bi

China Expands Its Global Governance Ambitions in the Arctic

15 October 2018

Harriet Moynihan

Senior Research Fellow, International Law Programme
Beijing wants to present itself as a responsible power with a role to play in Arctic governance, as part of a broader ambition to become a shaper of global rules and institutions.

2018-10-15-Xuelong.jpg

The Xuelong 2 icebreaker is christened in Shanghai on 10 September. Photo via Getty Images.

As polar ice melts, the Arctic will become increasingly important for its untapped oil, gas and minerals as they become more accessible, as well for its shipping routes, which will become increasingly cost efficient for cargo as parts of the routes become ice-free for extended periods. 

A number of countries, including Russia and China, are also exploring the possibilities around overflights, commercial fishing, the laying of submarine cables and pipelines, and scientific research.

Earlier this month, China announced the launch of its first domestically built conventionally-powered polar icebreakerXuelong 2, or Snow Dragon 2. Like its (foreign-built) predecessor,Snow Dragon, this vessel’s purpose is framed as scientific research into polar ice coverage, environmental conditions, and biological resources. 

It has not gone unnoticed, though, that China’s new icebreakers are also useful in testing the feasibility of moving cargo across the Arctic. China’s plans for a Polar Silk Road, as part of its ambitious multi-billion-dollar Belt and Road Initiative, include developing Arctic shipping routes. China recently invested in Russia’s Yamal liquefied natural gas project in the northern port of Sabetta and signed a framework agreement for Chinese and Russian banks to co-finance up to 70 joint projects in the Arctic region.

But China’s interest in the Arctic extends beyond the purely economic: it is also pressing for a greater role in its governance. Compared to the Antarctic – where governance is heavily institutionalized, governance of the Arctic is much less developed, largely due to their distinctly different natures. 

The Antarctic, which is predominantly landmass, is governed by a treaty with 53 states parties, freezing territorial claims and preserving this region for peaceful scientific purposes. By contrast, the Arctic Council was only established in 1996 and comprises the eight Arctic states that claim sovereignty over the landmass in the Arctic Circle, a region which consists largely of frozen ocean and which hosts indigenous populations. 

The legal framework is a patchwork affair, drawn from various treaties of global application (including the UN Charter and the UN Convention on the Law of the Sea), the Svalbard Treaty(recognizing Norway’s sovereignty over the eponymous Arctic archipelago), as well as customary international law and general principles of law. So far, the Arctic Council has been the forum for the conclusion of only three legally binding agreements.

China sees a gap for new ideas, rules and participants in this space. A white paper released by the government in January contains sophisticated and detailed analysis of the international legal framework applicable to the Arctic and demonstrates China’s increasing knowledge and capability in this area, as reflected in the growing number of Chinese international lawyers specializing in Arctic matters. 

The white paper seeks to justify China’s involvement in Arctic affairs as a ‘near Arctic state’, noting that the Arctic’s climate, environment and ecology are of concern for all states. The white paper uses familiar phrases from China’s vision for its foreign policy – such as the ‘shared future of mankind’ and ‘mutual benefit’ – to argue for a pluralist (i.e. global, regional and bilateral) approach to Arctic governance. 

China is sensitive to the risks of overreaching when it comes to states with territorial claims in the Arctic, especially as resource competition hots up. The white paper positions China as a responsible and peaceful power, whose participation in Arctic affairs is based on ‘respect, cooperation, win-win result and sustainability’.

China was admitted as an observer to the Arctic Council in 2013, along with four other Asian states (including Japan, which is taking an equally keen interest in opportunities for Arctic rule-making) and Italy. As an observer state, China has very limited rights in the council, but has been creatively using other routes to influence Arctic governance, including active engagement within the International Maritime Organization (IMO) and the International Seabed Commission. 

China participated in the formation of the IMO’s Polar Code of January 2017, which sets out rules for ships operating in polar waters. China was also one of ten states involved in the recent adoption of the Agreement to Prevent Unregulated High Seas Fisheries in the Central Arctic Ocean, which took place outside the umbrella of the Arctic Council. 

At a recent roundtable in Beijing co-hosted by Chatham House, Chinese experts noted China’s aspirations to develop the international rule of law in the Arctic through playing an active role in developing new rules in areas currently under (or un-) regulated, for example, through a treaty to strengthen environmental protection in the region. It was also suggested that China may also seek to clarify the meaning of existing rules through its own practice. 

China also has ambitions to contribute to the research of the Arctic Council’s Working Groups, which develop proposals for Arctic Council projects and rules. It remains to be seen to what extent Arctic states, protective of theirown national interests in an increasingly fertile area, will cede space for China to participate.

China’s push to be a rule shaper in the Arctic fits into a wider pattern of China seeking a more influential role in matters of global governance. This trend is particularly apparent in areas where the rules are still emerging and thus where China feels more confident than in areas traditionally dominated by Western powers.

A similar assertiveness by China is increasingly visible in other emerging areas of international law, such as the international legal framework applicable to cyber operations and international dispute settlement mechanisms relating to trade and investment.

China’s approach to Arctic governance offers an interesting litmus test as to how far China intends to deploy international law to assert itself on governance issues with significant global economic, environmental, and security implications – along with the degree to which it will be perceived as acting in the common interest in doing so.




bi

Glucocerebrosidases catalyze a transgalactosylation reaction that yields a newly-identified brain sterol metabolite, galactosylated cholesterol [Glycobiology and Extracellular Matrices]

β-Glucocerebrosidase (GBA) hydrolyzes glucosylceramide (GlcCer) to generate ceramide. Previously, we demonstrated that lysosomal GBA1 and nonlysosomal GBA2 possess not only GlcCer hydrolase activity, but also transglucosylation activity to transfer the glucose residue from GlcCer to cholesterol to form β-cholesterylglucoside (β-GlcChol) in vitro. β-GlcChol is a member of sterylglycosides present in diverse species. How GBA1 and GBA2 mediate β-GlcChol metabolism in the brain is unknown. Here, we purified and characterized sterylglycosides from rodent and fish brains. Although glucose is thought to be the sole carbohydrate component of sterylglycosides in vertebrates, structural analysis of rat brain sterylglycosides revealed the presence of galactosylated cholesterol (β-GalChol), in addition to β-GlcChol. Analyses of brain tissues from GBA2-deficient mice and GBA1- and/or GBA2-deficient Japanese rice fish (Oryzias latipes) revealed that GBA1 and GBA2 are responsible for β-GlcChol degradation and formation, respectively, and that both GBA1 and GBA2 are responsible for β-GalChol formation. Liquid chromatography–tandem MS revealed that β-GlcChol and β-GalChol are present throughout development from embryo to adult in the mouse brain. We found that β-GalChol expression depends on galactosylceramide (GalCer), and developmental onset of β-GalChol biosynthesis appeared to be during myelination. We also found that β-GlcChol and β-GalChol are secreted from neurons and glial cells in association with exosomes. In vitro enzyme assays confirmed that GBA1 and GBA2 have transgalactosylation activity to transfer the galactose residue from GalCer to cholesterol to form β-GalChol. This is the first report of the existence of β-GalChol in vertebrates and how β-GlcChol and β-GalChol are formed in the brain.




bi

Certain ortho-hydroxylated brominated ethers are promiscuous kinase inhibitors that impair neuronal signaling and neurodevelopmental processes [Cell Biology]

The developing nervous system is remarkably sensitive to environmental signals, including disruptive toxins, such as polybrominated diphenyl ethers (PBDEs). PBDEs are an environmentally pervasive class of brominated flame retardants whose neurodevelopmental toxicity mechanisms remain largely unclear. Using dissociated cortical neurons from embryonic Rattus norvegicus, we found here that chronic exposure to 6-OH–BDE-47, one of the most prevalent hydroxylated PBDE metabolites, suppresses both spontaneous and evoked neuronal electrical activity. On the basis of our previous work on mitogen-activated protein kinase (MAPK)/extracellular signal-related kinase (ERK) (MEK) biology and our observation that 6-OH–BDE-47 is structurally similar to kinase inhibitors, we hypothesized that certain hydroxylated PBDEs mediate neurotoxicity, at least in part, by impairing the MEK–ERK axis of MAPK signal transduction. We tested this hypothesis on three experimental platforms: 1) in silico, where modeling ligand–protein docking suggested that 6-OH–BDE-47 is a promiscuous ATP-competitive kinase inhibitor; 2) in vitro in dissociated neurons, where 6-OH–BDE-47 and another specific hydroxylated BDE metabolite similarly impaired phosphorylation of MEK/ERK1/2 and activity-induced transcription of a neuronal immediate early gene; and 3) in vivo in Drosophila melanogaster, where developmental exposures to 6-OH–BDE-47 and a MAPK inhibitor resulted in offspring displaying similarly increased frequency of mushroom-body β–lobe midline crossing, a metric of axonal guidance. Taken together, our results support that certain ortho-hydroxylated PBDE metabolites are promiscuous kinase inhibitors and can cause disruptions of critical neurodevelopmental processes, including neuronal electrical activity, pre-synaptic functions, MEK–ERK signaling, and axonal guidance.




bi

The testis-specific LINC component SUN3 is essential for sperm head shaping during mouse spermiogenesis [Cell Biology]

Sperm head shaping is a key event in spermiogenesis and is tightly controlled via the acrosome–manchette network. Linker of nucleoskeleton and cytoskeleton (LINC) complexes consist of Sad1 and UNC84 domain–containing (SUN) and Klarsicht/ANC-1/Syne-1 homology (KASH) domain proteins and form conserved nuclear envelope bridges implicated in transducing mechanical forces from the manchette to sculpt sperm nuclei into a hook-like shape. However, the role of LINC complexes in sperm head shaping is still poorly understood. Here we assessed the role of SUN3, a testis-specific LINC component harboring a conserved SUN domain, in spermiogenesis. We show that CRISPR/Cas9-generated Sun3 knockout male mice are infertile, displaying drastically reduced sperm counts and a globozoospermia-like phenotype, including a missing, mislocalized, or fragmented acrosome, as well as multiple defects in sperm flagella. Further examination revealed that the sperm head abnormalities are apparent at step 9 and that the sperm nuclei fail to elongate because of the absence of manchette microtubules and perinuclear rings. These observations indicate that Sun3 deletion likely impairs the ability of the LINC complex to transduce the cytoskeletal force to the nuclear envelope, required for sperm head elongation. We also found that SUN3 interacts with SUN4 in mouse testes and that the level of SUN4 proteins is drastically reduced in Sun3-null mice. Altogether, our results indicate that SUN3 is essential for sperm head shaping and male fertility, providing molecular clues regarding the underlying pathology of the globozoospermia-like phenotype.




bi

Arginine in C9ORF72 Dipolypeptides Mediates Promiscuous Proteome Binding and Multiple Modes of Toxicity

Mona Radwan
Apr 1, 2020; 19:640-654
Research




bi

Immediate adaptation analysis implicates BCL6 as an EGFR-TKI combination therapy target in NSCLC

Yan Zhou Tran
Mar 31, 2020; 0:RA120.002036v1-mcp.RA120.002036
Research




bi

Characterization of signaling pathways associated with pancreatic {beta}-cell adaptive flexibility in compensation of obesity-linked diabetes in db/db mice

Taewook Kang
Apr 7, 2020; 0:RA119.001882v1-mcp.RA119.001882
Research




bi

MaxQuant software for ion mobility enhanced shotgun proteomics

Nikita Prianichnikov
Mar 10, 2020; 0:TIR119.001720v1-mcp.TIR119.001720
Technological Innovation and Resources




bi

A Compact Quadrupole-Orbitrap Mass Spectrometer with FAIMS Interface Improves Proteome Coverage in Short LC Gradients

Dorte B. Bekker-Jensen
Apr 1, 2020; 19:716-729
Technological Innovation and Resources




bi

Proximity Dependent Biotinylation: Key Enzymes and Adaptation to Proteomics Approaches

Payman Samavarchi-Tehrani
May 1, 2020; 19:757-773
Review





bi

Strengthening Urban Preparedness and Resilience Against Biological Threats in Accra

Invitation Only Research Event

1 March 2019 - 10:30am to 2 March 2019 - 3:00pm

Chatham House, London

Capacity to contain and respond to biological threats varies considerably across the world. Yet such preparedness is vital for prevention, impact-reduction and resilience in the face of biological events, whether they be natural or deliberate outbreaks.

Chatham House is conducting a series of meetings to strengthen urban preparedness for, and resilience against, biological threats in African countries. This meeting will examine the preparedness and prevention mechanisms in Accra, reviewing the comprehensiveness of city-level preparedness.  

This meeting will focus on the formation and implementation of city-level action plans in the context of preparedness for managing biological threats. It will also explore how local authorities are contributing to this effort with their knowledge and expertise.

Attendance at this event is by invitation only.

Nilza Amaral

Project Manager, International Security Programme




bi

Transparency and Accountability for Drone Use: European Approaches

Invitation Only Research Event

11 March 2019 - 9:30am to 12 March 2019 - 12:30pm

Chatham House

With increased use of military drones in recent years there have also been many calls for greater transparency and accountability with regards to drone operations.

This would allow for greater public understanding, particularly as the complex nature of military operations today intensifies difficulties in sustaining perceptions of the legitimate use of force.

For example, in Europe, leading states rely on the US for drone platforms and for the infrastructure - such as military communication networks - that enable those operations, while the US also relies on airbases in European states to operate its drone programme.

In addition, with reports that the US is loosening the rules on the use of drones, it is important to understand how European approaches to transparency and accountability may be affected by these developments.

This workshop focuses on how European states can facilitate transparency to ensure accountability for drone use, as well as what the limits might be, considering both the complexity of military operations today and the need for achieving operational goals.

With the US easing restrictions on export controls, the discussion also considers the role of regulation in ensuring accountability and prospects for developing common standards.

Attendance at this event is by invitation only.

Nilza Amaral

Project Manager, International Security Programme




bi

The Destabilizing Danger of Cyberattacks on Missile Systems

2 July 2019

Dr Patricia Lewis

Research Director, Conflict, Science & Transformation; Director, International Security Programme

Dr Beyza Unal

Senior Research Fellow, International Security Programme
‘Left-of-launch’ attacks that aim to disable enemy missile systems may increase the chance of them being used, not least because the systems are so vulnerable.

2019-07-02-NKMissile.jpg

This undated photo released by North Korea's news agency in March 2017 shows the launch of four ballistic missiles during a military drill at an undisclosed location in North Korea. Photo: STR/AFP/Getty Images.

After President Trump decided to halt a missile attack on Iran in response to the downing of a US drone, it was revealed that the US had conducted cyberattacks on Iranian weapons systems to prevent Iran launching missiles against US assets in the region.

This ‘left-of-launch’ strategy – the pre-emptive action to prevent an adversary launch missiles – has been part of the US missile defence strategy for some time now. President George W Bush asked the US military and intelligence community to infiltrate the supply chain of North Korean missiles. It was claimed that the US hacked the North Korean ballistic missile programme, causing a failed ballistic missile test, in 2012.

It was not clear then – or now – whether these ‘left-of-launch’ cyberattacks aimed at North Korea were successful as described or whether they were primarily a bluff. But that is somewhat irrelevant; the belief in the possibility and the understanding of the potential impact of such cyber capabilities undermines North Korean or Iranian confidence in their abilities to launch their missiles. In times of conflict, loss of confidence in weapons systems may lead to escalation.

In other words, the adversary may be left with no option but to take the chance to use these missiles or to lose them in a conflict setting. ‘Left of launch’ is a dangerous game. If it is based on a bluff, it could be called upon and lead to deterrence failure. If it is based on real action, then it could create an asymmetrical power struggle. If the attacker establishes false confidence in the power of a cyber weapon, then it might lead to false signalling and messaging.

This is the new normal. The cat-and-mouse game has to be taken seriously, not least because missile systems are so vulnerable.

There are several ways an offensive cyber operation against missile systems might work. These include exploiting missile designs, altering software or hardware, or creating clandestine pathways to the missile command and control systems.

They can also be attacked in space, targeting space assets and their link to strategic systems.

Most missile systems rely, at least in part, on digital information that comes from or via space-based or space-dependent assets such as: communication satellites; satellites that provide position, navigation and timing (PNT) information (for example GPS or Galileo); weather satellites to help predict flight paths, accurate targeting and launch conditions; and remote imagery satellites to assist with information and intelligence for the planning and targeting.

Missile launches themselves depend on 1) the command and control systems of the missiles, 2) the way in which information is transmitted to the missile launch facilities and 3) the way in which information is transmitted to the missiles themselves in flight. All these aspects rely on space technology.

In addition, the ground stations that transmit and receive data to and from satellites are also vulnerable to cyberattack – either through their known and unknown internet connectivity or through malicious use of flash drives that contain a deliberate cyber infection.

Non-space-based communications systems that use cable and ground-to-air-to-ground masts are likewise under threat from cyberattacks that find their way in via internet connectivity, proximity interference or memory sticks. Human error in introducing connectivity via phones, laptops and external drives, and in clicking on malicious links in sophisticated phishing lures, is common in facilitating inadvertent connectivity and malware infection.

All of these can create a military capacity able to interfere with missile launches. Malware might have been sitting on the missile command and control system for months or even years, remaining inactivated until a chosen time or by a trigger that sets in motion a disruption either to the launch or to the flight path of the missile. The country that launches the missile that either fails to launch or fails to reach the target may never know if this was the result of a design flaw, a common malfunction or a deliberate cyberattack.

States with these capabilities must exercise caution: cyber offence manoeuvres may prevent the launch of missile attacks against US assets in the Middle East or in the Pacific regions, but they may also interfere with US missile launches in the future. Even, as has recently been revealed, US cyber weapons targeting an adversary may blow back and inadvertently infect US systems. Nobody is invulnerable.




bi

Cyber Governance in the Commonwealth: Towards Stability and Responsible State Behaviour in Cyberspace

Invitation Only Research Event

7 October 2019 - 10:30am to 5:30pm

Addis Ababa, Ethiopia

This roundtable is part of a series under the project, 'Implementing the Commonwealth Cybersecurity Agenda', funded by the UK Foreign and Commonwealth Office (FCO). The roundtable aims to provide a multi-stakeholder, pan-Commonwealth platform to discuss how to implement the Commonwealth Cyber Declaration with a focus on its third pillar 'To promote stability in cyberspace through international cooperation'.

In particular, the roundtable focuses on points 3 and 4 of the third pillar which revolve around the commitment to promote frameworks for stability in cyberspace including the applicability of international law, agreed voluntary norms of responsible state behaviour and the development and implementation of confidence-building measures consistent with the 2015 report of the UNGGE. 

The workshop also focuses on the commitment to advance discussions on how existing international law, including the Charter of the United Nations and applicable international humanitarian law, applies in cyberspace.

The roundtable addresses the issue of global cyber governance from a Commonwealth perspective and will also include a discussion around the way forward, the needed capacity of the different Commonwealth countries and the cooperation between its members for better cyber governance.

Participants include UNGGE members from Commonwealth countries in addition to representatives to the UN Open-Ended Working Group from African countries as well as members from academia, civil society and industry.

Calum Inverarity

Research Analyst and Coordinator, International Security Department
+44 (0) 207 957 5751




bi

Examining Measures to Mitigate Cyber Vulnerabilities of Space-based Strategic Assets

Invitation Only Research Event

30 October 2019 - 9:30am to 4:00pm

Chatham House | 10 St James's Square | London | SW1Y 4LE

Event participants

Beyza Unal, Senior Research Fellow, International Security Department, Chatham House
Patricia Lewis, Research Director, International Security Department, Chatham House

Strategic systems that depend on space-based assets, such as command, control and communication, early warning systems, weapons systems and weapons platforms, are essential for conducting successful NATO operations and missions. Given the increasing dependency on such systems, the alliance and key member states would therefore benefit from an in-depth analysis of possible mitigation and resilience measures.

This workshop is part of the International Security Department’s (ISD) project on space security and the vulnerability of strategic assets to cyberattacks, which includes a recently published report. This project aims to create resilience in NATO and key NATO member states, building the capacity of key policymakers and stakeholders to respond with effective policies and procedures. This workshop will focus on measures to mitigate the cyber vulnerabilities of NATO’s space-dependent strategic assets. Moreover, participants will discuss the type of resilience measures and mechanisms required.

Attendance at this event is by invitation only. 

Calum Inverarity

Research Analyst and Coordinator, International Security Department
+44 (0) 207 957 5751




bi

Webinar: How is the MENA Region Dealing with the COVID-19 Outbreak?

Research Event

2 April 2020 - 12:30pm to 1:30pm

Event participants

Omar Dewachi, Associate Professor of Medical Anthropology, Department of Anthropology, Rutgers University
Tin Hinane El Kadi, Associate Fellow, MENA Programme, Chatham House
Moderator: Sanam Vakil, Deputy Head & Senior Research Fellow, MENA Programme, Chatham House

At this webinar, part of the Chatham House MENA Programme Online Event Series, experts will explore how the coronavirus pandemic is impacting the economy, state-society relations and healthcare throughout the Middle East and North Africa. How are governments handling this crisis and what measures have they put in place to stop the spread of the virus? Why are some governments withholding information about the number of cases? What has the response from the public been so far? How is this affecting the region and how does it compare to the global picture?

The event will be held on the record.

Reni Zhelyazkova

Programme Coordinator, Middle East and North Africa Programme
+44 (0)20 7314 3624




bi

Webinar: OPEC, Falling Oil Prices and COVID-19

Corporate Members Event Webinar

7 April 2020 - 1:00pm to 2:00pm

Online

Event participants

Julian Lee, Oil Strategist, Bloomberg LP London
Dr John Sfakianakis, Associate Fellow, Middle East and North Africa Programme, Chatham House; Chief Economist and Head of Research, Gulf Research Center
Professor Paul Stevens, Distinguished Fellow, Energy, Environment and Resources Programme, Chatham House
Emily Stromquist, Director, Castlereagh Associates
Chair: Dr Sanam Vakil, Deputy Director and Senior Research Fellow, Middle East and North Africa Programme, Chatham House

In early March, global oil prices fell sharply, hitting lows of under $30 a barrel. Two factors explain this collapse: firstly the decrease in global demand for oil as a result of the COVID-19 pandemic and, secondly, the breakdown in OPEC-Russian relations and the subsequent Saudi-Russian price war which has seen both countries move to flood the market with cheap oil.
 
Against this backdrop, the panellists will reflect on the challenges currently facing OPEC as well as the oil industry as a whole. How are OPEC countries affected by the ever-evolving Covid-19 pandemic? What are the underlying causes behind the Saudi-Russian price war? Is the conflict likely to be resolved soon? And what are the implications of these challenges for the oil industry?

This event is part of a fortnightly series of 'Business in Focus' webinars reflecting on the impact of COVID-19 on areas of particular professional interest for our corporate members and giving circles.

Not a corporate member? Find out more.




bi

Webinar: Can the Justice and Development Party Still Absorb Popular Anger in Morocco?

Webinar Research Event

8 April 2020 - 1:00pm to 2:00pm

Event participants

Mohammed Masbah, Director, Moroccan Institute for Policy Analysis; Associate Fellow, MENA Programme, Chatham House
Moderator: Lina Khatib, Director, MENA Programme, Chatham House

Ever since independence, the Moroccan monarchy has used political parties to legitimize the country’s authoritarian political process and structure, and to absorb social and political anger. The palace puts successive governments and other elected institutions, such as local and regional councils, at the frontline of public blame, and replaces them once they fail this function.

In a recent article, MENA Programme Associate Fellow, Mohammed Masbah, examines how the Moroccan monarchy has used this strategy with the ruling Justice and Development Party (PJD) so that the palace remains the centre of political power, while the PJD – and other political parties before it– takes responsibility for coping with the mounting socio-economic crisis.

In this webinar, part of the Chatham House project on The Future of the State in the Middle East and North Africa, the article’s author will discuss the risks this approach presents for the long-term stability of Morocco and what reforms are needed to increase citizens’ dwindling confidence in the political process.

You can express your interest in attending by following this link. You will receive a Zoom confirmation email should your registration be successful.




bi

Webinar: The Environmental Crisis in the MENA Region – Impacts and Mitigation

Research Event

16 April 2020 - 11:30am to 12:30pm

Chatham House | 10 St James's Square | London | SW1Y 4LE

Event participants

Glada Lahn, Senior Research Fellow, Energy, Environment and Resources Programme, Chatham House
Greg Shapland, Associate Fellow, Middle East and North Africa Programme, Chatham House 
Moderator: Sanam Vakil, Deputy Director and Senior Research Fellow, Middle East and North Africa Programme, Chatham House

The event will be livestreamed on the MENA Programme Facebook page.

Climate and environmental issues have largely been marginalized in discussions about the Middle East and North Africa region and yet are critical to peace and security. In this webinar, experts will explore mounting pressures including those related to water (reduced, less reliable and more polluted sources), extreme temperatures, air pollution, land degradation and sea-level rise. Panelists will discuss the potential impact of worsening environmental conditions and what the region's governments can do to protect the health and livelihoods of their peoples.

This webinar is part of the Chatham House MENA Programme's Online Event Series and will be held on the record.

Reni Zhelyazkova

Programme Coordinator, Middle East and North Africa Programme
+44 (0)20 7314 3624




bi

Webinar: Federalism in a Fragmented State: Rethinking Decentralization in Yemen

Research Event

15 April 2020 - 1:00pm to 2:00pm

Event participants

Osamah Al Rawhani, Deputy Director, Sana’a Center for Strategic Studies
Moderator: Nadim Houry, Executive Director, Arab Reform Initiative

Yemen suffered from the excessive control of the central government prior to the current conflict. Federalism has been put forward by many Yemeni political parties since the National Dialogue Conference (NDC) as the supposed magic cure for this significant problem. Today, Yemen is more fragmented than ever, its state central institutions have been scattered and lack leadership and the state has lost most of its sovereignty. The prevailing narrative that decentralization through federalism is Yemen’s inevitable path post-conflict often fails to acknowledge that there are prerequisites for effective local governance, beyond political will.  

In a recent article, Osamah Al Rawhani addressed how the weakness of central state institutions is the key challenge to proceeding with federalism in Yemen and highlighted prerequisites and contextual factors that need to be addressed before reforming the structure of the state. He argued that the viability of decentralization relies on the presence of a functioning, representative central government that is capable of devolving power but also able to keep the state from further fragmentation. 

In this webinar, part of the Chatham House project on The Future of the State in the Middle East and North Africa, the article’s author will discuss recent developments in Yemen, where shifting frontlines and regional divisions are fragmenting the country in new ways. The speaker will explore alternative approaches to pursue the path of federalism that recognize the current realities and the critical need for strong central institutions. He will also survey the internal and external factors that must be considered to rebuild a stable state in Yemen.

You can express your interest in attending by following this link. You will receive a Zoom confirmation email should your registration be successful. Alternatively, you can watch the event live on the MENA Programme Facebook page.

Reni Zhelyazkova

Programme Coordinator, Middle East and North Africa Programme
+44 (0)20 7314 3624




bi

COVID 19: Assessing Vulnerabilities and Impacts on Iraq

7 April 2020

Dr Renad Mansour

Senior Research Fellow, Middle East and North Africa Programme; Project Director, Iraq Initiative

Dr Mac Skelton

Director, Institute of Regional and International Studies (IRIS), American University of Iraq, Sulaimani; Visiting Fellow, Middle East Centre, London School of Economics

Dr Abdulameer Mohsin Hussein

President of the Iraq Medical Association
Following 17 years of conflict and fragile state-society relations, the war-torn country is particularly vulnerable to the pandemic.

2020-04-07-Iraq-COVID-spray

Disinfecting shops in Baghdad's Bayaa neighbourhood as a preventive measure against the spread of COVID-19. Photo by AHMAD AL-RUBAYE/AFP via Getty Images.

Iraq is a country already in turmoil, suffering fallout from the major military escalation between the US and Iran, mass protests calling for an end to the post-2003 political system, and a violent government crackdown killing more than 600 and wounding almost 30,000 - all presided over by a fragmented political elite unable to agree upon a new prime minister following Adil abd al-Mehdi’s resignation back in November.

COVID-19 introduces yet another threat to the fragile political order, as the virus exposes Iraq’s ineffective public health system dismantled through decades of conflict, corruption and poor governance.

Iraqi doctors are making every effort to prepare for the worst-case scenario, but they do so with huge structural challenges. The Ministry of Health lacks enough ICU beds, human resources, ventilators, and personal protective equipment (PPE). Bogged down in bureaucracy, the ministry is struggling to process procurements of equipment and medications, and some doctors have made purchases themselves.

But individual efforts can only go so far as many Iraqi doctors are concerned the official numbers of confirmed COVID-19 cases do not reflect the complexity of the situation on the ground.

The ministry relies predominately upon patients self-presenting at designated public hospitals and has only just begun community-based testing in areas of suspected clusters. Reliance on self-presentation requires a level of trust between citizens and state institutions, which is at a historic low. This gap in trust – 17 years in the making – puts Iraq’s COVID-19 response particularly at risk.

Iraq’s myriad vulnerabilities

Certain social and political factors leave Iraq uniquely exposed to the coronavirus. The country’s vulnerability is tied directly to its social, religious and economic interconnections with Iran, an epicenter of the pandemic.

Exchanges between Iran and Iraq are concentrated in two regions, with strong cross-border links between Iraqi and Iranian Kurds in the north-east, and Iraqi and Iranian Shia pilgrims in the south. Cross-border circulation of religious pilgrims is particularly concerning, as they can result in mass ritual gatherings.

The high number of confirmed cases in the southern and northern peripheries of the country puts a spotlight on Iraq's failure in managing healthcare. The post-2003 government has failed to either rebuild a robust centralized healthcare system, or to pave the way for a federalized model.

Caught in an ambiguous middle between a centralized and federalized model, coordination across provinces and hospitals during the coronavirus crisis has neither reflected strong management from Baghdad nor robust ownership at the governorate level.

This problem is part of a wider challenge of managing centre-periphery relations and federalism, which since 2003 has not worked effectively. Baghdad has provided all 18 provinces with instructions on testing and treatment, but only a handful have enough resources to put them into practice. Advanced testing capacity is limited to the five provinces with WHO-approved centers, with the remaining 13 sending swabs to Baghdad.

But the greatest challenge to Iraq’s COVID-19 response is the dramatic deterioration of state-society relations. Studies reveal a profound societal distrust of Iraq’s public healthcare institutions, due to corruption and militarization of medical institutions. Numerous videos have recently circulated of families refusing to turn over sick members - particularly women - to medical teams visiting households with confirmed or suspected cases.

As medical anthropologist Omar Dewachi notes, the ‘moral economy of quarantine’ in Iraq is heavily shaped by a history of war and its impact on the relationship between people and the state. Although local and international media often interpret this reluctance to undergo quarantine as a matter of social or tribal norms, distrusting the state leads many families to refuse quarantine because they believe it resembles a form of arrest.

The management of coronavirus relies upon an overt convergence between medical institutions and security forces as the federal police collaborate with the Ministry of Health to impose curfews and enforce quarantine. This means that, troublingly, the same security establishment which violently cracked down on protesters and civil society activists is now the teeth behind Iraq’s COVID-19 response.

Without trust between society and the political class, civil society organizations and protest movements have directed their organizational structure towards awareness-raising across Iraq. Key religious authorities such as Grand Ayatollah Sistani have called for compliance to the curfew and mobilized charitable institutions.

However, such efforts will not be enough to make up for the lack of governance at the level of the state. In the short-term, Iraq’s medical professionals and institutions are in dire need of technical and financial support. In the long-term, COVID-19 is a lesson that Iraq’s once robust public healthcare system needs serious investment and reform.

COVID-19 may prove to be another catalyst challenging the ‘muddle through’ logic of the Iraqi political elite. International actors have largely been complicit in this logic, directing aid and technical support towards security forces and political allies in the interest of short-term stability, and neglecting institutions which Iraqis rely on for health, education, and well-being.

The response to the crisis requires cooperation and buy-in of a population neglected by 17 years of failed governance. This is a seminal event that may push the country to the brink, exposing and stirring underlying tensions in state-society relations.

This analysis was produced as part of the Iraq Initiative.




bi

Webinar: Are the Gulf Standoffs Resolvable?

Research Event

21 April 2020 - 1:00pm to 2:00pm

Event participants

David Roberts, Assistant Professor and School of Security Studies Lead for Regional Security and Development, King's College London
Kristian Coates Ulrichsen, Associate Fellow, Middle East and North Africa Programme, Chatham House
Chair: Sanam Vakil, Deputy Director and Senior Research Fellow, Middle East and North Africa Programme, Chatham House

This webinar, part of the MENA Programme Webinar Series, will examine the trajectory of political and security dynamics in the Gulf in view of the ongoing rift within the Gulf Cooperation Council (GCC), the death of Sultan Qaboos in Oman, the escalation of tensions between Iran and the United States, and the COVID-19 crisis.

Speakers will explore the orientation of the GCC under a new Secretary-General and the prospects for mediation between Qatar and its neighbours, the future of Omani domestic and foreign policy under Sultan Haitham bin Tariq Al Said, eventual transitions to new leadership in Bahrain and Kuwait, and whether the impact of COVID-19 may help replace the confrontation within the GCC with closer coordination among its six member states.

The webinar will be livestreamed on the MENA Programme Facebook page.

Reni Zhelyazkova

Programme Coordinator, Middle East and North Africa Programme
+44 (0)20 7314 3624




bi

Webinar: Reimagining the Role of State and Non-State Actors in (Re)building National Health Systems in the Arab World

Research Event

22 April 2020 - 1:00pm to 2:00pm

Event participants

Fadi El-Jardali, Professor of Health Policy and Systems, American University of Beirut
Moderator: Nadim Houry, Executive Director, Arab Reform Initiative

As new cases of COVID-19 continue to surge, countries around the world struggle to mitigate the public health and economic effects of the virus. It is becoming increasingly clear that an effective pandemic response requires a whole-of-government, whole-of-society approach. In the Arab world, where health systems are already strained by armed conflicts and displaced populations, a whole-of-society response to the pandemic is particularly critical as countries have become increasingly dependent on non-state actors, notably the private sector, for healthcare provision and any response that includes the state alone may not be sufficient to address the pandemic.

In a recent article, Fadi El-Jardali, argued that while the pandemic will have grave health and economic consequences for years to come, it brings with it a valuable opportunity to re-envision the role of state and non-state actors in strengthening health systems. The article addressed the need for increased collaboration between state and non-state actors, and the rethinking of existing cooperation models to provide quality healthcare services for all.  

In this webinar, part of the Chatham House project on the future of the state in the Middle East and North Africa, Dr El-Jardali will discuss how state and non-state actors can collaborate more effectively to address the shortcomings of national health care systems amidst the pandemic and beyond. The article’s author will share insights on the different capacities available in Arab societies that governments can draw upon to ensure that Universal Health Coverage, equity considerations and social justice are at the core of health systems.

You can express your interest in attending by following this link. You will receive a Zoom confirmation email should your registration be successful. Alternatively, you can watch the event live on the MENA Programme Facebook page.

 

Reni Zhelyazkova

Programme Coordinator, Middle East and North Africa Programme
+44 (0)20 7314 3624




bi

Webinar: Idlib at Risk – Doctors and First Responders in Northwest Syria

Members Event Webinar

23 April 2020 - 5:00pm to 6:00pm

Online

Event participants

Dr Munzer al-Khalil, Head, Idlib Health Directorate
Raed Al Saleh, Director, Syria Civil Defence (The White Helmets)
Alaa Rajaa Mughrabieh, Child Protection Officer, Hurras Network
Chair: Dr Lina Khatib, Director, Middle East and North Africa Programme, Chatham House

 

In Syria, uncertainty about the safety of the ceasefire agreed between Russia and Turkey last month is inhibiting 1 million people who have been displaced since December 2019 from returning home.

The looming COVID-19 global health crisis threatens to further devastate those most vulnerable as the conditions in northwest Syria’s refugee camps make it hard to practice common social distancing guidelines. Added to this, the medical infrastructure in the region has been decimated after years of bombings which has disabled over 70 health facilities since April 2019.

This webinar highlights the potentially catastrophic risks of a coronavirus outbreak in Idlib and displacement camps in northwest Syria by speaking with medical and civil society actors working in the region. How are doctors and local humanitarian organizations scaling up their medical and prevention response to the COVID-19 outbreak?

What key supplies such as ventilators, testing kits and critical sanitary equipment are still lacking? And how can the international community step in to help mitigate the potentially devastating consequences of an outbreak in these refugee camps?

This event is run in collaboration with The Syria Campaign, a human rights organization working with Syrian civil society to raise the voices of those struggling for democracy, and support frontline activists and humanitarians.




bi

Webinar: Egypt and the Gulf: Allies and Rivals

Research Event

23 April 2020 - 1:00pm to 2:00pm

Event participants

Speaker: David Butter, Associate Fellow, Middle East and North Africa Programme, Chatham House
Moderator: Mohamed El Dahshan, Associate Fellow, Middle East and North Africa Programme, Chatham House

The webinar will be livestreamed on the MENA Programme Facebook page.

Egypt and the Gulf Arab region have long been important poles of political, military, economic and cultural power and influence in the Middle East. A recently published Chatham House paper examines the strategic and economic relationship between Egypt and the Gulf, focusing in particular on the period since Abdel-Fattah el-Sisi came to power in Egypt. Author David Butter offers a detailed evaluation of these economic relationships, in the broader context of a strategic alliance that, since 2013, has been informed by a common commitment between Egypt and the UAE in particular to keep in check the Muslim Brotherhood and its regional state supporters, primarily Turkey and Qatar.

In this webinar, the author will discuss the paper’s main argument, namely, that the degree of Egypt’s dependence on Gulf countries has fluctuated, and that by 2019, Egypt’s direct financial dependence on the Gulf was significantly reduced by comparison with the initial three years of the Sisi era, although other economic linkages such as investment, trade, remittances and tourism remained strong, with potential for growth. The speaker will also discuss the impact of the global crisis caused by the COVID-19 pandemic on Egypt’s and Gulf countries’ economies and will explore the implications for the relationship between Egypt and the Gulf.

This webinar is part of the Chatham House Middle East and North Africa Programme's Online Event Series. The event will be held on the record.

Reni Zhelyazkova

Programme Coordinator, Middle East and North Africa Programme
+44 (0)20 7314 3624




bi

Webinar: Assessing the Twists and Turns in the US-Iran Stalemate

Research Event

28 April 2020 - 2:00pm to 3:30pm

Event participants

Esfandyar Batmanghelidj, Founder and Publisher, Bourse & Bazaar
Nasser Hadian, Professor of Political Sciences, Faculty of Law and Political Sciences, University of Tehran
Azadeh Zamirirad, Deputy Head, Middle East and Africa Division, SWP Berlin
Ariane Tabatabai, Middle East Fellow, Alliance for Securing Democracy, US German Marshall Fund; Adjunct Senior Research Scholar, SIPA
Moderator: Sanam Vakil, Deputy Head and Senior Research Fellow, Middle East and North Africa Programme, Chatham House
The webinar will be livestreamed on the MENA Programme Facebook page.

Since the start of 2020, Iran has been beset with multiple challenges including the spread of COVID-19, economic pressure from US sanctions, parliamentary elections in February, the killing of Qassem Soleimani and an increase in tensions in Iraq. The Trump administration interprets these domestic and regional challenges faces by Iran as evidence that its maximum pressure campaign is proving to be effective.

In this webinar, speakers will examine the economic and political impact of the Trump administration's policy towards Iran. Panelists will consider how these events are impacting internal dynamics in Iran and examine the economic impact of sanctions. They will also evaluate European diplomatic efforts to preserve the Iran nuclear agreement, and consider the future trajectory of US Iran policy and the potential for escalation in the region.
 
This webinar is part of the Chatham House Middle East and North Africa Programme's Online Event Series. The event will be held on the record.

Reni Zhelyazkova

Programme Coordinator, Middle East and North Africa Programme
+44 (0)20 7314 3624




bi

Webinar: Will COVID-19 Mark the Endgame for Iraq's Muhasasa Ta'ifia?

Research Event

30 April 2020 - 2:00pm to 3:00pm

Event participants

Ahmed Tabaqchali, Chief Investment Officer, Asia Frontier Capital Iraq Fund; Adjunct Assistant Professor, American University of Iraq Sulaimani
Moderator: Renad Mansour, Senior Research Fellow, Middle East and North Africa Programme, Chatham House

Control of oil rents underpins Iraq’s post-2003 political order. This political order, known as Muhasasa Ta’ifia (ethno-sectarian apportionment), features an elite bargain inclusive of all major ethnic and sect-based political groups. It has enabled the state's continuity and apparent stability through multiple crises, including the 2008 financial crisis, the 2014 oil crisis, and the war with ISIS.

In a recent article, Ahmed Tabaqchali examines how the crash in oil rents, brought about by COVID-19’s disruption of the world economy, exposes the structural inconsistencies and inherent contradictions of the Muhasasa Tai’fia system. The article argues that the current Iraqi political elite is ill-equipped to resolve the multi-faceted challenge facing the country because of its increasing fragmentation and the erosion of its legitimacy, advanced institutional decay and fundamentally different oil dynamics.

In this webinar, part of the Chatham House project on the future of the state in the Middle East and North Africa, the article’s author will discuss the deficiencies of the Muhasasa Ta’ifia system and will offer his insight into the future of this governance model in the context of a worsening economic crisis resulting from the COVID-19 pandemic and existing demographic pressures.
 
You can express your interest in attending by following this link. You will receive a Zoom confirmation email should your registration be successful. Alternatively, you can watch the event live on the MENA Programme Facebook page.
 

Reni Zhelyazkova

Programme Coordinator, Middle East and North Africa Programme
+44 (0)20 7314 3624




bi

Webinar: Breaking the Cycle of Violence: Transitional Justice for the Victims of ISIS in Syria

Research Event

12 May 2020 - 2:00pm to 3:00pm
Add to Calendar

Haid Haid, Senior Consulting Fellow, Middle East and North Africa Programme, Chatham House
Sara Kayyali, Syria Researcher, Middle East and North Africa Division, Human Rights Watch
Moderator: Lina Khatib, Director, Middle East and North Africa Programme, Chatham House

You can register your interest here. Alternatively, you can watch the webinar live on the MENA Programme Facebook page.

Following the territorial defeat of Islamic State of Iraq and Syria (ISIS) in northeastern Syria, the Kurdish-led autonomous administration in the region is now grappling with the task of quickly dealing with thousands of the group’s detained members while bringing justice to their victims. To that end, local authorities are focusing on the use of counterterrorism laws and courts to charge captured ISIS members and determine their guilt accordingly.

In a recent research paper, author Haid Haid argues that this approach to justice is deeply flawed as it raises concerns about due process and lacks the precise instruments to determine the personal responsibility of ISIS individuals for specific crimes, or for their role in war crimes committed by the group. The paper proposes that a ‘transitional justice’ approach could provide judicial and non-judicial instruments to establish accountability for ISIS crimes and reduce community resistance to the reintegration of group members.

In this webinar, part of the MENA Programme’s Online Event Series, speakers will examine the benefits of such an approach to justice for overcoming the limitations of the current, counterterrorism-focused framework. Panelists will discuss the alternative mechanisms local authorities and their key foreign backers can use to hold local ISIS members to account while contributing to the healing of communities.
 
The event will be held on the record.

Reni Zhelyazkova

Programme Coordinator, Middle East and North Africa Programme
+44 (0)20 7314 3624




bi

Evidence Against an Important Role of Plasma Insulin and Glucagon Concentrations in the Increase in EGP Caused by SGLT2 Inhibitors

Sodium–glucose cotransport 2 inhibitors (SGLT2i) lower plasma glucose but stimulate endogenous glucose production (EGP). The current study examined the effect of dapagliflozin on EGP while clamping plasma glucose, insulin, and glucagon concentrations at their fasting level. Thirty-eight patients with type 2 diabetes received an 8-h measurement of EGP ([3-3H]-glucose) on three occasions. After a 3-h tracer equilibration, subjects received 1) dapagliflozin 10 mg (n = 26) or placebo (n = 12); 2) repeat EGP measurement with the plasma glucose concentration clamped at the fasting level; and 3) repeat EGP measurement with inhibition of insulin and glucagon secretion with somatostatin infusion and replacement of basal plasma insulin and glucagon concentrations. In study 1, the change in EGP (baseline to last hour of EGP measurement) in subjects receiving dapagliflozin was 22% greater (+0.66 ± 0.11 mg/kg/min, P < 0.05) than in subjects receiving placebo, and it was associated with a significant increase in plasma glucagon and a decrease in the plasma insulin concentration compared with placebo. Under glucose clamp conditions (study 2), the change in plasma insulin and glucagon concentrations was comparable in subjects receiving dapagliflozin and placebo, yet the difference in EGP between dapagliflozin and placebo persisted (+0.71 ± 0.13 mg/kg/min, P < 0.01). Under pancreatic clamp conditions (study 3), dapagliflozin produced an initial large decrease in EGP (8% below placebo), followed by a progressive increase in EGP that was 10.6% greater than placebo during the last hour. Collectively, these results indicate that 1) the changes in plasma insulin and glucagon concentration after SGLT2i administration are secondary to the decrease in plasma glucose concentration, and 2) the dapagliflozin-induced increase in EGP cannot be explained by the increase in plasma glucagon or decrease in plasma insulin or glucose concentrations.




bi

18F-DCFPyL PET/CT Imaging in Patients with Biochemical Recurrence Prostate Cancer after Primary Local Therapy

Objective: To investigate the lesion detection rate of 18F-DCFPyL-PET/CT, a prostate-specific membrane antigen (PSMA) targeted PET agent, in biochemical relapse prostate cancer patients after primary local therapy. Methods: This is a prospective institutional review board-approved study of 90 patients with documented biochemical recurrence (median PSA 2.5 ng/mL, range 0.21-35.5 ng/mL) with negative conventional imaging after primary local therapies, including radical prostatectomy (n = 38), radiation (n = 27) or combination (n = 25). Patients on androgen deprivation therapy were excluded. Patients underwent whole-body 18F-DCFPyL-PET/CT (299.9±15.5 MBq) at 2 h p.i. PSMA-PET lesion detection rate was correlated with PSA, PSA kinetics and original primary tumor grade. Results: Seventy patients (77.8%) showed a positive PSMA-PET scan, identifying a total of 287 lesions: 37 prostate bed foci, 208 lymph nodes, and 42 bone/organ distant sites; 11 patients had a negative scan and 9 patients showed indeterminate lesions, which were considered negative in this study. The detection rates were 47.6% (n = 10/21), 50% (n = 5/10), 88.9% (n = 8/9), and 94% (n = 47/50) for PSA >0.2 to <0.5, 0.5 to <1.0, 1 to <2.0, and ≥2.0 ng/mL, respectively. In post-surgical patients, PSA, PSAdt and PSAvel correlated with PET results but the same was not true for post-radiation patients. These parameters also correlated with the extent of disease on PET (intrapelvic vs. extrapelvic). There was no significant difference between the rate of positive scans in patients with higher grade vs lower grade primary tumors (Gleason score ≥4+3 vs <3+4). Tumor recurrence was histology confirmed in 40% (28/70) of patients. On a per-patient basis, positive predictive value was 93.3% (95% CI, 77.6-99.2%) by histopathologic validation, and 96.2% (95% CI, 86.3-99.7%) by the combination of histology and imaging/clinical follow-up. Conclusion: 18F-DCFPyL-PET/CT imaging offers high detection rates in biochemically recurrent prostate cancer patients; and is positive in about 50% of patients with PSA <0.5 ng/mL, which could substantially impact clinical management. In post-surgical patients, 18F-DCFPyL-PET/CT correlates with PSA, PSAdt and PSAvel suggesting it may have prognostic value. 18F-DCFPyL-PET/CT is highly promising for localizing sites of recurrent prostate cancer.




bi

3-year freedom from progression following 68GaPSMA PET CT triaged management in men with biochemical recurrence post radical prostatectomy. Results of a prospective multi-center trial.

Background: 68Ga PSMA PET CT (PSMA) is increasingly used in men with biochemical recurrence (BCR) post radical prostatectomy (RP), but its longer term prognostic / predictive potential in these men is unknown. The aim of this study was to evaluate the predictive value of PSMA PET for 3 year freedom from progression (FFP) in men with BCR post RP undergoing salvage radiotherapy (sRT). Methods: This prospective multi-center study enrolled 260 men between 2015 and 2017. Eligible patients were referred for PSMA with rising PSA following RP. Management following PSMA was recorded but not mandated. PSMA protocols were standardised across sites and reported prospectively. Clinical, pathological and surgical information, sRT, timing and duration of androgen deprivation (ADT), 3 year PSA results and clinical events were documented. FFP was defined as a PSA rise ≤ 0.2ng/mL above nadir post sRT, with no additional treatment. Results: The median PSA was 0.26ng/mL (IQR 0.15 - 0.59) and follow-up 38 months (IQR 31-43). PSMA was negative in 34.6% (90/260), confined to prostate fossa 21.5% (56/260), pelvic nodes 26.2% (68/260), and distant disease 17.7% (46/260). 71.5% (186/260) received sRT, 38.2% (71/186) to the fossa only, 49.4% (92/186) fossa + pelvic nodes and 12.4% (23/186) nodes alone/SBRT. PSMA was highly predictive of FFP at 3 years following sRT. Overall, FFP was achieved in 64.5% (120/186) of those who received sRT, 81% (81/100) with negative/fossa confined vs. 45% (39/86) for extra fossa disease (p<0.0001). On logistic regression PSMA was more independently predictive of FFP than established clinical predictors, including PSA, T-stage, surgical margin status or Gleason score (P < 0.002). 32% of men with a negative PSMA PET did not receive treatment. Of these, 66% (19/29) progressed, with a mean rise in PSA of 1.59ng/mL over the 3 years. Conclusion: PSMA PET result is highly predictive of FFP at 3 years in men undergoing sRT for BCR following RP. In particular, men with negative PSMA PET or disease identified as still confined to the prostate fossa demonstrate high FFP, despite receiving less extensive radiotherapy and lower rates of additional ADT than those with extra fossa disease.




bi

Evaluation of dosimetry, quantitative methods and test-retest variability of 18F-PI-2620 PET for the assessment of tau deposits in the human brain

18F-PI-2620 is a next generation tau positron emission tomography (PET)-tracer that has demonstrated ability to image the spatial distribution of suspected tau pathology. The objective of this study was to assess the tracer biodistribution, dosimetry and quantitative methods of 18F-PI-2620 in the human brain. Full kinetic modelling approaches to quantify tau load were investigated. Non-invasive kinetic modeling approaches and semi-quantitative methods were evaluated against the full tracer kinetics. Finally, the reproducibility of PET measurements from test and retest scans was assessed. Methods: Three healthy controls (HC) and 4 Alzheimer disease (AD) subjects underwent two dynamic PET scans including arterial sampling. Distribution volume ratio (DVR) was estimated using full tracer kinetics (2 Tissue Compartment (2TC) models, Logan Graphical Analysis (LGA)) and non-invasive kinetic models (Non-Invasive Logan Graphical Analysis (NI-LGA) and the multilinear reference tissue model (MRTM2)). Standardized uptake value ratio (SUVR) was determined at different imaging windows after injection. Correlation between DVR and SUVR, effect size (Cohen’s d) and test-retest variability (TRV) were evaluated. Additionally, 6 HC subjects received one tracer administration and underwent whole-body PET for dosimetry calculation. Organ doses and the whole-body effective dose were calculated using OLINDA 2.0. Results: Strong correlation was found across different kinetic models (R2 >0.97) and between DVR(2TC) and SUVRs between 30 to 90 min with R2>0.95. Secular equilibrium was reached around 40 min post injection (p.i.) in most regions and subjects. The TRV and effect size for the SUVR across different regions was similar at 30-60 min (TRV=3.8%, d=3.80), 45-75 min (TRV=4.3%, d=3.77) and 60-90 min (TRV=4.9%, d=3.73) and increased at later time points. Elimination was via the hepatobiliary and urinary system. The whole-body effective dose was determined to be 33.3±2.1 μSv/MBq for an adult female and 33.1±1.4 μSv/MBq for an adult male with a 1.5 hour urinary bladder voiding interval. Conclusion: 18F-PI-2620 exhibits fast kinetics, suitable dosimetry and low TRV. DVR measured using the 2TC model with arterial sampling correlated strongly with DVR measured by NI-LGA, MRTM2 and SUVR. SUVR can be used for 18F-PI-2620 PET quantification of tau deposits avoiding arterial blood sampling. Static 18F-PI-2620 PET scans between 45-75min p.i. provide excellent quantification accuracy, large effect size and low TRV.




bi

Combined Visual and Semi-quantitative Evaluation Improves Outcome Prediction by Early Mid-treatment 18F-fluoro-deoxi-glucose Positron Emission Tomography in Diffuse Large B-cell Lymphoma.

The purpose of this study was to assess the predictive and prognostic value of interim FDG PET (iPET) in evaluating early response to immuno-chemotherapy after two cycles (PET-2) in diffuse large B-cell lymphoma (DLBCL) by applying two different methods of interpretation: the Deauville visual five-point scale (5-PS) and a change in standardised uptake value by semi-quantitative evaluation. Methods: 145 patients with newly diagnosed DLBCL underwent pre-treatment PET (PET-0) and PET-2 assessment. PET-2 was classified according to both the visual 5-PS and percentage SUV changes (SUV). Receiver operating characteristic (ROC) analysis was performed to compare the accuracy of the two methods for predicting progression-free survival (PFS). Survival estimates, based on each method separately and combined, were calculated for iPET-positive (iPET+) and iPET-negative (iPET–) groups and compared. Results: Both with visual and SUV-based evaluations significant differences were found between the PFS of iPET– and iPET+ patient groups (p<0.001). Visually the best negative (NPV) and positive predictive value (PPV) occurred when iPET was defined as positive if Deauville score 4-5 (89% and 59%, respectively). Using the 66% SUV cut-off value, reported previously, NPV and PPV were 80 and 76%, respectively. SUV at 48.9% cut-off point, reported for the first time here, produced 100% specificity along with the highest sensitivity (24%). Visual and semi-quantitative SUV<48.9% assessment of each PET-2 gave the same PET-2 classification (positive or negative) in 70% (102/145) of all patients. This combined classification delivered NPV and PPV of 89% and 100% respectively, and all iPET+ patients failed to achieve or remain in remission. Conclusion: In this large consistently treated and assessed series of DLBCL, iPET had good prognostic value interpreted either visually or semi-quantitatively. We determined that the most effective SUV cut-off was at 48.9%, and that when combined with visual 5-PS assessment, a positive PET-2 was highly predictive of treatment failure.




bi

Radiation dosimetry and biodistribution of 68Ga-FAPI-46 PET imaging in cancer patients

Background: Targeting cancer-associated fibroblasts (CAFs) has become an attractive goal for diagnostic imaging and therapy as they can constitute as much as 90% of tumor mass. The serine protease fibroblast activation protein (FAP) is overexpressed selectively in CAFs, drawing interest in FAP as a stromal target. The quinoline-based FAP-inhibitor PET tracer, 68Ga-FAPI-04, has been previously shown to yield high tumor-to-background ratios (TBR) in patients with various cancers. Recent developments towards an improved compound for therapeutic application have identified FAPI-46 as a promising agent due to a longer tumor retention time in comparison with FAPI-04. Here we present a PET biodistribution and radiation dosimetry study of 68Ga-FAPI-46 in cancer patients. Methods: Six patients with different cancers underwent serial 68Ga-FAPI-46 PET/CT scans at three time points following radiotracer injection: 10 minutes, 1 hour, and 3 hours. The source organs consisted of the kidneys, bladder, liver, heart, spleen, bone marrow, uterus, and body remainder. OLINDA/EXM v.1.1 software was used to fit and integrate the kinetic organ activity data to yield total body and organ time-integrated activity coefficients/residence times and finally organ absorbed doses. Standardized uptake values (SUV) and TBR were generated from the contoured tumor and source organ volumes. Spherical volumes in muscle and blood pool were also obtained for TBR (Tumor SUVmax / Organ SUVmean). Results: At all timepoints, the highest organ SUVmax was observed in the liver. Tumor and organ mean SUVs decreased whereas TBRs in all organs but the uterus increased with time. The highest TBRs at 3 hours were observed with the bone marrow (31.1), muscle (22.8), heart (19.1), and spleen (19.0). Organs with the highest effective doses were the bladder wall (2.41E-03 mSv/MBq), followed by ovaries (1.15E-03 mSv/MBq) and red marrow (8.49E-04mSv/MBq). The average effective total body dose was 7.80E-03 mSv/MBq. Thus for administration of 200 MBq 68Ga-FAPI-46 the effective total body dose is 1.56 mSv ± 0.26 mSv, in addition to approximately 3.7 mSv from one low-dose CT scan done for attenuation correction. Conclusion: 68Ga-FAPI-46 PET/CT has a favorable dosimetry profile with an estimated whole body dose of 5.3 mSv for an administration of 200 MBq (5.4 mCi) of 68Ga-FAPI-46 (1.56± 0.26 mSv from the PET tracer and 3.7 mSv from one low-dose CT scan). The biodistribution study showed high TBRs increasing over time, suggesting high diagnostic performance and favorable tracer kinetics for potential therapeutic applications.




bi

Hyper-progressive Disease in Patients With Non-Small Cell Lung Cancer Treated With Checkpoint Inhibitors: The Role of 18F-FDG PET/CT

Introduction: A new pattern of response, so-called hyper-progressive disease (HPD), is emerging during treatment with immune checkpoint inhibitors (ICI). Our aim was to investigate the prevalence of such phenomenon and to assess its association with clinical variables and metabolic parameters by 18F-fludeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT). Methods: Data from 50 patients (34 male, 16 female, median age 73) with non-small cell lung carcinoma (NSCLC) and treated with ICI were prospectively collected. All patients underwent contrast-enhanced CT, 18F-FDG PET/CT, and complete peripheral blood sample at baseline before ICI. HPD was defined according to clinical and radiologic criteria. Because of the rapid disease progression or worsening of clinic conditions, radiologic response assessment was available for 46 patients. OS were analyzed using the Kaplan–Meier method and the log-rank test. A Cox proportional hazards regression analysis was used to evaluate factors independently associated with OS. Median follow-up was 12.4 months (9.7-15.2 months). Results: We identified the following response categories: 10 cases as complete/partial response (CR/PR), 17 cases with stable disease (SD), 5 patients with progressive disease (PD), and 14 with HPD. Among metabolic parameters we observed a statistically significant association between HPD status and tumor burden, expressed by both MTV (756.1ml for HPD vs 475.6ml for non-HPD, P = 0.011) and TLG (287.3 for HPD vs 62.1 for non-HPD, P = 0.042). Among clinical variables, 12/14 patients (85.7%) within the HPD group compared with 8/32 patients (25%) in the non-HDP group had more than two metastatic sites (p<0.001). In addition, the derived neutrophil-to-lymphocyte ratio (dNLR) and platelet counts was significantly associated with HPD status (P = 0.038, P = 0.025, respectively). Survival analysis showed a median OS of 4 months for HPD group compared with 15 months within non-HPD patients (P = 0.003). Likewise, median OS was significantly different when we considered all the response categories: CR/PR, SD, PD, and HPD (P = 0.001). Finally, Multivariate analysis identified MTV and dNLR as independent predictors for OS. Conclusion: Our results suggest that the use of ICI might represent a concern in patients with high metabolic tumor burden and inflammatory indexes at baseline. However Additional studies are needed.




bi

Repeatability of Quantitative 18F-DCFPyL PET/CT Measurements in Metastatic Prostate Cancer.

Quantitative evaluation of radiolabeled Prostate-Specific Membrane Antigen (PSMA) PET scans may be used to monitor treatment response in patients with prostate cancer (PCa). To interpret longitudinal differences in PSMA uptake, the intrinsic variability of tracer uptake in PCa lesions needs to be defined. The aim of this study was to investigate the repeatability of quantitative 18F-DCFPyL (a second generation 18F-PSMA-ligand) PET/CT measurements in patients with PCa. Methods: Twelve patients with metastatic PCa were prospectively included, of which 2 were excluded from final analyses. Patients received two whole-body 18F-DCFPyL PET/CT scans (median dose 317 MBq; uptake time 120 min), within median 4 days (range 1-11 days). After semi-automatic (isocontour-based) tumor delineation, the following lesion-based metrics were derived: Tumor-to-Blood ratio (TBRmean, TBRpeak, and TBRmax), Standardized Uptake Value (SUVmean, SUVpeak, SUVmax, normalized to bodyweight), tumor volume, and total lesion tracer uptake (TLU). Additionally, patient-based Total Tumor Volume (sum of PSMA-positive tumor volumes; TTV) and Total Tumor Burden (sum of all lesion TLUs; TTB) were derived. Repeatability was analyzed using repeatability coefficients (RC) and intra-class correlations (ICC). Additionally, the effect of point spread function (PSF) image reconstruction on the repeatability of uptake metrics was evaluated. Results: In total, 36 18F-DCFPyL PET positive lesions were analyzed (up to 5 lesions per patient). RCs of TBRmean, TBRpeak, and TBRmax were 31.8%, 31.7%, and 37.3%, respectively. For SUVmean, SUVpeak, SUVmax the RCs were 24.4%, 25.3% and 31.0%, respectively. All ICC were ≥0.97. Tumor volume delineations were well repeatable, with RC 28.1% for individual lesion volumes and RC 17.0% for TTV. TTB had a RC of 23.2% and 33.4%, when based on SUVmean and TBRmean, respectively. Small lesions (<4.2mL) had worse repeatability for volume measurements. The repeatability of SUVpeak, TLU, and all patient-level metrics were not affected by PSF-reconstruction. Conclusion: 18F-DCFPyL uptake measurements are well repeatable and can be used for clinical validation in future treatment response assessment studies. Patient-based TTV may be preferred for multicenter studies since its repeatability was both high and robust to different image reconstructions.




bi

11C-(+)-PHNO Trapping Reversibility for Quantitative PET Imaging of Beta-Cell-Mass in Patients with Type-1 Diabetes




bi

Individual mapping of innate immune cell activation is a candidate marker of patient-specific trajectories of disability worsening in Multiple Sclerosis

Objective: To develop a novel approach to generate individual maps of white matter (WM) innate immune cell activation using 18F-DPA-714 translocator protein (TSPO) positron emission tomography (PET), and to explore the relationship between these maps and individual trajectories of disability worsening in patients with multiple sclerosis (MS). Methods: Patients with MS (n = 37), whose trajectories of disability worsening over the 2 years preceding study entry were calculated, and healthy controls (n = 19) underwent magnetic resonance magnetic and 18F-DPA-714 PET. A threshold of significant activation of 18F-DPA-714 binding was calculated with a voxel-wise randomized permutation-based comparison between patients and controls, and used to classify each WM voxel in patients as characterized by a significant activation of innate immune cells (DPA+) or not. Individual maps of innate immune cell activation in the WM were employed to calculate the extent of activation in WM regions-of-interests and to classify each WM lesion as "DPA-active", "DPA-inactive" or "unclassified". Results: Compared with the WM of healthy controls, patients with MS had a significantly higher percentage of DPA+ voxels in the normal-appearing WM, (NAWM in patients=24.9±9.7%; WM in controls=14.0±7.8%, p<0.001). In patients with MS, the percentage of DPA+ voxels showed a significant increase from NAWM, to perilesional areas, T2 hyperintense lesions and T1 hypointense lesions (38.1±13.5%, 45.0±17.9%, and 51.9±22.9%, respectively, p<0.001). Among the 1379 T2 lesions identified, 512 were defined as DPA-active and 258 as DPA-inactive. A higher number of lesions classified as DPA-active (OR=1.13, P = 0.009), a higher percentage of DPA+ voxels in the NAWM (OR=1.16, P = 0.009) and in T1-spin-echo lesions (OR=1.06, P = 0.036), were significantly associated with a retrospective more severe clinical trajectory in patients with MS. Conclusion: A more severe trajectory of disability worsening in MS is associated with an innate immune cells activation inside and around WM lesions. 18F-DPA-714 PET may provide a promising biomarker to identify patients at risk of severe clinical trajectory.




bi

In vivo instability of 177Lu-DOTATATE during peptide receptor radionuclide therapy

Peptide receptor radiotherapy using 177Lu-labeled somatostatin ligand analogs is a well-established treatment for neuroendocrine tumors (NET), with 177Lu-DOTATATE having acquired marketing authorization in Europe and the USA. The investigation of the pharmacokinetics of those radiopharmaceuticals in vivo in humans is crucial for personalized treatment management and understanding of treatment effects. It requires input data on the in vivo stability of the radiopharmaceuticals in blood and plasma. The work presented here is devoted to the investigation of in vivo stability of 177Lu-DOTATATE in humans affected by NET. Unexpectedly, fast metabolism of the radiopharmaceutical was observed, with fraction of intact 177Lu-DOTATATE in plasma decreasing rapidly to 23±5% (mean ± SD) at 24 h and 1.7±0.9% at 96 h after injection.




bi

PSMA PET/CT and standard plus PET/CT-Ultrasound fusion targeted prostate biopsy can diagnose clinically significant prostate cancer in men with previous negative biopsies

The purpose of this study was to investigate the feasibility and diagnostic efficacy of 68Ga-PSMA positron emission tomography/computed tomography (PET/CT) combined with PET-ultrasound image-guided biopsy in the diagnosis of prostate cancer. Methods: A total of 31 patients with previously negative prostate biopsy, but persistent elevated serum prostate specific antigen (PSA), were imaged with a 68Ga-labeled prostate-specific membrane antigen (PSMA) PET/CT ligand prior to undergoing repeat prostate biopsy. Based on the proposed PROMISE criteria, PSMA PET/CT results were interpreted as negative (miPSMA-ES 0-1) or positive (miPSMA-ES 2-3). All patients underwent standard template systematic biopsy with up to four additional PSMA PET-ultrasound fusion image-guided biopsy cores. The sensitivity, specificity, positive and negative predictive values, and accuracy of PSMA PET/CT were determined. In addition, the correlation between miPSMA-ES and detection rate of prostate cancer was also analyzed. Univariate logistic regression models were established using PSMA PET/CT semi-quantitative analysis parameters to predict the outcome of repeat prostate biopsy. Results: The median age of patients was 65 years (range 53-81), and the median PSA level was 18.0 ng/ml (range 5.48-49.77 ng/ml). Prostate cancer was detected in 15/31 patients (48.4%) and 12/31 patients (38.7%) had clinically significant disease. The sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of 68Ga-PSMA PET/CT in the diagnosis of clinically significant prostate cancer were 100.0%, 68.4%, 66.7%, 100.0% and 80.6%, respectively. The detection rate of prostate cancer increased with the increase of miPSMA-ES score. The detection rate of clinically significant prostate cancer in miPSMA-ES 0-1, 2 and 3 groups were 0%, 54.5% and 85.7% respectively. Semi-quantitative analysis of 68Ga-PSMA PET/CT images showed that predictive models based on maximum standardized uptake value (SUVmax), tumor-to-background normal prostate SUV (SUVT/BGp) and tumor-to-background normal liver SUV (SUVratio) could effectively predict clinically significant prostate cancer; area under the curves were 0.930, 0.877, and 0.956, respectively. Conclusion: This study preliminarily confirmed that 68Ga-PSMA PET/CT imaging combined with PET-ultrasound fusion image-guided prostate biopsy can effectively detect clinically significant prostate cancer. Prebiopsy 68Ga-PSMA PET/CT has predictive value for clinically significant cancer in the studied patient population.




bi

Intraoperative 68Gallium-PSMA Cerenkov Luminescence Imaging for surgical margins in radical prostatectomy - a feasibility study

Objective: To assess the feasibility and accuracy of Cerenkov Luminescence Imaging (CLI) for assessment of surgical margins intraoperatively during radical prostatectomy (RPE). Methods: A single centre feasibility study included 10 patients with high-risk primary prostate cancer (PC). 68Ga-PSMA PET/CT scans were performed followed by RPE and intraoperative CLI of the excised prostate. In addition to imaging the intact prostate, in the first two patients the prostate gland was incised and imaged with CLI to visualise the primary tumour. We compared the tumour margin status on CLI to postoperative histopathology. Measured CLI intensities were determined as tumour to background ratio (TBR). Results: Tumour cells were successfully detected on the incised prostate CLI images as confirmed by histopathology. 3 of 10 men had histopathological positive surgical margins (PSMs), and 2 of 3 PSMs were accurately detected on CLI. Overall, 25 (72%) out of 35 regions of interest (ROIs) proved to visualize a tumour signal according to standard histopathology. The median tumour radiance in these areas was 11301 photons/s/cm2/sr (range 3328 - 25428 photons/s/cm2/sr) and median TBR was 4.2 (range 2.1 – 11.6). False positive signals were seen mainly at the prostate base with PC cells overlaid by benign tissue. PSMA-immunohistochemistry (PSMA-IHC) revealed strong PSMA staining of benign gland tissue, which impacts measured activities. Conclusion: This feasibility showed that 68Ga-PSMA CLI is a new intraoperative imaging technique capable of imaging the entire specimen’s surface to detect PC tissue at the resection margin. Further optimisation of the CLI protocol, or the use of lower-energetic imaging tracers such as 18F-PSMA, are required to reduce false positives. A larger study will be performed to assess diagnostic performance.




bi

Diagnosis of Hyper-progressive Disease in Patients Treated with Checkpoint Inhibitors using 18F-FDG PET/CT




bi

Kinetic modeling and test-retest reproducibility of 11C-EKAP and 11C-FEKAP, novel agonist radiotracers for PET imaging of the kappa opioid receptor in humans

The kappa opioid receptor (KOR) is implicated in various neuropsychiatric disorders. We previously evaluated an agonist tracer, 11C-GR103545, for PET imaging of KOR in humans. Although 11C-GR103545 showed high brain uptake, good binding specificity, and selectivity to KOR, it displayed slow kinetics and relatively large test-retest variability (TRV) of distribution volume (VT) estimates (15%). Therefore we set out to develop two novel KOR agonist radiotracers, 11C-EKAP and 11C-FEKAP, and in nonhuman primates, both tracers exhibited faster kinetics and comparable binding parameters to 11C-GR103545. The aim of this study was to assess their kinetic and binding properties in humans. Methods: Six healthy subjects underwent 120-min test-retest PET scans with both 11C-EKAP and 11C-FEKAP. Metabolite-corrected arterial input functions were measured. Regional time-activity curves (TACs) were generated for 14 regions of interest. One- and two-tissue compartment models (1TC, 2TC) and the multilinear analysis-1 (MA1) method were applied to the regional TACs to calculate VT. Time-stability of VT values and test-retest reproducibility were evaluated. Levels of specific binding, as measured by the non-displaceable binding potential (BPND) for the three tracers (11C-EKAP, 11C-FEKAP and 11C-GR103545), were compared using a graphical method. Results: For both tracers, regional TACs were fitted well with the 2TC model and MA1 method (t*=20min), but not with the 1TC model. Given unreliably estimated parameters in several fits with the 2TC model and a good match between VT values from MA1 and 2TC, MA1 was chosen as the appropriate model for both tracers. Mean MA1 VT values were highest for 11C-GR103545, followed by 11C-EKAP, then 11C-FEKAP. Minimum scan time for stable VT measurement was 90 and 110min for 11C-EKAP and 11C-FEKAP, respectively, compared with 140min for 11C-GR103545. The mean absolute TRV in MA1 VT estimates was 7% and 18% for 11C-EKAP and 11C-FEKAP, respectively. BPND levels were similar for 11C-FEKAP and 11C-GR103545, but ~25% lower for 11C-EKAP. Conclusion: The two novel KOR agonist tracers showed faster tissue kinetics than 11C-GR103545. Even with slightly lower BPND, 11C-EKAP is judged to be a better tracer for imaging and quantification of KOR in humans, based on the shorter minimum scan time and excellent test-retest.




bi

Biokinetics of Radiolabeled Monoclonal Antibody BC8: Differences in Biodistribution and Dosimetry among Hematologic Malignancies.

We reviewed 111In-DOTA-anti-CD45 antibody (BC8) imaging and bone marrow biopsy measurements to ascertain biodistribution and biokinetics of the radiolabeled antibody and to investigate differences based on type of hematologic malignancy. Methods: Serial whole-body scintigraphic images (4 time-points) were obtained after infusion of the 111In-DOTA-BC8 (176-406 MBq) in 52 adult patients with hematologic malignancies (lymphoma, multiple myeloma, acute myeloid leukemia and myelodysplastic syndrome). Counts were obtained for the regions of interest for spleen, liver, kidneys, testicles (in males), and two marrow sites (acetabulum and sacrum) and correction for attenuation and background was made. Bone marrow biopsies were obtained 14-24 hours post-infusion and percent of administered activity was determined. Radiation absorbed doses were calculated. Results: Initial uptake in liver averaged 32% ± 8.4% (S.D.) of administered activity (52 patients), which cleared monoexponentially with biological half-time of 293 ± 157 hours (33 patients) or did not clear (19 patients). Initial uptake in spleen averaged 22% ± 12% and cleared with a biological half-time 271 ± 185 hours (36 patients) or longer (6 patients). Initial uptake in kidney averaged 2.4% ± 2.0% and cleared with a biological half-time of 243 ± 144 hours (27 patients) or longer (9 patients). Initial uptake in red marrow averaged 23% ± 11% and cleared with half-times of 215 ± 107 hours (43 patients) or longer (5 patients). Whole-body retention half-times averaged 198 ± 75 hours. Splenic uptake was higher in the AML/MDS group when compared to the lymphoma group (p ≤ 0.05) and to the multiple myeloma group (p ≤ 0.10). Liver represented the dose-limiting organ. For liver uptake, no significant differences were observed between the three malignancy groups. Average calculated radiation absorbed doses per unit administered activity for a therapy infusions of 90Y-DOTA-BC8 were for red marrow: 470 ± 260 cGy/MBq, liver 1100 ± 330 cGy/MBq, spleen 4120 ± 1950 cGy/MBq, total body 7520 ± 20 cGy/MBq, osteogenic cells 290 ± 200 cGy/MBq, and kidneys 240 ± 200 cGy/MBqR. Conclusion: 111In-DOTA-BC8 had long retention time in liver, spleen, kidneys, and red marrow, and the highest absorbed doses were calculated for spleen and liver. Few differences were observed by malignancy type. The exception was greater splenic uptake among leukemia/MDS group when compared to lymphoma and multiple myeloma groups.




bi

68Ga-PSMA guided bone biopsies for molecular diagnostics in metastatic prostate cancer patients

For individual treatment decisions in patients with metastatic prostate cancer (mPC), molecular diagnostics are increasingly used. Bone metastases are frequently the only source for obtaining metastatic tumor tissue. However, the success rate of computed tomography (CT)-guided bone biopsies for molecular analyses in mPC patients is only ~40%. Positron emission tomography (PET) using Gallium-68 prostate specific membrane antigen (68Ga-PSMA) is a promising tool to improve the harvest rate of bone biopsies for molecular analyses. Aim of this study was to determine the success rate of 68Ga-PSMA guided bone biopsies for molecular diagnostics in mPC patients. Methods: Within a prospective multicenter whole-genome sequencing trial (NCT01855477), 69 mPC patients underwent 68Ga-PSMA PET/CT prior to bone biopsy. Primary endpoint was success rate (tumor percentage ≥30%) of 68Ga-PSMA guided bone biopsies. At biopsy sites, 68Ga-PSMA uptake was quantified using rigid body image registration of 68Ga-PSMA PET/CT and interventional CT. Actionable somatic alterations were identified. Results: Success rate of 68Ga-PSMA guided biopsies for molecular analyses was 70%. At biopsy sites categorized as positive, inconclusive, or negative for 68Ga-PSMA uptake, 70%, 64%, and 36% of biopsies were tumor positive (≥30%), respectively (P = 0.0610). In tumor positive biopsies, 68Ga-PSMA uptake was significantly higher (P = 0.008), whereas radiodensity was significantly lower (P = 0.006). With an area under the curve of 0.84 and 0.70, both 68Ga-PSMA uptake (maximum standardized uptake value) and radiodensity (mean Hounsfield Units) were strong predictors for a positive biopsy. Actionable somatic alterations were detected in 73% of the sequenced biopsies. Conclusion: In patients with mPC, 68Ga-PSMA PET/CT improves the success rate of CT-guided bone biopsies for molecular analyses, thereby identifying actionable somatic alterations in more patients. Therefore, 68Ga-PSMA PET/CT may be considered for guidance of bone biopsies in both clinical practice and clinical trials.




bi

Moving towards multicenter therapeutic trials in ALS: feasibility of data pooling using different TSPO positron emission tomography (PET) radioligands.

Rationale: Neuroinflammation has been implicated in Amyotrophic Lateral Sclerosis (ALS) and can be visualized using translocator protein (TSPO) radioligands. To become a reliable pharmacodynamic biomarker for ALS multicenter trials, some challenges have to be overcome. We aimed to investigate whether multicenter data pooling of different TSPO tracers (11C-PBR28 and 18F-DPA714) is feasible, after validation of an established 11C-PBR28 PET pseudoreference analysis technique for 18F-DPA714. Methods: 7 ALS-Belgium (58.9±6.7 years,5M) and 8 HV-Belgium (52.1±15.2 years,3M); and 7 ALS-US (53.4±9.8 years,5M) and 7 HV-US (54.6±9.6 years,4M) from a previously published study (1) underwent dynamic 18F-DPA714 (Leuven, Belgium) or 11C-PBR28 (Boston, US) PET-MR scans. For 18F-DPA714, volume of distribution (VT) maps were compared to standardized uptake value ratios (SUVR)40-60 calculated using the pseudoreference regions (1)cerebellum, (2)occipital cortex, and (3)whole brain without ventricles (WB-ventricles). Also for 11C-PBR28, SUVR60-90 using WB-ventricles were calculated. Results: In line with previous studies, increased 18F-DPA714 uptake (17.0±5.6%) in primary motor cortices was observed in ALS, as measured by both VT and SUVR40-60 approaches. Highest sensitivity was found for SUVRWB-ventricles (average cluster 21.6±0.1%). 18F-DPA714 VT ratio and SUVR40-60 results were highly correlated (r>0.8, p<0.001). A similar pattern of increased uptake (average cluster 20.5±0.5%) in primary motor cortices was observed in ALS with 11C-PBR28 using the SUVRWB-ventricles. Analysis of the 18F-DPA714 and 11C-PBR28 data together, resulted in a more extensive pattern of significant increased glial activation in the bilateral primary motor cortices. Conclusion: The same pseudoreference region analysis technique for 11C-PBR28 PET imaging can be extended towards 18F-DPA714 PET. Therefore, in ALS, standardized analysis across these two tracers enables pooling of TSPO PET data across multiple centers and increase power of TSPO as biomarker for future therapeutic trials.




bi

Biodistribution of a CD3/EpCAM bispecific T-cell engager is driven by the CD3 arm

BiTE® (Bispecific T-cell engager) molecules are designed to engage and activate cytotoxic T-cells to kill tumor cells. Little is known about their biodistribution in immunocompetent settings. To explore their pharmacokinetics and the role of the immune cells, BiTE molecules were radiolabeled with positron emission tomography (PET) isotope zirconium-89 (89Zr) and studied in immunocompetent and immunodeficient mouse models. PET images and ex-vivo biodistribution in immunocompetent mice with 89Zr-muS110, targeting mouse CD3 (Kd = 2.9 nM) and mouse EpCAM (Kd = 21 nM), and 89Zr-hyS110, targeting only mouse CD3 (Kd = 2.9 nM), showed uptake in tumor, spleen and other lymphoid organs, while the human-specific control BiTE 89Zr-AMG 110 showed similar tumor uptake but lacked spleen uptake. 89Zr-muS110 spleen uptake was lower in immunodeficient than in immunocompetent mice. After repeated administration of non-radiolabeled muS110 to immunocompetent mice 89Zr-muS110 uptake in spleen, and other lymphoid tissues, decreased and was comparable to uptake in immunodeficient mice, indicating saturation of CD3 binding sites. Autoradiography and immunohistochemistry demonstrated colocalization of 89Zr-muS110 and 89Zr-hyS110 with CD3-positive T-cells in the tumor and spleen but not with EpCAM expression. Also, uptake in the duodenum correlated with a high incidence of T-cells. This study shows that in immunocompetent mice the BiTE 89Zr-muS110 distribution is predominantly based on its high affinity CD3 binding arm. Significance: 89Zr-muS110 biodistribution is mainly dependent on the T-cell targeting arm with limited contribution of its second arm, targeting EpCAM. These findings highlight the need for extensive biodistribution studies of novel bispecific constructs as results might have implications for their respective drug development and clinical translation.




bi

Targeting Fibroblast Activation Protein:Radiosynthesis and Preclinical Evaluation of an 18F-labeled FAP Inhibitor

Fibroblast activation protein (FAP) has emerged as an interesting molecular target used in the imaging and therapy of various types of cancers. Gallium-68–labeled chelator-linked FAP inhibitors (FAPIs) have been successfully applied to positron emission tomography (PET) imaging of various tumor types. To broaden the spectrum of applicable PET tracers for extended imaging studies of FAP-dependent diseases, we herein report the radiosynthesis and preclinical evaluation of an 18F–labeled glycosylated FAP inhibitor ([18F]FGlc-FAPI). Methods: An alkyne-bearing precursor was synthesized and subjected to click chemistry–based radiosynthesis of [18F]FGlc-FAPI by two-step 18F-fluoroglycosylation. FAP-expressing HT1080hFAP cells were used to study competitive binding to FAP, cellular uptake, internalization, and efflux of [18F]FGlc-FAPI in vitro. Biodistribution studies and in vivo small animal PET studies of [18F]FGlc-FAPI compared to [68Ga]Ga-FAPI-04 were conducted in nude mice bearing HT1080hFAP tumors or U87MG xenografts. Results: [18F]FGlc-FAPI was synthesized with a 15% radioactivity yield and a high radiochemical purity of >99%. In HT1080hFAP cells, [18F]FGlc-FAPI showed specific uptake, a high internalized fraction, and low cellular efflux. Compared to FAPI-04 (IC50 = 32 nM), the glycoconjugate, FGlc-FAPI (IC50 = 167 nM), showed slightly lower affinity for FAP in vitro, while plasma protein binding was higher for [18F]FGlc-FAPI. Biodistribution studies revealed significant hepatobiliary excretion of [18F]FGlc-FAPI; however, small animal PET studies in HT1080hFAP xenografts showed higher specific tumor uptake of [18F]FGlc-FAPI (4.5 % injected dose per gram of tissue [ID/g]) compared to [68Ga]Ga-FAPI-04 (2 %ID/g). In U87MG tumor–bearing mice, both tracers showed similar tumor uptake, but [18F]FGlc-FAPI showed a higher tumor retention. Interestingly, [18F]FGlc-FAPI demonstrated high specific uptake in bone structures and joints. Conclusion: [18F]FGlc-FAPI is an interesting candidate for translation to the clinic, taking advantage of the longer half-life and physical imaging properties of F-18. The availability of [18F]FGlc-FAPI may allow extended PET studies of FAP-related diseases, such as cancer, but also arthritis, heart diseases, or pulmonary fibrosis.




bi

Semi-automatically quantified tumor volume using Ga-68-PSMA-11-PET as biomarker for survival in patients with advanced prostate cancer

Prostate specific membrane antigen (PSMA) targeting Positron Emission Tomography (PET) imaging is becoming the reference standard for prostate cancer (PC) staging, especially in advanced disease. Yet, the implications of PSMA-PET derived whole-body tumor volume for overall survival are poorly elucidated to date. This might be due to the fact that (semi-) automated quantification of whole-body tumor volume as PSMA-PET biomarker is an unmet clinical challenge. Therefore, a novel semi-automated software is proposed and evaluated by the present study, which enables the semi-automated quantification of PSMA-PET biomarkers such as whole-body tumor volume. Methods: The proposed quantification is implemented as a research prototype (MI Whole Body Analysis Suite, v1.0, Siemens Medical Solutions USA, Inc., Knoxville, TN). PSMA accumulating foci were automatically segmented by a percental threshold (50% of local SUVmax). Neural networks were trained to segment organs in PET-CT acquisitions (training CTs: 8,632, validation CTs: 53). Thereby, PSMA foci within organs of physiologic PSMA uptake were semi-automatically excluded from the analysis. Pretherapeutic PSMA-PET-CTs of 40 consecutive patients treated with 177Lu-PSMA-617 therapy were evaluated in this analysis. The volumetric whole-body tumor volume (PSMATV50), SUVmax, SUVmean and other whole-body imaging biomarkers were calculated for each patient. Semi-automatically derived results were compared with manual readings in a sub-cohort (by one nuclear medicine physician using syngo.MM Oncology software, Siemens Healthineers, Knoxville, TN). Additionally, an inter-observer evaluation of the semi-automated approach was performed in a sub-cohort (by two nuclear medicine physicians). Results: Manually and semi automatically derived PSMA metrics were highly correlated (PSMATV50: R2=1.000; p<0.001; SUVmax: R2=0.988; p<0.001). The inter-observer agreement of the semi-automated workflow was also high (PSMATV50: R2=1.000; p<0.001; ICC=1.000; SUVmax: R2=0.988; p<0.001; ICC=0.997). PSMATV50 [ml] was a significant predictor of overall survival (HR: 1.004; 95%CI: 1.001-1.006, P = 0.002) and remained so in a multivariate regression including other biomarkers (HR: 1.004; 95%CI: 1.001-1.006 P = 0.004). Conclusion: PSMATV50 is a promising PSMA-PET biomarker that is reproducible and easily quantified by the proposed semi-automated software. Moreover, PSMATV50 is a significant predictor of overall survival in patients with advanced prostate cancer that receive 177Lu-PSMA-617 therapy.