progression to disease, inducing SIVE in 50% of inoculated animals, with high cerebral spinal fluid viral loads, multinucleated giant cells (MNGCs), and perivascular lymphocytic cuffing in the central nervous system (CNS). This latter finding is reminiscent of human immunodeficiency virus (HIV) encephalitis in humans but not generally observed in rapid progressor animals with neuroAIDS. Here, we studied which subsets of cells within the CNS were targeted by CL757 in animals with neurological symptoms of SIVE. Immunohistochemistry of brain sections demonstrated infiltration of CD4+ T cells (CD4) and macrophages (Ms) to the site of MNGCs. Moreover, an increase in mononuclear cells isolated from the brain tissues of RMs with SIVE correlated with increased cerebrospinal fluid (CSF) viral load. Subset analysis showed a specific increase in brain CD4+ memory T cells (Br-mCD4), brain-Ms (Br-Ms), and brain B cells (Br-B cells). Both Br-mCD4s and Br-Ms harbored replication-competent viral DNA, as demonstrated by virus isolation by coculture. However, only in animals exhibiting SIVE/neuroAIDS was virus isolated from Br-Ms. These findings support the use of CL757 to study the pathogenesis of AIDS viruses in the central nervous system and indicate a previously unanticipated role of CD4s cells as a potential reservoir in the brain. IMPORTANCE While the use of combination antiretroviral therapy effectively suppresses systemic viral replication in the body, neurocognitive disorders as a result of HIV infection of the central nervous system (CNS) remain a clinical problem. Therefore, the use of nonhuman primate models is necessary to study mechanisms of neuropathogenesis. The neurotropic, molecular clone SIVsm804E-CL757 (CL757) results in neuroAIDS in 50% of infected rhesus macaques approximately 1 year postinfection. Using CL757-infected macaques, we investigate disease progression by examining subsets of cells within the CNS that were targeted by CL757 and could potentially serve as viral reservoirs. By isolating mononuclear cells from the brains of SIV-infected rhesus macaques with and without encephalitis, we show that immune cells invade the neuroparenchyma and increase in number in the CNS in animals with SIV-induced encephalitis (SIVE). Of these cells, both brain macrophages and brain memory CD4+ T cells harbor replication-competent SIV DNA; however, only brain CD4+ T cells harbored SIV DNA in animals without SIVE. These findings support use of CL757 as an important model to investigate disease progression in the CNS and as a model to study virus reservoirs in the CNS. Full Article
mode Coupled hydraulic and mechanical model of surface uplift due to mine water rebound: implications for mine water heating and cooling schemes By sjg.lyellcollection.org Published On :: 2019-11-29T02:21:48-08:00 In order to establish sustainable heat loading (heat removal and storage) in abandoned flooded mine workings it is important to understand the geomechanical impact of the cyclical heat loading caused by fluid injection and extraction. This is particularly important where significantly more thermal loading is planned than naturally occurs. A simple calculation shows that the sustainable geothermal heat flux from abandoned coal mines can provide less than a tenth of Scotland's annual domestic heating demand. Any heat removal greater than the natural heat flux will lead to heat mining unless heat storage options are also considered. As a first step, a steady-state, fully saturated, 2D coupled hydromechanical model of a generalized section of pillar-and-stall workings has been created. Mine water rebound was modelled by increasing the hydrostatic pressure sequentially, in line with monitored mine water-level data from Midlothian, Scotland. The modelled uplift to water-level rise ratio of 1.4 mm m–1 is of the same order of magnitude (1 mm m–1) as that observed through interferometric synthetic aperture radar (InSAR) data in the coalfield due to mine water rebound. The modelled magnitude of shear stress at the pillar corners, as a result of horizontal and vertical displacement, is shown to increase linearly with water level. Mine heat systems are expected to cause smaller changes in pressure than those modelled but the results provide initial implications on the potential geomechanical impacts of mine water heat schemes which abstract or inject water and heat into pillar-and-stall coal mine workings. Thematic collection: This article is part of the SJG Collection on Early-Career Research available at: https://www.lyellcollection.org/cc/SJG-early-career-research Full Article
mode Mode of Action of the Catalytic Site in the N-Terminal Ribosome-Inactivating Domain of JIP60 By www.plantphysiol.org Published On :: 2020-05-08T08:30:48-07:00 Jasmonate-induced protein 60 (JIP60) is a ribosome-inactivating protein (RIP) from barley (Hordeum vulgare) and is involved in the plant immune response dependent on jasmonate hormones. Here, we demonstrate in Nicotiana benthamiana that transient expression of the N-terminal domain of JIP60, from which the inhibitor domain (amino acids 163–185) is removed, initiates cell death, leading to extensive necrosis of leaf tissues. We used structure prediction of JIP60 to identify potential catalytic amino acids in the active site and tested these by mutagenesis and in planta assays of necrosis induction by expression in N. benthamiana, as well as through an in vitro translation-inactivation assay. We found that Tyr 96, Glu 201, Arg 204, and Trp 234 in the presumptive active site of JIP60 are conserved in 815 plant RIPs in the Pfam database that were identified by HUMMR as containing a RIP domain. When these amino acid residues are individually mutated, the necrosis-inducing activity is completely abolished. We therefore propose that the role of these amino acids in JIP60 activity is to depurinate adenosine in ribosomes. This study provides insight into the catalytic mechanism of JIP60. Full Article
mode Toward an Evolutionarily Appropriate Null Model: Jointly Inferring Demography and Purifying Selection [Population and Evolutionary Genetics] By www.genetics.org Published On :: 2020-05-05T06:43:41-07:00 The question of the relative evolutionary roles of adaptive and nonadaptive processes has been a central debate in population genetics for nearly a century. While advances have been made in the theoretical development of the underlying models, and statistical methods for estimating their parameters from large-scale genomic data, a framework for an appropriate null model remains elusive. A model incorporating evolutionary processes known to be in constant operation, genetic drift (as modulated by the demographic history of the population) and purifying selection, is lacking. Without such a null model, the role of adaptive processes in shaping within- and between-population variation may not be accurately assessed. Here, we investigate how population size changes and the strength of purifying selection affect patterns of variation at "neutral" sites near functional genomic components. We propose a novel statistical framework for jointly inferring the contribution of the relevant selective and demographic parameters. By means of extensive performance analyses, we quantify the utility of the approach, identify the most important statistics for parameter estimation, and compare the results with existing methods. Finally, we reanalyze genome-wide population-level data from a Zambian population of Drosophila melanogaster, and find that it has experienced a much slower rate of population growth than was inferred when the effects of purifying selection were neglected. Our approach represents an appropriate null model, against which the effects of positive selection can be assessed. Full Article
mode Fast Algorithms for Conducting Large-Scale GWAS of Age-at-Onset Traits Using Cox Mixed-Effects Models [Statistical Genetics and Genomics] By www.genetics.org Published On :: 2020-05-05T06:43:41-07:00 Age-at-onset is one of the critical traits in cohort studies of age-related diseases. Large-scale genome-wide association studies (GWAS) of age-at-onset traits can provide more insights into genetic effects on disease progression and transitions between stages. Moreover, proportional hazards (or Cox) regression models can achieve higher statistical power in a cohort study than a case-control trait using logistic regression. Although mixed-effects models are widely used in GWAS to correct for sample dependence, application of Cox mixed-effects models (CMEMs) to large-scale GWAS is so far hindered by intractable computational cost. In this work, we propose COXMEG, an efficient R package for conducting GWAS of age-at-onset traits using CMEMs. COXMEG introduces fast estimation algorithms for general sparse relatedness matrices including, but not limited to, block-diagonal pedigree-based matrices. COXMEG also introduces a fast and powerful score test for dense relatedness matrices, accounting for both population stratification and family structure. In addition, COXMEG generalizes existing algorithms to support positive semidefinite relatedness matrices, which are common in twin and family studies. Our simulation studies suggest that COXMEG, depending on the structure of the relatedness matrix, is orders of magnitude computationally more efficient than coxme and coxph with frailty for GWAS. We found that using sparse approximation of relatedness matrices yielded highly comparable results in controlling false-positive rate and retaining statistical power for an ethnically homogeneous family-based sample. By applying COXMEG to a study of Alzheimer’s disease (AD) with a Late-Onset Alzheimer’s Disease Family Study from the National Institute on Aging sample comprising 3456 non-Hispanic whites and 287 African Americans, we identified the APOE 4 variant with strong statistical power (P = 1e–101), far more significant than that reported in a previous study using a transformed variable and a marginal Cox model. Furthermore, we identified novel SNP rs36051450 (P = 2e–9) near GRAMD1B, the minor allele of which significantly reduced the hazards of AD in both genders. These results demonstrated that COXMEG greatly facilitates the application of CMEMs in GWAS of age-at-onset traits. Full Article
mode Complement Deficiencies Result in Surrogate Pathways of Complement Activation in Novel Polygenic Lupus-like Models of Kidney Injury [AUTOIMMUNITY] By www.jimmunol.org Published On :: 2020-05-04T13:00:27-07:00 Key Points Novel TM lupus mouse strains develop spontaneous nephritis. In C1q deficiency, kidney complement activation likely occurred via the LP. In C3 deficiency, coagulation cascade contributed to kidney complement activation. Full Article
mode An EBNA3A-Mutated Epstein-Barr Virus Retains the Capacity for Lymphomagenesis in a Cord Blood-Humanized Mouse Model [Transformation and Oncogenesis] By jvi.asm.org Published On :: 2020-05-04T08:00:47-07:00 Epstein-Barr virus (EBV) causes B cell lymphomas and transforms B cells in vitro. The EBV protein EBNA3A collaborates with EBNA3C to repress p16 expression and is required for efficient transformation in vitro. An EBNA3A deletion mutant EBV strain was recently reported to establish latency in humanized mice but not cause tumors. Here, we compare the phenotypes of an EBNA3A mutant EBV (3A) and wild-type (WT) EBV in a cord blood-humanized (CBH) mouse model. The hypomorphic 3A mutant, in which a stop codon is inserted downstream from the first ATG and the open reading frame is disrupted by a 1-bp insertion, expresses very small amounts of EBNA3A using an alternative ATG at residue 15. 3A caused B cell lymphomas at rates similar to their induction by WT EBV but with delayed onset. 3A and WT tumors expressed equivalent levels of EBNA2 and p16, but 3A tumors in some cases had reduced LMP1. Like the WT EBV tumors, 3A lymphomas were oligoclonal/monoclonal, with typically one dominant IGHV gene being expressed. Transcriptome sequencing (RNA-seq) analysis revealed small but consistent gene expression differences involving multiple cellular genes in the WT EBV- versus 3A-infected tumors and increased expression of genes associated with T cells, suggesting increased T cell infiltration of tumors. Consistent with an impact of EBNA3A on immune function, we found that the expression of CLEC2D, a receptor that has previously been shown to influence responses of T and NK cells, was markedly diminished in cells infected with EBNA3A mutant virus. Together, these studies suggest that EBNA3A contributes to efficient EBV-induced lymphomagenesis in CBH mice. IMPORTANCE The EBV protein EBNA3A is expressed in latently infected B cells and is important for efficient EBV-induced transformation of B cells in vitro. In this study, we used a cord blood-humanized mouse model to compare the phenotypes of an EBNA3A hypomorph mutant virus (3A) and wild-type EBV. The 3A virus caused lymphomas with delayed onset compared to the onset of those caused by WT EBV, although the tumors occurred at a similar rate. The WT EBV and EBNA3A mutant tumors expressed similar levels of the EBV protein EBNA2 and cellular protein p16, but in some cases, 3A tumors had less LMP1. Our analysis suggested that 3A-infected tumors have elevated T cell infiltrates and decreased expression of the CLEC2D receptor, which may point to potential novel roles of EBNA3A in T cell and NK cell responses to EBV-infected tumors. Full Article
mode A nonlinear beam model of photomotile structures [Engineering] By www.pnas.org Published On :: 2020-05-05T10:31:24-07:00 Actuation remains a significant challenge in soft robotics. Actuation by light has important advantages: Objects can be actuated from a distance, distinct frequencies can be used to actuate and control distinct modes with minimal interference, and significant power can be transmitted over long distances through corrosion-free, lightweight fiber optic cables.... Full Article
mode Matrix mechanotransduction mediated by thrombospondin-1/integrin/YAP in the vascular remodeling [Cell Biology] By www.pnas.org Published On :: 2020-05-05T10:31:24-07:00 The extracellular matrix (ECM) initiates mechanical cues that activate intracellular signaling through matrix–cell interactions. In blood vessels, additional mechanical cues derived from the pulsatile blood flow and pressure play a pivotal role in homeostasis and disease development. Currently, the nature of the cues from the ECM and their interaction with... Full Article
mode Moderation of mitochondrial respiration mitigates metabolic syndrome of aging [Biochemistry] By www.pnas.org Published On :: 2020-05-05T10:31:24-07:00 Deregulation of mitochondrial dynamics leads to the accumulation of oxidative stress and unhealthy mitochondria; consequently, this accumulation contributes to premature aging and alterations in mitochondria linked to metabolic complications. We postulate that restrained mitochondrial ATP synthesis might alleviate age-associated disorders and extend healthspan in mammals. Herein, we prepared a previously... Full Article
mode New HST data and modeling reveal a massive planetesimal collision around Fomalhaut [Astronomy] By www.pnas.org Published On :: 2020-05-05T10:31:24-07:00 The apparent detection of an exoplanet orbiting Fomalhaut was announced in 2008. However, subsequent observations of Fomalhaut b raised questions about its status: Unlike other exoplanets, it is bright in the optical and nondetected in the infrared, and its orbit appears to cross the debris ring around the star without... Full Article
mode Water lilies, loss of woodiness, and model systems [Plant Biology] By www.pnas.org Published On :: 2020-05-05T10:31:24-07:00 The delicate necklace of threaded petals from the tomb of Rameses II, midnineteenth century glass houses built for the newly discovered Victoria amazonica, and Monet’s giant canvases in the Musée de l'Orangerie all testify to a deep human attraction to water lilies: beguiling plants with showy flowers that seem to... Full Article
mode Reply to Schild et al.: Antisocial personality moderates the causal influence of costly punishment on trust and trustworthiness [Social Sciences] By www.pnas.org Published On :: 2020-05-05T10:31:24-07:00 A growing literature at the intersection of personality psychology and behavioral economics investigates the interplay between personality and decision making in social dilemmas (1, 2). Engelmann et al. (3) extend prior research in this area by investigating the role of antisocial personality in the context of a trust game with... Full Article
mode Polarization of protease-activated receptor 2 (PAR-2) signaling is altered during airway epithelial remodeling and deciliation [Immunology] By www.jbc.org Published On :: 2020-05-08T03:41:14-07:00 Protease-activated receptor 2 (PAR-2) is activated by secreted proteases from immune cells or fungi. PAR-2 is normally expressed basolaterally in differentiated nasal ciliated cells. We hypothesized that epithelial remodeling during diseases characterized by cilial loss and squamous metaplasia may alter PAR-2 polarization. Here, using a fluorescent arrestin assay, we confirmed that the common fungal airway pathogen Aspergillus fumigatus activates heterologously-expressed PAR-2. Endogenous PAR-2 activation in submerged airway RPMI 2650 or NCI–H520 squamous cells increased intracellular calcium levels and granulocyte macrophage–colony-stimulating factor, tumor necrosis factor α, and interleukin (IL)-6 secretion. RPMI 2650 cells cultured at an air–liquid interface (ALI) responded to apically or basolaterally applied PAR-2 agonists. However, well-differentiated primary nasal epithelial ALIs responded only to basolateral PAR-2 stimulation, indicated by calcium elevation, increased cilia beat frequency, and increased fluid and cytokine secretion. We exposed primary cells to disease-related modifiers that alter epithelial morphology, including IL-13, cigarette smoke condensate, and retinoic acid deficiency, at concentrations and times that altered epithelial morphology without causing breakdown of the epithelial barrier to model early disease states. These altered primary cultures responded to both apical and basolateral PAR-2 stimulation. Imaging nasal polyps and control middle turbinate explants, we found that nasal polyps, but not turbinates, exhibit apical calcium responses to PAR-2 stimulation. However, isolated ciliated cells from both polyps and turbinates maintained basolateral PAR-2 polarization, suggesting that the calcium responses originated from nonciliated cells. Altered PAR-2 polarization in disease-remodeled epithelia may enhance apical responses and increase sensitivity to inhaled proteases. Full Article
mode Roles of the DOCK-D family proteins in a mouse model of neuroinflammation [Neurobiology] By www.jbc.org Published On :: 2020-05-08T03:41:14-07:00 The DOCK-D (dedicator of cytokinesis D) family proteins are atypical guanine nucleotide exchange factors that regulate Rho GTPase activity. The family consists of Zizimin1 (DOCK9), Zizimin2 (DOCK11), and Zizimin3 (DOCK10). Functions of the DOCK-D family proteins are presently not well-explored, and the role of the DOCK-D family in neuroinflammation is unknown. In this study, we generated three mouse lines in which DOCK9 (DOCK9−/−), DOCK10 (DOCK10−/−), or DOCK11 (DOCK11−/−) had been deleted and examined the phenotypic effects of these gene deletions in MOG35–55 peptide-induced experimental autoimmune encephalomyelitis, an animal model of the neuroinflammatory disorder multiple sclerosis. We found that all the gene knockout lines were healthy and viable. The only phenotype observed under normal conditions was a slightly smaller proportion of B cells in splenocytes in DOCK10−/− mice than in the other mouse lines. We also found that the migration ability of macrophages is impaired in DOCK10−/− and DOCK11−/− mice and that the severity of experimental autoimmune encephalomyelitis was ameliorated only in DOCK10−/− mice. No apparent phenotype was observed for DOCK9−/− mice. Further investigations indicated that lipopolysaccharide stimulation up-regulates DOCK10 expression in microglia and that microglial migration is decreased in DOCK10−/− mice. Up-regulation of C–C motif chemokine ligand 2 (CCL2) expression induced by activation of Toll-like receptor 4 or 9 signaling was reduced in DOCK10−/− astrocytes compared with WT astrocytes. Taken together, our findings suggest that DOCK10 plays a role in innate immunity and neuroinflammation and might represent a potential therapeutic target for managing multiple sclerosis. Full Article
mode The progressive development of microfabrics from initial deposition to slump deformation: an example from a modern sedimenary melange on the Nankai Prism By jgs.lyellcollection.org Published On :: 2020-05-04T02:10:48-07:00 The progressive development of microfabrics from initial deposition to slump deformation and then a submarine slide was investigated in an active subduction zone using cores recovered during the Integrated Ocean Drilling Program Expedition 333. A Pleistocene–Holocene sequence was recovered at Site C0018A, which was located on a slope basin on the footwall of the megasplay fault in the Nankai Trough, SW Japan. Six mass-transport deposit units intercalated with coherent intervals were recovered from the upper 190 m of the drilled succession. The initial microfabrics in the undeformed hemipelagic sediments were characterized by random and porous fabrics composed predominantly of clay aggregations and connectors. The initial fabrics were cardhouse fabrics, which consist of clay flakes with edge-to-edge (E–E) and/or edge-to-face (E–F) contacts. These initial microfabrics developed into compacted microfabrics, which are random and consolidated fabrics (bookhouse fabrics) that consist of clay flakes with E–F and/or face-to-face (F–F) contacts and develop during burial as a pure shear deformation. During slumping, these fabrics were then deformed under simple shear to become predominantly F–F contacts and form clay chains. Thus, the microfabrics in these submarine slides are a sedimentary mélange that developed locally into a preferred clay orientation with F–F contacts. Supplementary material: A schematic illustration showing sedimentation processes and fabrics is available at https://doi.org/10.6084/m9.figshare.c.4483385 Thematic collection: This article is part of the Polygenetic mélanges collection available at: https://www.lyellcollection.org/cc/polygenetic-melanges Full Article
mode A Single Intramuscular Dose of a Plant-Made Virus-Like Particle Vaccine Elicits a Balanced Humoral and Cellular Response and Protects Young and Aged Mice from Influenza H1N1 Virus Challenge despite a Modest/Absent Humoral Response [Vaccines] By cvi.asm.org Published On :: 2017-12-05T08:00:30-08:00 Virus-like-particle (VLP) influenza vaccines can be given intramuscularly (i.m.) or intranasally (i.n.) and may have advantages over split-virion formulations in the elderly. We tested a plant-made VLP vaccine candidate bearing the viral hemagglutinin (HA) delivered either i.m. or i.n. in young and aged mice. Young adult (5- to 8-week-old) and aged (16- to 20-month-old) female BALB/c mice received a single 3-μg dose based on the HA (A/California/07/2009 H1N1) content of a plant-made H1-VLP (i.m. or i.n.) split-virion vaccine (i.m.) or were left naive. After vaccination, humoral and splenocyte responses were assessed, and some mice were challenged. Both VLP and split vaccines given i.m. protected 100% of the young animals, but the VLP group lost the least weight and had stronger humoral and cellular responses. Compared to split-vaccine recipients, aged animals vaccinated i.m. with VLP were more likely to survive challenge (80% versus 60%). The lung viral load postchallenge was lowest in the VLP i.m. groups. Mice vaccinated with VLP i.n. had little detectable immune response, but survival was significantly increased. In both age groups, i.m. administration of the H1-VLP vaccine elicited more balanced humoral and cellular responses and provided better protection from homologous challenge than the split-virion vaccine. Full Article
mode Stability analyses of large waste dumps via 3D numerical modelling considering cracks and earthquake loading: a case study of Zhujiabaobao waste dump By qjegh.lyellcollection.org Published On :: 2020-05-01T00:46:18-07:00 This paper uses a 3D model for stability assessment of Zhujiabaobao waste dump with ground cracks. The study data were gathered via reconnaissance, geomorphological analysis and laboratory experiment. A 3D finite extended element method model that can consider cracks was then used to calculate the factor of safety (FOS) of the waste dump via the strength reduction technique. The simulation shows the dump to have an FOS of 1.22 and both the position and depth of penetration of cracks in the waste dump have a crucial impact on the stability of the slope. Because the study area is located in a seismically active area, simulation and analysis of the dynamic response of the waste dump under different magnitudes of seismic waves (peak acceleration is 0.05, 0.15, 0.25 and 0.45g) were performed via an explicit dynamic model. The simulation shows that high steps in the slope are particularly responsive to earthquakes. The approach used here for analysing stability under static and dynamic loads is useful for hazard prevention and mitigation. Full Article
mode Groundwater chemical characteristics and circulation mode in the Suixiao coal-mining district By qjegh.lyellcollection.org Published On :: 2020-05-01T00:46:18-07:00 Groundwater recharge and runoff conditions are ascertained in the Suixiao coal-mining district using the hydrogen and oxygen isotopes and the trace elements in the unconsolidated pore aquifer of the Cenozoic group, the fissured sandstone aquifer of the Permian system, and the karst fissured limestone aquifer of the Carboniferous Taiyuan Formation and the Ordovician system, which are the main recharge aquifers during coal mining. The main water–rock interactions are pyrite oxidation, cation exchange and adsorption, and carbonate acidification, which are educed by principal component analysis of conventional ions. These results combined with geological conditions prove that hydraulic connection exists generally between the main recharge aquifers, and the groundwater circulation is controlled by faults in the sandstone and limestone aquifers. The water–rock interaction is very weak in the east of the district, which is proved to be a recharge area by Fisher discriminant analysis. This study provides the theoretical basis for the hydrochemistry exploration and the establishment of a water-inrush warning system in a concealed coalfield. Full Article
mode Groundwater recharge susceptibility mapping using logistic regression model and bivariate statistical analysis By qjegh.lyellcollection.org Published On :: 2020-05-01T00:46:18-07:00 A logistic regression model and a bivariate statistical analysis were used in this paper to evaluate the groundwater recharge susceptibility. The approach is based on the assessment of the relationship involving groundwater recharge and parameters that influence this hydrological process. Surface parameters and aquifer-related parameters were evaluated as thematic map layers using ArcGIS. Then, a weighted-rating method was adopted to categorize each parameter's map. To assess the role of each parameter in the aquifer recharge, a logistic regression model and a bivariate statistical analysis were applied to the Guenniche phreatic aquifer (Tunisia). Models are explored to establish a map showing the aquifer recharge susceptibility. The code Modflow was used to simulate the consequence of the recharge. The recharge amount was introduced in the model and was tested to verify the recharge effect on the hydraulic head for the two models. The obtained results reveal that the recharge as mapped in the bivariate statistical model has a minor impact on the hydraulic head. Results of the logistic regression model are more significant as the hydraulic head is widely affected. This model provides good results in mapping the spatial distribution of the aquifer recharge susceptibility. Full Article
mode Hepatic Transporter Alterations by Nuclear Receptor Agonist T0901317 in Sandwich-Cultured Human Hepatocytes: Proteomic Analysis and PBPK Modeling to Evaluate Drug-Drug Interaction Risk [Metabolism, Transport, and Pharmacogenomics] By jpet.aspetjournals.org Published On :: 2020-04-21T06:02:31-07:00 In vitro approaches for predicting drug-drug interactions (DDIs) caused by alterations in transporter protein regulation are not well established. However, reports of transporter regulation via nuclear receptor (NR) modulation by drugs are increasing. This study examined alterations in transporter protein levels in sandwich-cultured human hepatocytes (SCHH; n = 3 donors) measured by liquid chromatography–tandem mass spectrometry–based proteomic analysis after treatment with N-[4-(1,1,1,3,3,3-hexafluoro-2-hydroxypropan-2-yl)phenyl]-N-(2,2,2-trifluoroethyl)benzenesulfonamide (T0901317), the first described synthetic liver X receptor agonist. T0901317 treatment (10 μM, 48 hours) decreased the levels of organic cation transporter (OCT) 1 (0.22-, 0.43-, and 0.71-fold of control) and organic anion transporter (OAT) 2 (0.38-, 0.38-, and 0.53-fold of control) and increased multidrug resistance protein (MDR) 1 (1.37-, 1.48-, and 1.59-fold of control). The induction of NR downstream gene expression supports the hypothesis that T0901317 off-target effects on farnesoid X receptor and pregnane X receptor activation are responsible for the unexpected changes in OCT1, OAT2, and MDR1. Uptake of the OCT1 substrate metformin in SCHH was decreased by T0901317 treatment. Effects of decreased OCT1 levels on metformin were simulated using a physiologically-based pharmacokinetic (PBPK) model. Simulations showed a clear decrease in metformin hepatic exposure resulting in a decreased pharmacodynamic effect. This DDI would not be predicted by the modest changes in simulated metformin plasma concentrations. Altogether, the current study demonstrated that an approach combining SCHH, proteomic analysis, and PBPK modeling is useful for revealing tissue concentration–based DDIs caused by unexpected regulation of hepatic transporters by NR modulators. SIGNIFICANCE STATEMENT This study utilized an approach combining sandwich-cultured human hepatocytes, proteomic analysis, and physiologically based pharmacokinetic modeling to evaluate alterations in pharmacokinetics (PK) and pharmacodynamics (PD) caused by transporter regulation by nuclear receptor modulators. The importance of this approach from a mechanistic and clinically relevant perspective is that it can reveal drug-drug interactions (DDIs) caused by unexpected regulation of hepatic transporters and enable prediction of altered PK and PD changes, especially for tissue concentration–based DDIs. Full Article
mode The Endocannabinoid System Alleviates Pain in a Murine Model of Cancer-Induced Bone Pain [Drug Discovery and Translational Medicine] By jpet.aspetjournals.org Published On :: 2020-04-13T13:53:50-07:00 Metastatic breast cancer is prevalent worldwide, and one of the most common sites of metastasis is long bones. Of patients with disease, the major symptom is pain, yet current medications fail to adequately result in analgesic efficacy and present major undesirable adverse effects. In our study, we investigate the potential of a novel monoacylglycerol lipase (MAGL) inhibitor, MJN110, in a murine model of cancer-induced bone pain. Literature has previously demonstrated that MAGL inhibitors function to increase the endogenous concentrations of 2-arachydonylglycerol, which then activates CB1 and CB2 receptors to inhibit inflammation and pain. We demonstrate that administration of MJN110 significantly and dose dependently alleviates spontaneous pain behavior during acute administration compared with vehicle control. In addition, MJN110 maintains its efficacy in a chronic-dosing paradigm over the course of 7 days without signs of receptor sensitization. In vitro analysis of MJN110 demonstrated a dose-dependent and significant decrease in cell viability and proliferation of 66.1 breast adenocarcinoma cells to a greater extent than KML29, an alternate MAGL inhibitor, or the CB2 agonist JWH015. Chronic administration of the compound did not appear to affect tumor burden, as evidenced by radiograph or histologic analysis. Together, these data support the application for MJN110 as a novel therapeutic for cancer-induced bone pain. SIGNIFICANCE STATEMENT Current standard of care for metastatic breast cancer pain is opioid-based therapies with adjunctive chemotherapy, which have highly addictive and other deleterious side effects. The need for effective, non–opioid-based therapies is essential, and harnessing the endogenous cannabinoid system is proving to be a new target to treat various types of pain conditions. We present a novel drug targeting the endogenous cannabinoid system that is effective at reducing pain in a mouse model of metastatic breast cancer to bone. Full Article
mode Translational Pharmacokinetic-Pharmacodynamic Modeling for an Orally Available Novel Inhibitor of Epigenetic Regulator Enhancer of Zeste Homolog 2 [Drug Discovery and Translational Medicine] By jpet.aspetjournals.org Published On :: 2020-04-13T13:53:50-07:00 PF06821497 has been identified as an orally available small-molecule enhancer of zeste homolog 2 inhibitor. The objectives of the present study were to characterize pharmacokinetic-pharmacodynamic-disease relationships of PF06821497 in xenograft mouse models with diffuse large B-cell lymphoma (Karpas422). An indirect-response model reasonably fit dose-dependent pharmacodynamic responses [histone H3 on lysine 27 (H3K27) me3 inhibition] with an unbound EC50 of 76 nM, whereas a signal-transduction model sufficiently fit dose-dependent disease responses (tumor growth inhibition) with an unbound tumor stasis concentration (Tsc) of 168 nM. Thus, effective concentration for 70% of maximal effect (EC70) for H3K27me3 inhibition was roughly comparable to Tsc, suggesting that 70% H3K27me3 inhibition could be required for tumor stasis. Consistently, an integrated pharmacokinetic-pharmacodynamic-disease model adequately describing tumor growth inhibition also suggested that ~70% H3K27me3 inhibition was associated with tumor stasis. Based on these results, we would propose that an EC70 estimate for H3K27me3 inhibition corresponding to tumor stasis could be considered a minimum target efficacious concentration of PF06821497 in cancer patients. SIGNIFICANCE STATEMENT Using a mathematical modeling approach, the quantitative relationships of an orally available anticancer small-molecule enhancer of zeste homolog 2 inhibitor, PF06821497, were characterized among pharmacokinetics, pharmacodynamic biomarker inhibition, and disease responses in nonclinical xenograft models with diffuse large B-cell lymphoma. The modeling results suggest that >70% histone H3 on lysine 27 (H3K27) me3 inhibition would be required for tumor stasis (i.e., 100% tumor growth inhibition). Accordingly, we would propose that an effective concentration for 70% of maximal effect estimate for H3K27me3 inhibition could be considered a minimum target efficacious concentration of PF06821497 in cancer patients. Full Article
mode A Mechanistic and Translational Pharmacokinetic-Pharmacodynamic Model of Abicipar Pegol and Vascular Endothelial Growth Factor Inhibition [Drug Discovery and Translational Medicine] By jpet.aspetjournals.org Published On :: 2020-04-13T13:53:50-07:00 Abicipar pegol (abicipar) is a novel DARPin therapeutic and highly potent vascular endothelial growth factor (VEGF) inhibitor intended for the treatment of neovascular age-related macular degeneration (nAMD). Here we develop a translational pharmacokinetic/pharmacodynamic (PK/PD) model for abicipar to guide dosing regimens in the clinic. The model incorporated abicipar-VEGF binding kinetics, VEGF expression levels, and VEGF turnover rates to describe the ocular and systemic PK data collected from the vitreous, aqueous humor (AH), choroid, retina, and serum of rabbits after a 1-mg abicipar intravitreal (IVT) dose. The model was translated to humans using human-specific mechanistic parameters and refitted to human serum and AH concentrations from patients with diabetic macular edema and nAMD. The model was then used to simulate 8-, 12- (quarterly), and 16-week dosing intervals in the clinic. Simulations of 2 mg abicipar IVT at 8-week or quarterly dosing in humans indicates minimum steady-state vitreal concentrations are maintained above both in vitro IC50 and in vivo human IC50 values. The model predicted virtually complete VEGF inhibition for the 8-week and quarterly dosing schedule during the 52-week treatment period. In the 16-week schedule, clinically significant VEGF inhibition was maintained during the 52-week period. The model quantitatively described abicipar-VEGF target engagement leading to rapid reduction of VEGF and a long duration of VEGF inhibition demonstrating the clinical feasibility of up to a 16-week dosing interval. Abicipar is predicted to reduce IVT dosing compared with other anti-VEGF therapies with the potential to lessen patient treatment burden. SIGNIFICANCE STATEMENT Current anti-VEGF treatments for neovascular age-related macular degeneration require frequent (monthly) intravitreal injections and monitoring, which increases patient burden. We developed a mechanistic pharmakinetic/pharmadynamic model to describe the interaction between abicipar (a novel VEGF inhibitor) and VEGF to evaluate the duration of action. The model demonstrates extended abicipar-VEGF target engagement leading to clinical feasibility of up to a 16-week dosing interval. Our model predicted that abicipar 8-week and quarterly dosing schedules maintain virtually complete VEGF inhibition during the 52-week period. Full Article
mode The ubiquitin hydrolase Doa4 directly binds Snf7 to inhibit recruitment of ESCRT-III remodeling factors in S. cerevisiae [RESEARCH ARTICLE] By jcs.biologists.org Published On :: 2020-04-28T08:24:46-07:00 Dalton Buysse, Anna-Katharina Pfitzner, Matt West, Aurelien Roux, and Greg Odorizzi The ESCRT-III protein complex executes reverse-topology membrane scission. The scission mechanism is unclear but is linked to remodeling of ESCRT-III complexes at the membrane surface. At endosomes, ESCRT-III mediates the budding of intralumenal vesicles (ILVs). In Saccharomyces cerevisiae, ESCRT-III activity at endosomes is regulated through an unknown mechanism by Doa4, an ubiquitin hydrolase that deubiquitylates transmembrane proteins sorted into ILVs. We report that the non-catalytic N-terminus of Doa4 binds Snf7, the predominant ESCRT-III subunit. Through this interaction, Doa4 overexpression alters Snf7 assembly status and inhibits ILV membrane scission. In vitro, the Doa4 N-terminus inhibits association of Snf7 with Vps2, which functions with Vps24 to arrest Snf7 polymerization and remodel Snf7 polymer structure. In vivo, Doa4 overexpression inhibits Snf7 interaction with Vps2 and also with the ATPase Vps4, which is recruited by Vps2 and Vps24 to remodel ESCRT-III complexes by catalyzing subunit turnover. Our data suggest a mechanism by which the deubiquitylation machinery regulates ILV biogenesis by interfering with ESCRT-III remodeling. Full Article
mode Delineating the role of membrane blebs in a hybrid mode of cancer cell invasion in three-dimensional environments [RESEARCH ARTICLE] By jcs.biologists.org Published On :: 2020-04-28T08:24:46-07:00 Asja Guzman, Rachel C. Avard, Alexander J. Devanny, Oh Sang Kweon, and Laura J. Kaufman The study of cancer cell invasion in 3D environments in vitro has revealed a variety of invasive modes, including amoeboid migration, characterized by primarily round cells that invade in a protease- and adhesion-independent manner. Here, we delineate a contractility-dependent migratory mode of primarily round breast cancer cells that is associated with extensive integrin-mediated extracellular matrix (ECM) reorganization that occurs at membrane blebs, with bleb necks sites of integrin clustering and integrin-dependent ECM alignment. We show that the spatiotemporal distribution of blebs and their utilization for ECM reorganization is mediated by functional β1 integrin receptors and other components of focal adhesions. Taken together, the work presented here characterizes a migratory mode of primarily round cancer cells in complex 3D environments and reveals a fundamentally new function for membrane blebs in cancer cell invasion. Full Article
mode Transitioning from Basic toward Systems Pharmacodynamic Models: Lessons from Corticosteroids [Review Articles] By pharmrev.aspetjournals.org Published On :: 2020-03-02T12:57:53-08:00 Technology in bioanalysis, -omics, and computation have evolved over the past half century to allow for comprehensive assessments of the molecular to whole body pharmacology of diverse corticosteroids. Such studies have advanced pharmacokinetic and pharmacodynamic (PK/PD) concepts and models that often generalize across various classes of drugs. These models encompass the "pillars" of pharmacology, namely PK and target drug exposure, the mass-law interactions of drugs with receptors/targets, and the consequent turnover and homeostatic control of genes, biomarkers, physiologic responses, and disease symptoms. Pharmacokinetic methodology utilizes noncompartmental, compartmental, reversible, physiologic [full physiologically based pharmacokinetic (PBPK) and minimal PBPK], and target-mediated drug disposition models using a growing array of pharmacometric considerations and software. Basic PK/PD models have emerged (simple direct, biophase, slow receptor binding, indirect response, irreversible, turnover with inactivation, and transduction models) that place emphasis on parsimony, are mechanistic in nature, and serve as highly useful "top-down" methods of quantitating the actions of diverse drugs. These are often components of more complex quantitative systems pharmacology (QSP) models that explain the array of responses to various drugs, including corticosteroids. Progressively deeper mechanistic appreciation of PBPK, drug-target interactions, and systems physiology from the molecular (genomic, proteomic, metabolomic) to cellular to whole body levels provides the foundation for enhanced PK/PD to comprehensive QSP models. Our research based on cell, animal, clinical, and theoretical studies with corticosteroids have provided ideas and quantitative methods that have broadly advanced the fields of PK/PD and QSP modeling and illustrates the transition toward a global, systems understanding of actions of diverse drugs. Significance Statement Over the past half century, pharmacokinetics (PK) and pharmacokinetics/pharmacodynamics (PK/PD) have evolved to provide an array of mechanism-based models that help quantitate the disposition and actions of most drugs. We describe how many basic PK and PK/PD model components were identified and often applied to the diverse properties of corticosteroids (CS). The CS have complications in disposition and a wide array of simple receptor-to complex gene-mediated actions in multiple organs. Continued assessments of such complexities have offered opportunities to develop models ranging from simple PK to enhanced PK/PD to quantitative systems pharmacology (QSP) that help explain therapeutic and adverse CS effects. Concurrent development of state-of-the-art PK, PK/PD, and QSP models are described alongside experimental studies that revealed diverse CS actions. Full Article
mode 18F-FAC PET Visualizes Brain-Infiltrating Leukocytes in a Mouse Model of Multiple Sclerosis By jnm.snmjournals.org Published On :: 2020-05-01T06:31:37-07:00 Brain-infiltrating leukocytes contribute to multiple sclerosis (MS) and autoimmune encephalomyelitis and likely play a role in traumatic brain injury, seizure, and stroke. Brain-infiltrating leukocytes are also primary targets for MS disease-modifying therapies. However, no method exists for noninvasively visualizing these cells in a living organism. 1-(2'-deoxy-2'-18F-fluoroarabinofuranosyl) cytosine (18F-FAC) is a PET radiotracer that measures deoxyribonucleoside salvage and accumulates preferentially in immune cells. We hypothesized that 18F-FAC PET could noninvasively image brain-infiltrating leukocytes. Methods: Healthy mice were imaged with 18F-FAC PET to quantify if this radiotracer crosses the blood–brain barrier (BBB). Experimental autoimmune encephalomyelitis (EAE) is a mouse disease model with brain-infiltrating leukocytes. To determine whether 18F-FAC accumulates in brain-infiltrating leukocytes, EAE mice were analyzed with 18F-FAC PET, digital autoradiography, and immunohistochemistry, and deoxyribonucleoside salvage activity in brain-infiltrating leukocytes was analyzed ex vivo. Fingolimod-treated EAE mice were imaged with 18F-FAC PET to assess if this approach can monitor the effect of an immunomodulatory drug on brain-infiltrating leukocytes. PET scans of individuals injected with 2-chloro-2'-deoxy-2'-18F-fluoro-9-β-d-arabinofuranosyl-adenine (18F-CFA), a PET radiotracer that measures deoxyribonucleoside salvage in humans, were analyzed to evaluate whether 18F-CFA crosses the human BBB. Results: 18F-FAC accumulates in the healthy mouse brain at levels similar to 18F-FAC in the blood (2.54 ± 0.2 and 3.04 ± 0.3 percentage injected dose per gram, respectively) indicating that 18F-FAC crosses the BBB. EAE mice accumulate 18F-FAC in the brain at 180% of the levels of control mice. Brain 18F-FAC accumulation localizes to periventricular regions with significant leukocyte infiltration, and deoxyribonucleoside salvage activity is present at similar levels in brain-infiltrating T and innate immune cells. These data suggest that 18F-FAC accumulates in brain-infiltrating leukocytes in this model. Fingolimod-treated EAE mice accumulate 18F-FAC in the brain at 37% lower levels than control-treated EAE mice, demonstrating that 18F-FAC PET can monitor therapeutic interventions in this mouse model. 18F-CFA accumulates in the human brain at 15% of blood levels (0.08 ± 0.01 and 0.54 ± 0.07 SUV, respectively), indicating that 18F-CFA does not cross the BBB in humans. Conclusion: 18F-FAC PET can visualize brain-infiltrating leukocytes in a mouse MS model and can monitor the response of these cells to an immunomodulatory drug. Translating this strategy into humans will require exploring additional radiotracers. Full Article
mode Impact of a Multidisciplinary, Endocrinologist-Led Shared Medical Appointment Model on Diabetes-Related Outcomes in an Underserved Population By spectrum.diabetesjournals.org Published On :: 2020-02-14T06:59:49-08:00 A multidisciplinary endocrinologist-led shared medical appointment (SMA) model showed statistically significant reductions in A1C from baseline over 3 years that were not significantly different from appointments with endocrinologists or primary care providers alone within a resource-poor population. Similarly, the SMA model achieved clinical outcomes on par with endocrinologist-only visits with the added benefit of improving endocrine provider productivity and specialty access for patients. Greater patient engagement with the SMA model was associated with significantly lower A1C. Full Article
mode Mobilising community networks for early identification of tuberculosis and treatment initiation in Cambodia: an evaluation of a seed-and-recruit model By openres.ersjournals.com Published On :: 2020-05-04T00:29:32-07:00 Background and objectives The effects of active case finding (ACF) models that mobilise community networks for early identification and treatment of tuberculosis (TB) remain unknown. We investigated and compared the effect of community-based ACF using a seed-and-recruit model with one-off roving ACF and passive case finding (PCF) on the time to treatment initiation and identification of bacteriologically confirmed TB. Methods In this retrospective cohort study conducted in 12 operational districts in Cambodia, we assessed relationships between ACF models and: 1) the time to treatment initiation using Cox proportional hazards regression; and 2) the identification of bacteriologically confirmed TB using modified Poisson regression with robust sandwich variance. Results We included 728 adults with TB, of whom 36% were identified via the community-based ACF using a seed-and-recruit model. We found community-based ACF using a seed-and-recruit model was associated with shorter delay to treatment initiation compared to one-off roving ACF (hazard ratio 0.81, 95% CI 0.68–0.96). Compared to one-off roving ACF and PCF, community-based ACF using a seed-and-recruit model was 45% (prevalence ratio (PR) 1.45, 95% CI 1.19–1.78) and 39% (PR 1.39, 95% CI 0.99–1.94) more likely to find and detect bacteriologically confirmed TB, respectively. Conclusion Mobilising community networks to find TB cases was associated with early initiation of TB treatment in Cambodia. This approach was more likely to find bacteriologically confirmed TB cases, contributing to the reduction of risk of transmission within the community. Full Article
mode A microsimulation model to assess the economic impact of immunotherapy in non-small cell lung cancer By openres.ersjournals.com Published On :: 2020-04-19T07:30:12-07:00 Introduction Immunotherapy has become the standard of care in advanced non-small cell lung cancer (NSCLC). We aimed to quantify the economic impact, in France, of anti-PD-1 therapy for NSCLC. Methods We used patient-level data from the national ESCAP-2011-CPHG cohort study to estimate time to treatment failure and mean cost per patient for the four label indications approved by the European Medicines Agency (EMA) for NSCLC in May 2018. To compute the budget impact, we used a microsimulation model to estimate the target populations of anti-PD-1 therapy over a 3-year period, which were combined with the annual cost of treatment. Results Overall, 11 839 patients with NSCLC were estimated to be eligible for anti-PD-1 therapy 3 years after the introduction of anti-PD-1 therapies. The mean annual cost per patient in the control group ranged from 2671 (95% CI 2149–3194) to 6412 (95% CI 5920–6903) across the four indications. The mean annual cost of treatment for the four EMA-approved indications of anti-PD-1 therapy was estimated to be 48.7 million in the control group and at 421.8 million in the immunotherapy group. The overall budget impact in 2019 is expected to amount to 373.1 million. In the sensitivity analysis, flat doses and treatment effect had the greatest influence on the budget impact. Conclusion Anti-PD-1 agents for NSCLC treatment are associated with a substantial economic burden. Full Article
mode Evidence from a mouse model on the dangers of thirdhand electronic cigarette exposure during early life By openres.ersjournals.com Published On :: 2020-04-19T07:30:11-07:00 Electronic cigarettes (e-cigarettes) have been used in many countries for >10 years and in this time, there has been a division of opinions amongst both the general public and health professionals regarding the benefit or harms of e-cigarettes. Prior to the reporting of a new phenomenon known as vaping-associated pulmonary injury (VAPI), public opinion about the relative harm of e-cigarettes were increasing but they were perceived as less harmful than cigarettes by one third of people [1]. The recent cases of severe illness and death attributable to VAPI were first described in September 2019 [2]. VAPI appears to be related to either the addition of cannabis/cannabis derivates or vitamin E acetate [3], and as such has not caused radical swing away from the use of e-cigarettes without cannabis or cannabis derivates. Full Article
mode Thoracic ultrasound in the modern management of pleural disease By err.ersjournals.com Published On :: 2020-04-29T01:39:43-07:00 Physician-led thoracic ultrasound (TUS) has substantially changed how respiratory disorders, and in particular pleural diseases, are managed. The use of TUS as a point-of-care test enables the respiratory physician to quickly and accurately diagnose pleural pathology and ensure safe access to the pleural space during thoracentesis or chest drain insertion. Competence in performing TUS is now an obligatory part of respiratory speciality training programmes in different parts of the world. Pleural physicians with higher levels of competence routinely use TUS during the planning and execution of more sophisticated diagnostic and therapeutic interventions, such as core needle pleural biopsies, image-guided drain insertion and medical thoracoscopy. Current research is gauging the potential of TUS in predicting the outcome of different pleural interventions and how it can aid in tailoring the optimum treatment according to different TUS-based parameters. Full Article
mode Modern deep-water agglutinated foraminifera from IODP Expedition 323, Bering Sea: ecological and taxonomic implications By jm.lyellcollection.org Published On :: 2017-08-10T08:29:35-07:00 Despite the importance of the Bering Sea for subarctic oceanography and climate, relatively little is known of the foraminifera from the extensive Aleutian Basin. We report the occurrence of modern deep-water agglutinated foraminifera collected at seven sites cored during Integrated Ocean Drilling Program (IODP) Expedition 323 in the Bering Sea. Assemblages collected from core-top samples contained 32 genera and 50 species and are described and illustrated here for the first time. Commonly occurring species include typical deep-water Rhizammina, Reophax, Rhabdammina, Recurvoides and Nodulina. Assemblages from the northern sites also consist of accessory Cyclammina, Eggerelloides and Glaphyrammina, whilst those of the Bowers Ridge sites consist of other tubular genera and Martinottiella. Of the studied stations with the lowest dissolved oxygen concentrations, the potentially Bering Sea endemic Eggerelloides sp. 1 inhabits the northern slope, which has the highest primary productivity, and the potentially endemic Martinottiella sp. 3 inhabits Bowers Ridge, which has the lowest oxygen concentrations but relatively low annual productivity. Martinottiella sp. 3, with open pores on its test surface, has previously been reported in Pliocene to Recent material from Bowers Ridge. Despite relatively small sample sizes, ecological constraints may imply that the Bering Sea experienced high productivity and reduced oxygen at times since at least the Pliocene. We note the partially endemic nature of the agglutinated foraminiferal assemblages, which may at least in part be due to basin restriction, the geologically long time period of reduced oxygen, and high organic carbon flux. Our results indicate the importance of gathering further surface sample data from the Aleutian Basin. Full Article
mode Effect of gross morphology on modern planktonic foraminiferal test strength under compression By jm.lyellcollection.org Published On :: 2017-08-10T08:29:35-07:00 Planktonic foraminifera are a source of important geochemical, palaeoceanographic, and palaeontological data. However, many aspects of their ecology remain poorly understood, including whether or not gross morphology has an ecological function. Here, we measure the force needed to crush multiple planktonic foraminiferal morphotypes from modern core top and tow samples. We find significant differences in the resistance of different morphotypes to compressional force. Three species, Globorotalia tumida (biconvex, keeled), Menardella menardii (discoidal, keeled), Truncorotalia truncatulinoides (conical, keeled), require on average 59% more force (1.07 v. 0.47 N) to crush than the least resistant species (Orbulina universa and Trilobatus sacculifer) in core-top samples. Towed samples of pre-gametogenic individuals also show significant differences of the same magnitude (0.693 v. 0.53 N) between the conical (T. truncatulinoides) and globular/spherical morphologies (Globoconella inflata and O. universa). We hypothesize that the greater compressional strength of certain shapes confers a fitness advantage against predators and could contribute to the repeated, convergent evolution of keeled, conical and bi-convex forms in planktonic foraminifer lineages. Supplementary material: Raw data for all crushing experiments, wall thickness measurements, and results for all pair-wise Kolmogorov-Smirnov Tests are available at https://doi.org/10.6084/m9.figshare.c.3725236.v1 Full Article
mode Combined inhibition of MDM2 and BCR-ABL1 tyrosine kinase targets chronic myeloid leukemia stem/progenitor cells in a murine model By www.haematologica.org Published On :: 2020-05-01T00:05:41-07:00 Although highly effective, BCR-ABL1 tyrosine kinase inhibitors do not target chronic myeloid leukemia (CML) stem cells. Most patients relapse upon tyrosine kinase inhibitor therapy cessation. We reported previously that combined BCR-ABL1 and BCL-2 inhibition synergistically targets CML stem/progenitor cells. p53 induces apoptosis mainly by modulating BCL-2 family proteins. Although infrequently mutated in CML, p53 is antagonized by MDM2, which is regulated by BCR-ABL1 signaling. We hypothesized that MDM2 inhibition could sensitize CML cells to tyrosine kinase inhibitors. Using an inducible transgenic Scl-tTa-BCR-ABL1 murine CML model, we found, by RT-PCR and CyTOF proteomics increased p53 signaling in CML bone marrow (BM) cells compared with controls in CD45+ and linage-SCA-1+C-KIT+ populations. CML BM cells were more sensitive to exogenous BH3 peptides than controls. Combined inhibition of BCR-ABL1 with imatinib and MDM2 with DS-5272 increased NOXA level, markedly reduced leukemic linage-SCA-1+C-KIT+ cells and hematopoiesis, decreased leukemia burden, significantly prolonged the survival of mice engrafted with BM cells from Scl-tTa-BCR-ABL1 mice, and significantly decreased CML stem cell frequency in secondary transplantations. Our results suggest that CML stem/progenitor cells have increased p53 signaling and a propensity for apoptosis. Combined MDM2 and BCR-ABL1 inhibition targets CML stem/progenitor cells and has the potential to improve cure rates for CML. Full Article
mode CRISPR/Cas9-mediated gene deletion efficiently retards the progression of Philadelphia-positive acute lymphoblastic leukemia in a p210 BCR-ABL1T315I mutation mouse model By www.haematologica.org Published On :: 2020-05-01T00:05:42-07:00 Full Article
mode Nucleolar stress in Drosophila neuroblasts, a model for human ribosomopathies [RESEARCH ARTICLE] By bio.biologists.org Published On :: 2020-04-13T03:41:34-07:00 Sonu Shrestha Baral, Molly E. Lieux, and Patrick J. DiMario Different stem cells or progenitor cells display variable threshold requirements for functional ribosomes. This is particularly true for several human ribosomopathies in which select embryonic neural crest cells or adult bone marrow stem cells, but not others, show lethality due to failures in ribosome biogenesis or function (now known as nucleolar stress). To determine if various Drosophila neuroblasts display differential sensitivities to nucleolar stress, we used CRISPR-Cas9 to disrupt the Nopp140 gene that encodes two splice variant ribosome biogenesis factors (RBFs). Disruption of Nopp140 induced nucleolar stress that arrested larvae in the second instar stage. While the majority of larval neuroblasts arrested development, the mushroom body (MB) neuroblasts continued to proliferate as shown by their maintenance of deadpan, a neuroblast-specific transcription factor, and by their continued EdU incorporation. MB neuroblasts in wild-type larvae appeared to contain more fibrillarin and Nopp140 in their nucleoli as compared to other neuroblasts, indicating that MB neuroblasts stockpile RBFs as they proliferate in late embryogenesis while other neuroblasts normally enter quiescence. A greater abundance of Nopp140 encoded by maternal transcripts in Nopp140-/- MB neuroblasts of 1–2-day-old larvae likely rendered these cells more resilient to nucleolar stress. This article has an associated First Person interview with the first author of the paper. Full Article
mode Reinventing the Medical Assistant Staffing Model at No Cost in a Large Medical Group [Innovations in Primary Care] By www.annfammed.org Published On :: 2020-03-09T14:00:11-07:00 Full Article
mode Remodeling Translation Primes CD8+ T-cell Antitumor Immunity By cancerimmunolres.aacrjournals.org Published On :: 2020-05-01T00:05:25-07:00 The requisites for protein translation in T cells are poorly understood and how translation shapes the antitumor efficacy of T cells is unknown. Here we demonstrated that IL15-conditioned T cells were primed by the metabolic energy sensor AMP-activated protein kinase to undergo diminished translation relative to effector T cells. However, we showed that IL15-conditioned T cells exhibited a remarkable capacity to enhance their protein translation in tumors, which effector T cells were unable to duplicate. Studying the modulation of translation for applications in cancer immunotherapy revealed that direct ex vivo pharmacologic inhibition of translation elongation primed robust T-cell antitumor immunity. Our work elucidates that altering protein translation in CD8+ T cells can shape their antitumor capability. Full Article
mode Prebiotics Inhibit Proteolysis by Gut Bacteria in a Host Diet-Dependent Manner: a Three-Stage Continuous In Vitro Gut Model Experiment [Food Microbiology] By aem.asm.org Published On :: 2020-05-05T08:00:35-07:00 Dietary protein residue can result in microbial generation of various toxic metabolites in the gut, such as ammonia. A prebiotic is "a substrate that is selectively utilised by host microorganisms conferring a health benefit" (G. R. Gibson, R. Hutkins, M. E. Sanders, S. L. Prescott, et al., Nat Rev Gastroenterol Hepatol 14:491–502, 2017, https://doi.org/10.1038/nrgastro.2017.75). Prebiotics are carbohydrates that may have the potential to reverse the harmful effects of gut bacterial protein fermentation. Three-stage continuous colonic model systems were inoculated with fecal samples from omnivore and vegetarian volunteers. Casein (equivalent to 105 g protein consumption per day) was used within the systems as a protein source. Two different doses of inulin-type fructans (Synergy1) were later added (equivalent to 10 g per day in vivo and 15 g per day) to assess whether this influenced protein fermentation. Bacteria were enumerated by fluorescence in situ hybridization with flow cytometry. Metabolites from bacterial fermentation (short-chain fatty acid [SCFA], ammonia, phenol, indole, and p-cresol) were monitored to further analyze proteolysis and the prebiotic effect. A significantly higher number of bifidobacteria was observed with the addition of inulin together with reduction of Desulfovibrio spp. Furthermore, metabolites from protein fermentation, such as branched-chain fatty acids (BCFA) and ammonia, were significantly lowered with Synergy1. Production of p-cresol varied among donors, as we recognized four high producing models and two low producing models. Prebiotic addition reduced its production only in vegetarian high p-cresol producers. IMPORTANCE Dietary protein levels are generally higher in Western populations than in the world average. We challenged three-stage continuous colonic model systems containing high protein levels and confirmed the production of potentially harmful metabolites from proteolysis, especially replicates of the transverse and distal colon. Fermentations of proteins with a prebiotic supplementation resulted in a change in the human gut microbiota and inhibited the production of some proteolytic metabolites. Moreover, we observed both bacterial and metabolic differences between fecal bacteria from omnivore donors and vegetarian donors. Proteins with prebiotic supplementation showed higher Bacteroides spp. and inhibited Clostridium cluster IX in omnivore models, while in vegetarian modes, Clostridium cluster IX was higher and Bacteroides spp. lower with high protein plus prebiotic supplementation. Synergy1 addition inhibited p-cresol production in vegetarian high p-cresol-producing models while the inhibitory effect was not seen in omnivore models. Full Article
mode Association of physician payment model and team-based care with timely access in primary care: a population-based cross-sectional study By www.cmajopen.ca Published On :: 2020-05-07T05:57:29-07:00 Background: It is unclear how patient-reported access to primary care differs by physician payment model and participation in team-based care. We examined the association between timely and after-hours access to primary care and physician payment model and participation in team-based care, and sought to assess how access varied by patient characteristics. Methods: We conducted a cross-sectional analysis of adult (age ≥ 16 yr) Ontarians who responded to the Ontario Health Care Experience Survey between January 2013 and September 2015, reported having a primary care provider and agreed to have their responses linked to health administrative data. Access measures included the proportion of respondents who reported same-day or next-day access when sick, satisfaction with time to appointment when sick, telephone access and knowledge of an after-hours clinic. We tested the association between practice model and measures of access using logistic regression after stratifying for rurality. Results: A total of 33 665 respondents met our inclusion criteria. In big cities, respondents in team and nonteam capitation models were less likely to report same-day or next-day access when sick than respondents in enhanced fee-for-service models (team capitation 43%, adjusted odds ratio [OR] 0.88, 95% confidence interval [CI] 0.79–0.98; nonteam capitation 39%, adjusted OR 0.78, 95% CI 0.70–0.87; enhanced fee-for-service 46% [reference]). Respondents in team and nonteam capitation models were more likely than those in enhanced fee-for-service models to report that their provider had an after-hours clinic (team capitation 59%, adjusted OR 2.59, 95% CI 2.39–2.81; nonteam capitation 51%, adjusted OR 1.90, 95% CI 1.76–2.04; enhanced fee-for service 34% [reference]). Patterns were similar for respondents in small towns. There was minimal to no difference by model for satisfaction with time to appointment or telephone access. Interpretation: In our setting, there was an association between some types of access to primary care and physician payment model and team-based care, but the direction was not consistent. Different measures of timely access are needed to understand health care system performance. Full Article
mode Analytical Performance Specifications for Lipoprotein(a), Apolipoprotein B-100, and Apolipoprotein A-I Using the Biological Variation Model in the EuBIVAS Population By academic.oup.com Published On :: Wed, 08 Apr 2020 00:00:00 GMT AbstractBackgroundWith increased interest in lipoprotein(a) (Lp[a]) concentration as a target for risk reduction and growing clinical evidence of its impact on cardiovascular disease (CVD) risk, rigorous analytical performance specifications (APS) and accuracy targets for Lp(a) are required. We investigated the biological variation (BV) of Lp(a), and 2 other major biomarkers of CVD, apolipoprotein A-I (apoA-I) and apolipoprotein B-100 (apoB), in the European Biological Variation Study population.MethodSerum samples were drawn from 91 healthy individuals for 10 consecutive weeks at 6 European laboratories and analyzed in duplicate on a Roche Cobas 8000 c702. Outlier, homogeneity, and trend analysis were performed, followed by CV-ANOVA to determine BV estimates and their 95% CIs. These estimates were used to calculate APS and reference change values. For Lp(a), BV estimates were determined on normalized concentration quintiles.ResultsWithin-subject BV estimates were significantly different between sexes for Lp(a) and between women aged <50 and >50 years for apoA-I and apoB. Lp(a) APS was constant across concentration quintiles and, overall, lower than APS based on currently published data, whereas results were similar for apoA-I and apoB.ConclusionUsing a fully Biological Variation Data Critical Appraisal Checklist (BIVAC)–compliant protocol, our study data confirm BV estimates of Lp(a) listed in the European Federation of Clinical Chemistry and Laboratory Medicine database and reinforce concerns expressed in recent articles regarding the suitability of older APS recommendations for Lp(a) measurements. Given the heterogeneity of Lp(a), more BIVAC-compliant studies on large numbers of individuals of different ethnic groups would be desirable. Full Article
mode In Vivo Imaging of Venous Thrombus and Pulmonary Embolism Using Novel Murine Venous Thromboembolism Model By www.basictranslational.onlinejacc.org Published On :: 2020-04-27T11:00:20-07:00 This work established a new murine venous thromboembolism (VTE) model. This model has multiple novel features representing clinical VTE that include the following: 1) deep venous thrombosis (DVT) was formed and extended in the long axis of femoral/saphenous vein; 2) thrombus was formed in a venous valve pocket; 3) deligation of suture-induced spontaneous pulmonary emboli of fibrin-rich DVT; and 4) cardiac motion-free femoral/saphenous vein allowed high-resolution intravital microscopic imaging of fibrin-rich DVT. This new model requires only commercially available epifluorescence microscopy. Therefore, this model has significant potential for better understanding of VTE pathophysiology. Full Article
mode Correction: EGFR Exon 20 Insertion Mutations Display Sensitivity to Hsp90 Inhibition in Preclinical Models and Lung Adenocarcinomas By clincancerres.aacrjournals.org Published On :: 2020-05-01T00:05:37-07:00 Full Article
mode Tissue Distribution of Doxycycline in Animal Models of Tuberculosis [Pharmacology] By aac.asm.org Published On :: 2020-04-21T08:01:10-07:00 Doxycycline, an FDA-approved tetracycline, is used in tuberculosis in vivo models for the temporal control of mycobacterial gene expression. In these models, animals are infected with recombinant Mycobacterium tuberculosis carrying genes of interest under transcriptional control of the doxycycline-responsive TetR-tetO unit. To minimize fluctuations of plasma levels, doxycycline is usually administered in the diet. However, tissue penetration studies to identify the minimum doxycycline content in food achieving complete repression of TetR-controlled genes in tuberculosis (TB)-infected organs and lesions have not been conducted. Here, we first determined the tetracycline concentrations required to achieve silencing of M. tuberculosis target genes in vitro. Next, we measured doxycycline concentrations in plasma, major organs, and lung lesions in TB-infected mice and rabbits and compared these values to silencing concentrations measured in vitro. We found that 2,000 ppm doxycycline supplemented in mouse and rabbit feed is sufficient to reach target concentrations in TB lesions. In rabbit chow, the calcium content had to be reduced 5-fold to minimize chelation of doxycycline and deliver adequate oral bioavailability. Clearance kinetics from major organs and lung lesions revealed that doxycycline levels fall below concentrations that repress tet promoters within 7 to 14 days after doxycycline is removed from the diet. In summary, we have shown that 2,000 ppm doxycycline supplemented in standard mouse diet and in low-calcium rabbit diet delivers concentrations adequate to achieve full repression of tet promoters in infected tissues of mice and rabbits. Full Article
mode Synergistic Activity of Clofazimine and Clarithromycin in an Aerosol Mouse Model of Mycobacterium avium Infection [Experimental Therapeutics] By aac.asm.org Published On :: 2020-04-21T08:01:10-07:00 Infections with nontuberculous mycobacteria (NTM) have a poor prognosis in patients with underlying respiratory diseases. Clofazimine (CFZ) showed both experimental and clinical promising results against clinically relevant NTM. However, there are no data on CFZ in combination with the current recommended treatment; therefore, we aimed to study its in vivo activity in an aerosol mouse model of Mycobacterium avium. In an aerosol infection BALB/c mouse model using M. avium strain Chester, we treated 58 mice with four combinations of rifampin (RIF) at 10 mg/kg, CFZ at 25 mg/kg, and clarithromycin (CLR) and ethambutol (EMB) at 100 mg/kg. Treatment efficacy was assessed on the basis of lung CFU counts after 2 (M2) and 4 (M4) months of treatment. At M2, CLR-RIF-EMB was slightly but significantly more efficient than CFZ-RIF-EMB (3.02 ± 0.12 versus 3.55 ± 0.28, respectively, P < 0.01), whereas CLR-CFZ-EMB and CLR-CFZ-RIF-EMB dramatically decreased lung CFU counts by 4.32 and 4.47 log10, respectively, compared to untreated group. At M4, CLR-RIF-EMB was significantly more efficient than CFZ-RIF-EMB (2 ± 0.53 versus 2.66 ± 0.22, respectively, P = 0.01). The addition of CLZ to CLR dramatically decreased the lung CFU count, with CFU counts 5.41 and 5.79 log10 lower in the CLR-CFZ-EMB and CLR-CFZ-RIF-EMB groups, respectively, than in the untreated group. The addition of CFZ to CLR seems to improve the efficacy of CLR as early as M2 and was confirmed at M4. CFZ, in addition to RIF and EMB, on the other hand, is less effective than CLR-RIF-EMB. These results need to be confirmed by similar studies along with CFZ potential for shortening treatment. Full Article
mode Tedizolid as Step-Down Therapy following Daptomycin versus Continuation of Daptomycin against Enterococci and Methicillin- and Vancomycin-Resistant Staphylococcus aureus in a Rat Endocarditis Model [Experimental Therapeutics] By aac.asm.org Published On :: 2020-04-21T08:01:10-07:00 Tedizolid (TZD) and daptomycin (DAP) were assessed in a rat endocarditis model against Enterococcus faecalis, Enterococcus faecium (resistant to vancomycin and ampicillin), and Staphylococcus aureus. As a monotherapy, TZD for 5 days was not effective in a comparison with no-treatment controls, while DAP for 5 days was significantly effective against these bacteria. Step-down therapy (DAP for 3 days followed by TZD for 2 days) was as effective as DAP for 5 days and was comparable to 3 days of DAP plus ceftriaxone against all bacteria and to 3 days of DAP plus gentamicin against E. faecalis OG1RF. Full Article
mode Evaluation of Dose-Fractionated Polymyxin B on Acute Kidney Injury Using a Translational In Vivo Rat Model [Pharmacology] By aac.asm.org Published On :: 2020-04-21T08:01:10-07:00 We investigated dose-fractionated polymyxin B (PB) on acute kidney injury (AKI). PB at 12 mg of drug/kg of body weight per day (once, twice, and thrice daily) was administered in rats over 72 h. The thrice-daily group demonstrated the highest KIM-1 increase (P = 0.018) versus that of the controls (P = 0.99) and histopathological damage (P = 0.013). A three-compartment model best described the data (bias, 0.129 mg/liter; imprecision, 0.729 mg2/liter2; R2, 0.652,). Area under the concentration-time curve at 24 h (AUC24) values were similar (P = 0.87). The thrice-daily dosing scheme resulted in the most PB-associated AKI in a rat model. Full Article