cell Suppressive effects of anagrelide on cell cycle progression and the maturation of megakaryocyte progenitor cell lines in human induced pluripotent stem cells By www.haematologica.org Published On :: 2020-05-01T00:05:42-07:00 Full Article
cell Erratum. WASH Regulates Glucose Homeostasis by Facilitating Glut2 Receptor Recycling in Pancreatic {beta}-Cells. Diabetes 2019;68:377-386 By diabetes.diabetesjournals.org Published On :: 2020-04-20T12:00:34-07:00 Full Article
cell A Phenotypic Screen Identifies Calcium Overload as a Key Mechanism of {beta}-Cell Glucolipotoxicity By diabetes.diabetesjournals.org Published On :: 2020-04-20T12:00:34-07:00 Type 2 diabetes (T2D) is caused by loss of pancreatic β-cell mass and failure of the remaining β-cells to deliver sufficient insulin to meet demand. β-Cell glucolipotoxicity (GLT), which refers to combined, deleterious effects of elevated glucose and fatty acid levels on β-cell function and survival, contributes to T2D-associated β-cell failure. Drugs and mechanisms that protect β-cells from GLT stress could potentially improve metabolic control in patients with T2D. In a phenotypic screen seeking low-molecular-weight compounds that protected β-cells from GLT, we identified compound A that selectively blocked GLT-induced apoptosis in rat insulinoma cells. Compound A and its optimized analogs also improved viability and function in primary rat and human islets under GLT. We discovered that compound A analogs decreased GLT-induced cytosolic calcium influx in islet cells, and all measured β-cell–protective effects correlated with this activity. Further studies revealed that the active compound from this series largely reversed GLT-induced global transcriptional changes. Our results suggest that taming cytosolic calcium overload in pancreatic islets can improve β-cell survival and function under GLT stress and thus could be an effective strategy for T2D treatment. Full Article
cell Microencapsulated G3C Hybridoma Cell Graft Delays the Onset of Spontaneous Diabetes in NOD Mice by an Expansion of Gitr+ Treg Cells By diabetes.diabetesjournals.org Published On :: 2020-04-20T12:00:34-07:00 As an alternative to lifelong insulin supplementation, potentiation of immune tolerance in patients with type 1 diabetes could prevent the autoimmune destruction of pancreatic islet β-cells. This study was aimed to assess whether the G3c monoclonal antibody (mAb), which triggers the glucocorticoid-induced TNFR-related (Gitr) costimulatory receptor, promotes the expansion of regulatory T cells (Tregs) in SV129 (wild-type) and diabetic-prone NOD mice. The delivery of the G3c mAb via G3C hybridoma cells enveloped in alginate-based microcapsules (G3C/cps) for 3 weeks induced Foxp3+ Treg-cell expansion in the spleen of wild-type mice but not in Gitr–/– mice. G3C/cps also induced the expansion of nonconventional Cd4+Cd25–/lowFoxp3lowGitrint/high (GITR single-positive [sp]) Tregs. Both Cd4+Cd25+GitrhighFoxp3+ and GITRsp Tregs (including also antigen-specific cells) were expanded in the spleen and pancreas of G3C/cps-treated NOD mice, and the number of intact islets was higher in G3C/cps-treated than in empty cps-treated and untreated animals. Consequently, all but two G3C/cps-treated mice did not develop diabetes and all but one survived until the end of the 24-week study. In conclusion, long-term Gitr triggering induces Treg expansion, thereby delaying/preventing diabetes development in NOD mice. This therapeutic approach may have promising clinical potential for the treatment of inflammatory and autoimmune diseases. Full Article
cell HRD1, an Important Player in Pancreatic {beta}-Cell Failure and Therapeutic Target for Type 2 Diabetic Mice By diabetes.diabetesjournals.org Published On :: 2020-04-20T12:00:34-07:00 Inadequate insulin secretion in response to glucose is an important factor for β-cell failure in type 2 diabetes (T2D). Although HMG-CoA reductase degradation 1 (HRD1), a subunit of the endoplasmic reticulum–associated degradation complex, plays a pivotal role in β-cell function, HRD1 elevation in a diabetic setting contributes to β-cell dysfunction. We report in this study the excessive HRD1 expression in islets from humans with T2D and T2D mice. Functional studies reveal that β-cell–specific HRD1 overexpression triggers impaired insulin secretion that will ultimately lead to severe hyperglycemia; by contrast, HRD1 knockdown improves glucose control and response in diabetic models. Proteomic analysis results reveal a large HRD1 interactome, which includes v-maf musculoaponeurotic fibrosarcoma oncogene homolog A (MafA), a master regulator of genes implicated in the maintenance of β-cell function. Furthermore, mechanistic assay results indicate that HRD1 is a novel E3 ubiquitin ligase that targets MafA for ubiquitination and degradation in diabetic β-cells, resulting in cytoplasmic accumulation of MafA and in the reduction of its biological function in the nucleus. Our results not only reveal the pathological importance of excessive HRD1 in β-cell dysfunction but also establish the therapeutic importance of targeting HRD1 in order to prevent MafA loss and suppress the development of T2D. Full Article
cell Vitamin D Receptor Overexpression in {beta}-Cells Ameliorates Diabetes in Mice By diabetes.diabetesjournals.org Published On :: 2020-04-20T12:00:34-07:00 Vitamin D deficiency has been associated with increased incidence of diabetes, both in humans and in animal models. In addition, an association between vitamin D receptor (VDR) gene polymorphisms and diabetes has also been described. However, the involvement of VDR in the development of diabetes, specifically in pancreatic β-cells, has not been elucidated yet. Here, we aimed to study the role of VDR in β-cells in the pathophysiology of diabetes. Our results indicate that Vdr expression was modulated by glucose in healthy islets and decreased in islets from both type 1 diabetes and type 2 diabetes mouse models. In addition, transgenic mice overexpressing VDR in β-cells were protected against streptozotocin-induced diabetes and presented a preserved β-cell mass and a reduction in islet inflammation. Altogether, these results suggest that sustained VDR levels in β-cells may preserve β-cell mass and β-cell function and protect against diabetes. Full Article
cell "Take Me To Your Leader": An Electrophysiological Appraisal of the Role of Hub Cells in Pancreatic Islets By diabetes.diabetesjournals.org Published On :: 2020-04-20T12:00:34-07:00 The coordinated electrical activity of β-cells within the pancreatic islet drives oscillatory insulin secretion. A recent hypothesis postulates that specially equipped "hub" or "leader" cells within the β-cell network drive islet oscillations and that electrically silencing or optically ablating these cells suppresses coordinated electrical activity (and thus insulin secretion) in the rest of the islet. In this Perspective, we discuss this hypothesis in relation to established principles of electrophysiological theory. We conclude that whereas electrical coupling between β-cells is sufficient for the propagation of excitation across the islet, there is no obvious electrophysiological mechanism that explains how hyperpolarizing a hub cell results in widespread inhibition of islet electrical activity and disruption of their coordination. Thus, intraislet diffusible factors should perhaps be considered as an alternate mechanism. Full Article
cell MicroRNA Networks in Pancreatic Islet Cells: Normal Function and Type 2 Diabetes By diabetes.diabetesjournals.org Published On :: 2020-04-20T12:00:34-07:00 Impaired insulin secretion from the pancreatic β-cells is central in the pathogenesis of type 2 diabetes (T2D), and microRNAs (miRNAs) are fundamental regulatory factors in this process. Differential expression of miRNAs contributes to β-cell adaptation to compensate for increased insulin resistance, but deregulation of miRNA expression can also directly cause β-cell impairment during the development of T2D. miRNAs are small noncoding RNAs that posttranscriptionally reduce gene expression through translational inhibition or mRNA destabilization. The nature of miRNA targeting implies the presence of complex and large miRNA–mRNA regulatory networks in every cell, including the insulin-secreting β-cell. Here we exemplify one such network using our own data on differential miRNA expression in the islets of T2D Goto-Kakizaki rat model. Several biological processes are influenced by multiple miRNAs in the β-cell, but so far most studies have focused on dissecting the mechanism of action of individual miRNAs. In this Perspective we present key islet miRNA families involved in T2D pathogenesis including miR-200, miR-7, miR-184, miR-212/miR-132, and miR-130a/b/miR-152. Finally, we highlight four challenges and opportunities within islet miRNA research, ending with a discussion on how miRNAs can be utilized as therapeutic targets contributing to personalized T2D treatment strategies. Full Article
cell GITR Agonism Triggers Antitumor Immune Responses through IL21-Expressing Follicular Helper T Cells By cancerimmunolres.aacrjournals.org Published On :: 2020-05-01T00:05:25-07:00 Although treatment with the glucocorticoid-induced tumor necrosis factor receptor–related protein (GITR) agonistic antibody (DTA-1) has shown antitumor activity in various tumor models, the underlying mechanism is not fully understood. Here, we demonstrate that interleukin (IL)-21–producing follicular helper T (Tfh) cells play a crucial role in DTA-1–induced tumor inhibition. The administration of DTA-1 increased IL21 expression by Tfh cells in an antigen-specific manner, and this activation led to enhanced antitumor cytotoxic T lymphocyte (CTL) activity. Mice treated with an antibody that neutralizes the IL21 receptor exhibited decreased antitumor activity when treated with DTA-1. Tumor growth inhibition by DTA-1 was abrogated in Bcl6fl/flCd4Cre mice, which are genetically deficient in Tfh cells. IL4 was required for optimal induction of IL21-expressing Tfh cells by GITR costimulation, and c-Maf mediated this pathway. Thus, our findings identify GITR costimulation as an inducer of IL21-expressing Tfh cells and provide a mechanism for the antitumor activity of GITR agonism. Full Article
cell Enhanced Immunogenicity of Mitochondrial-Localized Proteins in Cancer Cells By cancerimmunolres.aacrjournals.org Published On :: 2020-05-01T00:05:25-07:00 Epitopes derived from mutated cancer proteins elicit strong antitumor T-cell responses that correlate with clinical efficacy in a proportion of patients. However, it remains unclear whether the subcellular localization of mutated proteins influences the efficiency of T-cell priming. To address this question, we compared the immunogenicity of NY-ESO-1 and OVA localized either in the cytosol or in mitochondria. We showed that tumors expressing mitochondrial-localized NY-ESO-1 and OVA proteins elicit significantdly higher frequencies of antigen-specific CD8+ T cells in vivo. We also demonstrated that this stronger immune response is dependent on the mitochondrial location of the antigenic proteins, which contributes to their higher steady-state amount, compared with cytosolic localized proteins. Consistent with these findings, we showed that injection of mitochondria purified from B16 melanoma cells can protect mice from a challenge with B16 cells, but not with irrelevant tumors. Finally, we extended these findings to cancer patients by demonstrating the presence of T-cell responses specific for mutated mitochondrial-localized proteins. These findings highlight the utility of prioritizing epitopes derived from mitochondrial-localized mutated proteins as targets for cancer vaccination strategies. Full Article
cell Identification of the Targets of T-cell Receptor Therapeutic Agents and Cells by Use of a High-Throughput Genetic Platform By cancerimmunolres.aacrjournals.org Published On :: 2020-05-01T00:05:25-07:00 T-cell receptor (TCR)–based therapeutic cells and agents have emerged as a new class of effective cancer therapies. These therapies work on cells that express intracellular cancer-associated proteins by targeting peptides displayed on MHC receptors. However, cross-reactivities of these agents to off-target cells and tissues have resulted in serious, sometimes fatal, adverse events. We have developed a high-throughput genetic platform (termed "PresentER") that encodes MHC-I peptide minigenes for functional immunologic assays and determines the reactivities of TCR-like therapeutic agents against large libraries of MHC-I ligands. In this article, we demonstrated that PresentER could be used to identify the on-and-off targets of T cells and TCR-mimic (TCRm) antibodies using in vitro coculture assays or binding assays. We found dozens of MHC-I ligands that were cross-reactive with two TCRm antibodies and two native TCRs and that were not easily predictable by other methods. Full Article
cell Prevalent and Diverse Intratumoral Oncoprotein-Specific CD8+ T Cells within Polyomavirus-Driven Merkel Cell Carcinomas By cancerimmunolres.aacrjournals.org Published On :: 2020-05-01T00:05:25-07:00 Merkel cell carcinoma (MCC) is often caused by persistent expression of Merkel cell polyomavirus (MCPyV) T-antigen (T-Ag). These non-self proteins comprise about 400 amino acids (AA). Clinical responses to immune checkpoint inhibitors, seen in about half of patients, may relate to T-Ag–specific T cells. Strategies to increase CD8+ T-cell number, breadth, or function could augment checkpoint inhibition, but vaccines to augment immunity must avoid delivery of oncogenic T-antigen domains. We probed MCC tumor-infiltrating lymphocytes (TIL) with an artificial antigen-presenting cell (aAPC) system and confirmed T-Ag recognition with synthetic peptides, HLA-peptide tetramers, and dendritic cells (DC). TILs from 9 of 12 (75%) subjects contained CD8+ T cells recognizing 1–8 MCPyV epitopes per person. Analysis of 16 MCPyV CD8+ TIL epitopes and prior TIL data indicated that 97% of patients with MCPyV+ MCC had HLA alleles with the genetic potential that restrict CD8+ T-cell responses to MCPyV T-Ag. The LT AA 70–110 region was epitope rich, whereas the oncogenic domains of T-Ag were not commonly recognized. Specific recognition of T-Ag–expressing DCs was documented. Recovery of MCPyV oncoprotein–specific CD8+ TILs from most tumors indicated that antigen indifference was unlikely to be a major cause of checkpoint inhibition failure. The myriad of epitopes restricted by diverse HLA alleles indicates that vaccination can be a rational component of immunotherapy if tumor immune suppression can be overcome, and the oncogenic regions of T-Ag can be modified without impacting immunogenicity. Full Article
cell Single-Cell Immune Competency Signatures Associate with Survival in Phase II GVAX and CRS-207 Randomized Studies in Patients with Metastatic Pancreatic Cancer By cancerimmunolres.aacrjournals.org Published On :: 2020-05-01T00:05:25-07:00 The identification of biomarkers for patient stratification is fundamental to precision medicine efforts in oncology. Here, we identified two baseline, circulating immune cell subsets associated with overall survival in patients with metastatic pancreatic cancer who were enrolled in two phase II randomized studies of GVAX pancreas and CRS-207 immunotherapy. Single-cell mass cytometry was used to simultaneously measure 38 cell surface or intracellular markers in peripheral blood mononuclear cells obtained from a phase IIa patient subcohort (N = 38). CITRUS, an algorithm for identification of stratifying subpopulations in multidimensional cytometry datasets, was used to identify single-cell signatures associated with clinical outcome. Patients with a higher abundance of CD8+CD45RO–CCR7–CD57+ cells and a lower abundance of CD14+CD33+CD85j+ cells had improved overall survival [median overall survival, range (days) 271, 43–1,247] compared with patients with a lower abundance of CD8+CD45RO–CCR7–CD57+ cells and higher abundance of CD14+CD33+CD85j+ cells (77, 24–1,247 days; P = 0.0442). The results from this prospective–retrospective biomarker analysis were validated by flow cytometry in 200 patients with pancreatic cancer enrolled in a phase IIb study (P = 0.0047). The identified immune correlates provide potential prognostic or predictive signatures that could be employed for patient stratification. Full Article
cell Remodeling Translation Primes CD8+ T-cell Antitumor Immunity By cancerimmunolres.aacrjournals.org Published On :: 2020-05-01T00:05:25-07:00 The requisites for protein translation in T cells are poorly understood and how translation shapes the antitumor efficacy of T cells is unknown. Here we demonstrated that IL15-conditioned T cells were primed by the metabolic energy sensor AMP-activated protein kinase to undergo diminished translation relative to effector T cells. However, we showed that IL15-conditioned T cells exhibited a remarkable capacity to enhance their protein translation in tumors, which effector T cells were unable to duplicate. Studying the modulation of translation for applications in cancer immunotherapy revealed that direct ex vivo pharmacologic inhibition of translation elongation primed robust T-cell antitumor immunity. Our work elucidates that altering protein translation in CD8+ T cells can shape their antitumor capability. Full Article
cell Immune Cell Profiling and Risk Stratification: Cast a Wider Net By www.basictranslational.onlinejacc.org Published On :: 2020-04-27T11:00:20-07:00 Full Article
cell Predominance of Central Memory T Cells with High T-Cell Receptor Repertoire Diversity is Associated with Response to PD-1/PD-L1 Inhibition in Merkel Cell Carcinoma By clincancerres.aacrjournals.org Published On :: 2020-05-01T00:05:36-07:00 Purpose: Merkel cell carcinoma (MCC) is an aggressive neuroendocrine skin cancer, which can be effectively controlled by immunotherapy with PD-1/PD-L1 checkpoint inhibitors. However, a significant proportion of patients are characterized by primary therapy resistance. Predictive biomarkers for response to immunotherapy are lacking. Experimental Design: We applied Bayesian inference analyses on 41 patients with MCC testing various clinical and biomolecular characteristics to predict treatment response. Further, we performed a comprehensive analysis of tumor tissue–based immunologic parameters including multiplexed immunofluorescence for T-cell activation and differentiation markers, expression of immune-related genes and T-cell receptor (TCR) repertoire analyses in 18 patients, seven objective responders, and 11 nonresponders. Results: Bayesian inference analyses demonstrated that among currently discussed biomarkers only unimpaired overall performance status and absence of immunosuppression were associated with response to therapy. However, in responders, a predominance of central memory T cells and expression of genes associated with lymphocyte attraction and activation was evident. In addition, TCR repertoire usage of tumor-infiltrating lymphocytes (TILs) demonstrated low T-cell clonality, but high TCR diversity in responding patients. In nonresponders, terminally differentiated effector T cells with a constrained TCR repertoire prevailed. Sequential analyses of tumor tissue obtained during immunotherapy revealed a more pronounced and diverse clonal expansion of TILs in responders indicating an impaired proliferative capacity among TILs of nonresponders upon checkpoint blockade. Conclusions: Our explorative study identified new tumor tissue–based molecular characteristics associated with response to anti–PD-1/PD-L1 therapy in MCC. These observations warrant further investigations in larger patient cohorts to confirm their potential value as predictive markers. Full Article
cell ONO-7475, a Novel AXL Inhibitor, Suppresses the Adaptive Resistance to Initial EGFR-TKI Treatment in EGFR-Mutated Non-Small Cell Lung Cancer By clincancerres.aacrjournals.org Published On :: 2020-05-01T00:05:36-07:00 Purpose: Currently, an optimal therapeutic strategy comprising molecularly targeted agents for treating EGFR-mutated non–small cell lung cancer (NSCLC) patients with acquired resistance to osimertinib is not available. Therefore, the initial therapeutic intervention is crucial for the prolonged survival of these patients. The activation of anexelekto (AXL) signaling is known to be associated with intrinsic and acquired resistance to EGFR tyrosine kinase inhibitors (EGFR-TKIs). In this study, we investigated the best therapeutic strategy to combat AXL-induced tolerance to EGFR-TKIs using the novel AXL inhibitor ONO-7475. Experimental Design: We examined the efficacy of ONO-7475 in combination with EGFR-TKIs in EGFR-mutated NSCLC cells using in vitro and in vivo experiments. We investigated the correlation between AXL expression in tumors and clinical outcomes with osimertinib for EGFR-mutated NSCLC patients with acquired resistance to initial EGFR-TKIs. Results: ONO-7475 sensitized AXL-overexpressing EGFR-mutant NSCLC cells to the EGFR-TKIs osimertinib and dacomitinib. In addition, ONO-7475 suppressed the emergence and maintenance of EGFR-TKI–tolerant cells. In the cell line–derived xenograft models of AXL-overexpressing EGFR-mutated lung cancer treated with osimertinib, initial combination therapy of ONO-7475 and osimertinib markedly regressed tumors and delayed tumor regrowth compared with osimertinib alone or the combination after acquired resistance to osimertinib. AXL expression in EGFR-TKI refractory tumors did not correlate with the sensitivity of osimertinib. Conclusions: These results demonstrate that ONO-7475 suppresses the emergence and maintenance of tolerant cells to the initial EGFR-TKIs, osimertinib or dacomitinib, in AXL-overexpressing EGFR-mutated NSCLC cells, suggesting that ONO-7475 and osimertinib is a highly potent combination for initial treatment. Full Article
cell A Novel GUCY2C-CD3 T-Cell Engaging Bispecific Construct (PF-07062119) for the Treatment of Gastrointestinal Cancers By clincancerres.aacrjournals.org Published On :: 2020-05-01T00:05:36-07:00 Purpose: Gastrointestinal cancers remain areas of high unmet need despite advances in targeted and immunotherapies. Here, we demonstrate potent, tumor-selective efficacy with PF-07062119, a T-cell engaging CD3 bispecific targeting tumors expressing Guanylyl Cyclase C (GUCY2C), which is expressed widely across colorectal cancer and other gastrointestinal malignancies. In addition, to address immune evasion mechanisms, we explore combinations with immune checkpoint blockade agents and with antiangiogenesis therapy. Experimental Design: PF-07062119 activity was evaluated in vitro in multiple tumor cell lines, and in vivo in established subcutaneous and orthotopic human colorectal cancer xenograft tumors with adoptive transfer of human T cells. Efficacy was also evaluated in mouse syngeneic tumors using human CD3 transgenic mice. IHC and mass cytometry were performed to demonstrate drug biodistribution, recruitment of activated T cells, and to identify markers of immune evasion. Combination studies were performed with anti–PD-1/PD-L1 and anti-VEGF antibodies. Toxicity and pharmacokinetic studies were done in cynomolgus macaque. Results: We demonstrate that GUCY2C-positive tumors can be targeted with an anti-GUCY2C/anti-CD3 bispecific, with selective drug biodistribution to tumors. PF-07062119 showed potent T-cell–mediated in vitro activity and in vivo efficacy in multiple colorectal cancer human xenograft tumor models, including KRAS- and BRAF-mutant tumors, as well as in the immunocompetent mouse syngeneic tumor model. PF-07062119 activity was further enhanced when combined with anti–PD-1/PD-L1 treatment or in combination with antiangiogenic therapy. Toxicity studies in cynomolgus indicated a monitorable and manageable toxicity profile. Conclusions: These data highlight the potential for PF-07062119 to demonstrate efficacy and improve patient outcomes in colorectal cancer and other gastrointestinal malignancies. Full Article
cell Identification of Non-Small Cell Lung Cancer Sensitive to Systemic Cancer Therapies Using Radiomics By clincancerres.aacrjournals.org Published On :: 2020-05-01T00:05:36-07:00 Purpose: Using standard-of-care CT images obtained from patients with a diagnosis of non–small cell lung cancer (NSCLC), we defined radiomics signatures predicting the sensitivity of tumors to nivolumab, docetaxel, and gefitinib. Experimental Design: Data were collected prospectively and analyzed retrospectively across multicenter clinical trials [nivolumab, n = 92, CheckMate017 (NCT01642004), CheckMate063 (NCT01721759); docetaxel, n = 50, CheckMate017; gefitinib, n = 46, (NCT00588445)]. Patients were randomized to training or validation cohorts using either a 4:1 ratio (nivolumab: 72T:20V) or a 2:1 ratio (docetaxel: 32T:18V; gefitinib: 31T:15V) to ensure an adequate sample size in the validation set. Radiomics signatures were derived from quantitative analysis of early tumor changes from baseline to first on-treatment assessment. For each patient, 1,160 radiomics features were extracted from the largest measurable lung lesion. Tumors were classified as treatment sensitive or insensitive; reference standard was median progression-free survival (NCT01642004, NCT01721759) or surgery (NCT00588445). Machine learning was implemented to select up to four features to develop a radiomics signature in the training datasets and applied to each patient in the validation datasets to classify treatment sensitivity. Results: The radiomics signatures predicted treatment sensitivity in the validation dataset of each study group with AUC (95 confidence interval): nivolumab, 0.77 (0.55–1.00); docetaxel, 0.67 (0.37–0.96); and gefitinib, 0.82 (0.53–0.97). Using serial radiographic measurements, the magnitude of exponential increase in signature features deciphering tumor volume, invasion of tumor boundaries, or tumor spatial heterogeneity was associated with shorter overall survival. Conclusions: Radiomics signatures predicted tumor sensitivity to treatment in patients with NSCLC, offering an approach that could enhance clinical decision-making to continue systemic therapies and forecast overall survival. Full Article
cell In Vitro and Intracellular Activities of Omadacycline against Legionella pneumophila [Susceptibility] By aac.asm.org Published On :: 2020-04-21T08:01:09-07:00 Omadacycline is an aminomethylcycline antibiotic with in vitro activity against pathogens causing community-acquired bacterial pneumonia (CABP). This study investigated the activity of omadacycline against Legionella pneumophila strains isolated between 1995 and 2014 from nosocomial or community-acquired respiratory infections. Omadacycline exhibited extracellular activity similar to comparator antibiotics; intracellular penetrance was found by day 3 of omadacycline exposure. These results support the utility of omadacycline as an effective antibiotic for the treatment of CABP caused by L. pneumophila. Full Article
cell Whole-Cell Phenotypic Screening of Medicines for Malaria Venture Pathogen Box Identifies Specific Inhibitors of Plasmodium falciparum Late-Stage Development and Egress [Experimental Therapeutics] By aac.asm.org Published On :: 2020-04-21T08:01:09-07:00 We report a systematic, cellular phenotype-based antimalarial screening of the Medicines for Malaria Venture Pathogen Box collection, which facilitated the identification of specific blockers of late-stage intraerythrocytic development of Plasmodium falciparum. First, from standard growth inhibition assays, we identified 173 molecules with antimalarial activity (50% effective concentration [EC50] ≤ 10 μM), which included 62 additional molecules over previously known antimalarial candidates from the Pathogen Box. We identified 90 molecules with EC50 of ≤1 μM, which had significant effect on the ring-trophozoite transition, while 9 molecules inhibited the trophozoite-schizont transition and 21 molecules inhibited the schizont-ring transition (with ≥50% parasites failing to proceed to the next stage) at 1 μM. We therefore rescreened all 173 molecules and validated hits in microscopy to prioritize 12 hits as selective blockers of the schizont-ring transition. Seven of these molecules inhibited the calcium ionophore-induced egress of Toxoplasma gondii, a related apicomplexan parasite, suggesting that the inhibitors may be acting via a conserved mechanism which could be further exploited for target identification studies. We demonstrate that two molecules, MMV020670 and MMV026356, identified as schizont inhibitors in our screens, induce the fragmentation of DNA in merozoites, thereby impairing their ability to egress and invade. Further mechanistic studies would facilitate the therapeutic exploitation of these molecules as broadly active inhibitors targeting late-stage development and egress of apicomplexan parasites relevant to human health. Full Article
cell Correction: Senescence Sensitivity of Breast Cancer Cells Is Defined by Positive Feedback Loop between CIP2A and E2F1 [Correction] By cancerdiscovery.aacrjournals.org Published On :: 2020-05-01T00:05:26-07:00 Full Article
cell Tuning the Antigen Density Requirement for CAR T-cell Activity [Research Articles] By cancerdiscovery.aacrjournals.org Published On :: 2020-05-01T00:05:26-07:00 Insufficient reactivity against cells with low antigen density has emerged as an important cause of chimeric antigen receptor (CAR) T-cell resistance. Little is known about factors that modulate the threshold for antigen recognition. We demonstrate that CD19 CAR activity is dependent upon antigen density and that the CAR construct in axicabtagene ciloleucel (CD19-CD28) outperforms that in tisagenlecleucel (CD19-4-1BB) against antigen-low tumors. Enhancing signal strength by including additional immunoreceptor tyrosine-based activation motifs (ITAM) in the CAR enables recognition of low-antigen-density cells, whereas ITAM deletions blunt signal and increase the antigen density threshold. Furthermore, replacement of the CD8 hinge-transmembrane (H/T) region of a 4-1BB CAR with a CD28-H/T lowers the threshold for CAR reactivity despite identical signaling molecules. CARs incorporating a CD28-H/T demonstrate a more stable and efficient immunologic synapse. Precise design of CARs can tune the threshold for antigen recognition and endow 4-1BB-CARs with enhanced capacity to recognize antigen-low targets while retaining a superior capacity for persistence. Significance: Optimal CAR T-cell activity is dependent on antigen density, which is variable in many cancers, including lymphoma and solid tumors. CD28-CARs outperform 4-1BB-CARs when antigen density is low. However, 4-1BB-CARs can be reengineered to enhance activity against low-antigen-density tumors while maintaining their unique capacity for persistence. This article is highlighted in the In This Issue feature, p. 627 Full Article
cell HER2 Mutations in Non-Small Cell Lung Cancer: A Herculean Effort to Hit the Target [In the Spotlight] By cancerdiscovery.aacrjournals.org Published On :: 2020-05-01T00:05:26-07:00 Summary: Over the last two decades HER2 aberrations have been thoroughly investigated as potential therapeutic targets in advanced non–small cell lung cancer, with relatively modest results. Two articles published in this issue of Cancer Discovery further expand the knowledge on therapeutic exploitation of HER2 in lung cancer, addressing a large unmet medical need. See related article by Li et al., p. 674. See related article by Tsurutani et al., p. 688. Full Article
cell A Previously Unknown Dendritic Cell Type Reduces Antitumor Response [Immunology] By cancerdiscovery.aacrjournals.org Published On :: 2020-05-01T00:05:26-07:00 A cluster of dendritic cells (termed mregDCs), observed in humans and mice, restricted antitumor immunity. Full Article
cell Microbiome Predicts Blood-Cell Transplant Success [News in Brief] By cancerdiscovery.aacrjournals.org Published On :: 2020-05-01T00:05:26-07:00 A large international study found that the composition of the intestinal microbiome can predict clinical outcomes in patients undergoing allogenic hematopoietic-cell transplant (HCT) for blood cancers. The findings may help assess patients' transplantation-related mortality risk and aid in developing interventions to prevent or mitigate microbiome changes that affect HCT outcomes. Full Article
cell Method Enables Nanoscale Mapping of Protein Interactions on Live Cells [Techniques] By cancerdiscovery.aacrjournals.org Published On :: 2020-05-01T00:05:26-07:00 A new method called MicroMapping can identify nanoscale protein–protein interactions on live cells. Full Article
cell Non-Stem Cells Seed Colorectal Cancer Metastases and Gain Stem Traits [Metastasis] By cancerdiscovery.aacrjournals.org Published On :: 2020-05-01T00:05:26-07:00 LGR5– cells seed colorectal cancer metastases and produce stemlike LGR5+ outgrowth-promoting cells. Full Article
cell Increased B-cell ICOSL Expression Improves Chemotherapy Response [Immunology] By cancerdiscovery.aacrjournals.org Published On :: 2020-05-01T00:05:26-07:00 A chemotherapy-induced shift to ICOSL+ B cells in breast tumors correlated with better survival. Full Article
cell Engagement of T Cell-Expressed PD-L1 Weakens Antitumor Immunity [Immunology] By cancerdiscovery.aacrjournals.org Published On :: 2020-05-01T00:05:26-07:00 T cell–expressed PD-L1 exerts tolerogenic effects on tumor immunity in pancreatic cancer. Full Article
cell Gastrin Blocks Symmetric Stem-Cell Division and Gastric Tumorigenesis [Gastric Cancer] By cancerdiscovery.aacrjournals.org Published On :: 2020-05-01T00:05:26-07:00 Symmetric division of stem cells positive for gastrin receptor CCK2R is linked to gastric cancer. Full Article
cell Comparative single-cell RNA sequencing (scRNA-seq) reveals liver metastasis-specific targets in a patient with small intestinal neuroendocrine cancer [RESEARCH REPORT] By molecularcasestudies.cshlp.org Published On :: 2020-04-01T06:30:17-07:00 Genomic analysis of a patient's tumor is the cornerstone of precision oncology, but it does not address whether metastases should be treated differently. Here we tested whether comparative single-cell RNA sequencing (scRNA-seq) of a primary small intestinal neuroendocrine tumor to a matched liver metastasis could guide the treatment of a patient's metastatic disease. Following surgery, the patient was put on maintenance treatment with a somatostatin analog. However, the scRNA-seq analysis revealed that the neuroendocrine epithelial cells in the liver metastasis were less differentiated and expressed relatively little SSTR2, the predominant somatostatin receptor. There were also differences in the tumor microenvironments. RNA expression of vascular endothelial growth factors was higher in the primary tumor cells, reflected by an increased number of endothelial cells. Interestingly, vascular expression of the major VEGF receptors was considerably higher in the liver metastasis, indicating that the metastatic vasculature may be primed for expansion and susceptible to treatment with angiogenesis inhibitors. The patient eventually progressed on Sandostatin, and although consideration was given to adding an angiogenesis inhibitor to her regimen, her disease progression involved non-liver metastases that had not been characterized. Although in this specific case comparative scRNA-seq did not alter treatment, its potential to help guide therapy of metastatic disease was clearly demonstrated. Full Article
cell [CORRIGENDUM] Corrigendum: Niche Cells and Signals that Regulate Lung Alveolar Stem Cells In Vivo By cshperspectives.cshlp.org Published On :: 2020-05-01T06:30:17-07:00 Full Article
cell [Cell Biology] Recent Insights on Inflammasomes, Gasdermin Pores, and Pyroptosis By cshperspectives.cshlp.org Published On :: 2020-05-01T06:30:17-07:00 Inflammasomes assemble in the cytosol of myeloid and epithelial cells on sensing of cellular stress and pathogen-associated molecular patterns and serve as scaffolds for recruitment and activation of inflammatory caspases. Inflammasomes play beneficial roles in host and immune responses against diverse pathogens but may also promote inflammatory tissue damage if uncontrolled. Gasdermin D (GSDMD) is a recently identified substrate of murine caspase-1 and caspase-11, and human caspases-1, -4, and -5 that mediates a regulated lytic cell death mode termed pyroptosis. Recent studies have identified pyroptosis as a critical inflammasome effector mechanism that controls inflammasome-dependent cytokine secretion and contributes to antimicrobial defense and inflammasome-mediated autoinflammatory diseases. Here, we review recent developments on inflammasome-associated effector functions with an emphasis on the emerging roles of gasdermin pores and pyroptosis. Full Article
cell [Cell Biology] Cracking the Cell Death Code By cshperspectives.cshlp.org Published On :: 2020-05-01T06:30:17-07:00 Cell death is an invariant feature throughout our life span, starting with extensive scheduled cell death during morphogenesis and continuing with death under homeostasis in adult tissues. Additionally, cells become victims of accidental, unscheduled death following injury and infection. Cell death in each of these occasions triggers specific and specialized responses in the living cells that surround them or are attracted to the dying/dead cells. These responses sculpt tissues during morphogenesis, replenish lost cells in homeostasis to maintain tissue/system function, and repair damaged tissues after injury. Wherein lies the information that sets in motion the cascade of effector responses culminating in remodeling, renewal, or repair? Here, we attempt to provide a framework for thinking about cell death in terms of the specific effector responses that accompanies various modalities of cell death. We also propose an integrated threefold "cell death code" consisting of information intrinsic to the dying/dead cell, the surroundings of the dying cell, and the identity of the responder. Full Article
cell [Molecular Pathology] Toward Combined Cell and Gene Therapy for Genodermatoses By cshperspectives.cshlp.org Published On :: 2020-05-01T06:30:17-07:00 To date, more than 200 monogenic, often devastating, skin diseases have been described. Because of unmet medical needs, development of long-lasting and curative therapies has been consistently attempted, with the aim of correcting the underlying molecular defect. In this review, we will specifically address the few combined cell and gene therapy strategies that made it to the clinics. Based on these studies, what can be envisioned for the future is a patient-oriented strategy, built on the specific features of the individual in need. Most likely, a combination of different strategies, approaches, and advanced therapies will be required to reach the finish line at the end of the long and winding road hampering the achievement of definitive treatments for genodermatoses. Full Article
cell [Cell Signaling] Ca2+ Signaling in Exocrine Cells By cshperspectives.cshlp.org Published On :: 2020-05-01T06:30:17-07:00 Calcium (Ca2+) and cyclic AMP (cAMP) signaling cross talk and synergize to stimulate the cardinal functions of exocrine cells, regulated exocytosis, and fluid and electrolyte secretion. This physiological process requires the organization of the two signaling pathways into complexes at defined cellular domains and close placement. Such domains are formed by membrane contact sites (MCS). This review discusses the basic properties of Ca2+ signaling in exocrine cells, the role of MCS in the organization of cell signaling and in cross talk and synergism between the Ca2+ and cAMP signaling pathways and, finally, the mechanism by which the Ca2+ and cAMP pathways synergize to stimulate epithelial fluid and electrolyte secretion. Full Article
cell [Cell Signaling] Store-Operated Calcium Channels: From Function to Structure and Back Again By cshperspectives.cshlp.org Published On :: 2020-05-01T06:30:17-07:00 Store-operated calcium (Ca2+) entry (SOCE) occurs through a widely distributed family of ion channels activated by the loss of Ca2+ from the endoplasmic reticulum (ER). The best understood of these is the Ca2+ release-activated Ca2+ (CRAC) channel, which is notable for its unique activation mechanism as well as its many essential physiological functions and the diverse pathologies that result from dysregulation. In response to ER Ca2+ depletion, CRAC channels are formed through a diffusion trap mechanism at ER–plasma membrane (PM) junctions, where the ER Ca2+-sensing stromal interaction molecule (STIM) proteins bind and activate hexamers of Orai pore-forming proteins to trigger Ca2+ entry. Cell biological studies are clarifying the architecture of ER–PM junctions, their roles in Ca2+ and lipid transport, and functional interactions with cytoskeletal proteins. Molecular structures of STIM and Orai have inspired a multitude of mutagenesis and electrophysiological studies that reveal potential mechanisms for how STIM is toggled between inactive and active states, how it binds and activates Orai, and the importance of STIM-binding stoichiometry for opening the channel and establishing its signature characteristics of extremely high Ca2+ selectivity and low Ca2+ conductance. Full Article
cell Detecting {beta}-Galactosidase-Labeled Cells By cshprotocols.cshlp.org Published On :: 2020-05-01T06:29:31-07:00 β-Galactosidase has been used extensively both as a label in enzyme immunoassays and for immunocytochemistry. One good substrate is 5-bromo-4-chloro-3-indolyl-β-d-galactopyranoside (X-gal), which gives an intense blue product. The product is stable and insoluble in alcohol as well as H2O. Full Article
cell Retraction: Insulin-Like Growth Factor I Suppresses Bone Morphogenetic Protein Signaling in Prostate Cancer Cells by Activating mTOR Signaling By cancerres.aacrjournals.org Published On :: 2020-05-04T05:35:17-07:00 Full Article
cell Circulating Immune Cell Composition and Cancer Risk: A Prospective Study Using Epigenetic Cell Count Measures By cancerres.aacrjournals.org Published On :: 2020-05-04T05:35:17-07:00 Although ample evidence indicates that immune cell homeostasis is an important prognostic outcome determinant in patients with cancer, few studies have examined whether it also determines cancer risk among initially healthy individuals. We performed a case–cohort study including incident cases of breast (n = 207), colorectal (n = 111), lung (n = 70), and prostate (n = 201) cancer as well as a subcohort (n = 465) within the European Prospective Investigation into Cancer and Nutrition-Heidelberg cohort. Relative counts of neutrophils, monocytes, and lymphocyte sublineages were measured by qRT-PCR. HRs and 95% confidence intervals were used to measure the associations between relative counts of immune cell and cancer risks. When relative counts of immune cell types were taken individually, a significant positive association was observed between relative counts of FOXP3+ regulatory T cells (Tregs) and lung cancer risk, and significant inverse associations were observed between relative CD8+ counts and risks of lung and breast cancer (overall and ER+ subtype). Multivariable models with mutual adjustments across immune markers showed further significant positive associations between higher relative FOXP3+ T-cell counts and increased risks of colorectal and breast cancer (overall and ER− subtype). No associations were found between immune cell composition and prostate cancer risk. These results affirm the relevance of elevated FOXP3+ Tregs and lower levels of cytotoxic (CD8+) T cells as risk factors for tumor development.Significance:This epidemiologic study supports a role for both regulatory and cytotoxic T cells in determining cancer risk among healthy individuals.See related commentary by Song and Tworoger, p. 1801 Full Article
cell Dasatinib Is an Effective Treatment for Angioimmunoblastic T-cell Lymphoma By cancerres.aacrjournals.org Published On :: 2020-05-04T05:35:17-07:00 Recurrent hotspot (p.Gly17Val) mutations in RHOA encoding a small GTPase, together with loss-of-function mutations in TET2 encoding an epigenetic regulator, are genetic hallmarks of angioimmunoblastic T-cell lymphoma (AITL). Mice expressing the p.Gly17Val RHOA mutant on a Tet2-null background succumbed to AITL-like T-cell lymphomas due to deregulated T-cell receptor (TCR) signaling. Using these mice to investigate therapeutics for AITL, we found that dasatinib, a multikinase inhibitor prolonged their survival through inhibition of hyperactivated TCR signaling. A phase I clinical trial study of dasatinib monotherapy in 5 patients with relapsed/refractory AITL was performed. Dasatinib was started at a dose of 100 mg/body once a day and continued until days 10–78 (median day 58). All the evaluable patients achieved partial responses. Our findings suggest that AITL is highly dependent on TCR signaling and that dasatinib could be a promising candidate drug for AITL treatment.Significance:Deregulated T-cell receptor signaling is a critical molecular event in angioimmunoblastic T-cell lymphoma and can be targeted with dasatinib. Full Article
cell NOX4 Inhibition Potentiates Immunotherapy by Overcoming Cancer-Associated Fibroblast-Mediated CD8 T-cell Exclusion from Tumors By cancerres.aacrjournals.org Published On :: 2020-05-04T05:35:17-07:00 Determining mechanisms of resistance to αPD-1/PD-L1 immune-checkpoint immunotherapy is key to developing new treatment strategies. Cancer-associated fibroblasts (CAF) have many tumor-promoting functions and promote immune evasion through multiple mechanisms, but as yet, no CAF-specific inhibitors are clinically available. Here we generated CAF-rich murine tumor models (TC1, MC38, and 4T1) to investigate how CAFs influence the immune microenvironment and affect response to different immunotherapy modalities [anticancer vaccination, TC1 (HPV E7 DNA vaccine), αPD-1, and MC38] and found that CAFs broadly suppressed response by specifically excluding CD8+ T cells from tumors (not CD4+ T cells or macrophages); CD8+ T-cell exclusion was similarly present in CAF-rich human tumors. RNA sequencing of CD8+ T cells from CAF-rich murine tumors and immunochemistry analysis of human tumors identified significant upregulation of CTLA-4 in the absence of other exhaustion markers; inhibiting CTLA-4 with a nondepleting antibody overcame the CD8+ T-cell exclusion effect without affecting Tregs. We then examined the potential for CAF targeting, focusing on the ROS-producing enzyme NOX4, which is upregulated by CAF in many human cancers, and compared this with TGFβ1 inhibition, a key regulator of the CAF phenotype. siRNA knockdown or pharmacologic inhibition [GKT137831 (Setanaxib)] of NOX4 “normalized” CAF to a quiescent phenotype and promoted intratumoral CD8+ T-cell infiltration, overcoming the exclusion effect; TGFβ1 inhibition could prevent, but not reverse, CAF differentiation. Finally, NOX4 inhibition restored immunotherapy response in CAF-rich tumors. These findings demonstrate that CAF-mediated immunotherapy resistance can be effectively overcome through NOX4 inhibition and could improve outcome in a broad range of cancers.Significance:NOX4 is critical for maintaining the immune-suppressive CAF phenotype in tumors. Pharmacologic inhibition of NOX4 potentiates immunotherapy by overcoming CAF-mediated CD8+ T-cell exclusion.Graphical Abstract:http://cancerres.aacrjournals.org/content/canres/80/9/1846/F1.large.jpg.See related commentary by Hayward, p. 1799 Full Article
cell [PERSPECTIVES] Myeloid Cells in Metastasis By perspectivesinmedicine.cshlp.org Published On :: 2020-05-01T06:30:15-07:00 Metastatic disease is the leading cause of death in patients with solid cancers. The progression to metastasis is a multistep process that involves detachment of tumor cells from their constraining basement membrane at the primary site, migration and intravasation into the circulation, survival in the circulation, extravasation into the secondary organ, and survival and growth at the secondary site. During these steps, tumor and immune cells interact and influence each other both within the tumor microenvironment and systemically. In particular, myeloid cells such as monocytes, macrophages, neutrophils, and myeloid-derived suppressor cells (myeloid regulatory cells) have been shown to play important roles in the metastatic process. These interactions open new avenues for targeting cancer metastasis, especially given the increasing interest in development of cancer immunotherapies. In this review, we describe the currently reported pathways and mechanisms involved in myeloid cell enhancement of the metastatic cascade. Full Article
cell Paris Games Week 2020 Cancelled Due to Coronavirus Pandemic By feedproxy.google.com Published On :: Thu, 07 May 2020 15:27:30 GMT Paris Games Week 2020 organizer SELL announced it has cancelled this years event due to concerns over the ongoing coronavirus (COVID-19) pandemic. The event was set to run from October 23 to 27. Read the message from SELL below: Dear players, It is with great emotion that we have made the difficult decision to cancel Paris Games Week, initially scheduled from 23rd to 27th October and which would have marked our 10th anniversary. The current context and the necessary anticipation of both the technical and logistical complexities of an event such as Paris Games Week have led us to cancel this edition. This year should have been special, with a line-up full of new releases, and an anniversary edition which we were thrilled to celebrate with you. We are going to work with all the industry players to enable us all to live our passion. We are already preparing next year’s edition and are looking forward to seeing you again. Our Very Best Regards, The Paris Games Week Team A life-long and avid gamer, William D'Angelo was first introduced to VGChartz in 2007. After years of supporting the site, he was brought on in 2010 as a junior analyst, working his way up to lead analyst in 2012. He has expanded his involvement in the gaming community by producing content on his own YouTube channel and Twitch channel dedicated to gaming Let's Plays and tutorials. You can contact the author at wdangelo@vgchartz.com or on Twitter @TrunksWD.Full Article - https://www.vgchartz.com/article/443416/paris-games-week-2020-cancelled-due-to-coronavirus-pandemic/ Full Article Analysis Charts Industry
cell Footage of Cancelled Prince of Persia: Redemption from 2012 Discovered By feedproxy.google.com Published On :: Thu, 07 May 2020 17:49:41 GMT A gameplay trailer for a Prince of Persia reboot, called Prince of Persia: Redemption, was posted on YouTube in March 2012 and was discovered this week. The LinkedIn profile for the former Ubisoft employee Christophe Prelot revealed he worked on a cancelled Prince of Persia title from April 2010 to 2011 as a 3D level artist. The game was in development for the PlayStation 3, Xbox 360 and Windows PC. Ubisoft assistant technical director Marc-Andre Belleau in 2018 left a comment on the video asking, "Where did you get that?!" View the video below: Thanks ResetEra. A life-long and avid gamer, William D'Angelo was first introduced to VGChartz in 2007. After years of supporting the site, he was brought on in 2010 as a junior analyst, working his way up to lead analyst in 2012. He has expanded his involvement in the gaming community by producing content on his own YouTube channel and Twitch channel dedicated to gaming Let's Plays and tutorials. You can contact the author at wdangelo@vgchartz.com or on Twitter @TrunksWD.Full Article - https://www.vgchartz.com/article/443408/footage-of-cancelled-prince-of-persia-redemption-from-2012-discovered/ Full Article Analysis Charts Industry
cell Sony’s New Noise-Cancelling Workout Earbuds Have the Best Sound You Can Buy By feedproxy.google.com Published On :: Fri, 08 May 2020 06:00:27 +0000 Sony has managed to best its top-of-the-line noise cancelling earbuds with a new, improved, and best of all, cheaper model. Full Article
cell Rafael Nadal: ATP Tour chairman responds to 2020 season cancellation fears By feedproxy.google.com Published On :: Sat, 09 May 2020 15:50:00 +0100 Rafael Nadal revealed this week he was doubtful there will be further tennis in 2020. Full Article
cell Nanoparticle solar cells make light work By www.nature.com Published On :: 2011-11-03T18:00:00-0400 Cheap, printable photovoltaics might finally live up to their early promise. Full Article
cell New computational method unravels single-cell data from multiple people By www.sciencedaily.com Published On :: Wed, 06 May 2020 12:37:48 EDT A new computational method for assigning the donor in single cell RNA sequencing experiments provides an accurate way to unravel data from a mixture of people. The Souporcell method could help study how genetic variants in different people affect which genes are expressed during infection or response to drugs, and help research into transplants, personalized medicine and malaria. Full Article