d

Community-Based Group Graphical Lasso

A new strategy for probabilistic graphical modeling is developed that draws parallels to community detection analysis. The method jointly estimates an undirected graph and homogeneous communities of nodes. The structure of the communities is taken into account when estimating the graph and at the same time, the structure of the graph is accounted for when estimating communities of nodes. The procedure uses a joint group graphical lasso approach with community detection-based grouping, such that some groups of edges co-occur in the estimated graph. The grouping structure is unknown and is estimated based on community detection algorithms. Theoretical derivations regarding graph convergence and sparsistency, as well as accuracy of community recovery are included, while the method's empirical performance is illustrated in an fMRI context, as well as with simulated examples.




d

Smoothed Nonparametric Derivative Estimation using Weighted Difference Quotients

Derivatives play an important role in bandwidth selection methods (e.g., plug-ins), data analysis and bias-corrected confidence intervals. Therefore, obtaining accurate derivative information is crucial. Although many derivative estimation methods exist, the majority require a fixed design assumption. In this paper, we propose an effective and fully data-driven framework to estimate the first and second order derivative in random design. We establish the asymptotic properties of the proposed derivative estimator, and also propose a fast selection method for the tuning parameters. The performance and flexibility of the method is illustrated via an extensive simulation study.




d

WONDER: Weighted One-shot Distributed Ridge Regression in High Dimensions

In many areas, practitioners need to analyze large data sets that challenge conventional single-machine computing. To scale up data analysis, distributed and parallel computing approaches are increasingly needed. Here we study a fundamental and highly important problem in this area: How to do ridge regression in a distributed computing environment? Ridge regression is an extremely popular method for supervised learning, and has several optimality properties, thus it is important to study. We study one-shot methods that construct weighted combinations of ridge regression estimators computed on each machine. By analyzing the mean squared error in a high-dimensional random-effects model where each predictor has a small effect, we discover several new phenomena. Infinite-worker limit: The distributed estimator works well for very large numbers of machines, a phenomenon we call 'infinite-worker limit'. Optimal weights: The optimal weights for combining local estimators sum to more than unity, due to the downward bias of ridge. Thus, all averaging methods are suboptimal. We also propose a new Weighted ONe-shot DistributEd Ridge regression algorithm (WONDER). We test WONDER in simulation studies and using the Million Song Dataset as an example. There it can save at least 100x in computation time, while nearly preserving test accuracy.




d

The weight function in the subtree kernel is decisive

Tree data are ubiquitous because they model a large variety of situations, e.g., the architecture of plants, the secondary structure of RNA, or the hierarchy of XML files. Nevertheless, the analysis of these non-Euclidean data is difficult per se. In this paper, we focus on the subtree kernel that is a convolution kernel for tree data introduced by Vishwanathan and Smola in the early 2000's. More precisely, we investigate the influence of the weight function from a theoretical perspective and in real data applications. We establish on a 2-classes stochastic model that the performance of the subtree kernel is improved when the weight of leaves vanishes, which motivates the definition of a new weight function, learned from the data and not fixed by the user as usually done. To this end, we define a unified framework for computing the subtree kernel from ordered or unordered trees, that is particularly suitable for tuning parameters. We show through eight real data classification problems the great efficiency of our approach, in particular for small data sets, which also states the high importance of the weight function. Finally, a visualization tool of the significant features is derived.




d

On Stationary-Point Hitting Time and Ergodicity of Stochastic Gradient Langevin Dynamics

Stochastic gradient Langevin dynamics (SGLD) is a fundamental algorithm in stochastic optimization. Recent work by Zhang et al. (2017) presents an analysis for the hitting time of SGLD for the first and second order stationary points. The proof in Zhang et al. (2017) is a two-stage procedure through bounding the Cheeger's constant, which is rather complicated and leads to loose bounds. In this paper, using intuitions from stochastic differential equations, we provide a direct analysis for the hitting times of SGLD to the first and second order stationary points. Our analysis is straightforward. It only relies on basic linear algebra and probability theory tools. Our direct analysis also leads to tighter bounds comparing to Zhang et al. (2017) and shows the explicit dependence of the hitting time on different factors, including dimensionality, smoothness, noise strength, and step size effects. Under suitable conditions, we show that the hitting time of SGLD to first-order stationary points can be dimension-independent. Moreover, we apply our analysis to study several important online estimation problems in machine learning, including linear regression, matrix factorization, and online PCA.




d

Union of Low-Rank Tensor Spaces: Clustering and Completion

We consider the problem of clustering and completing a set of tensors with missing data that are drawn from a union of low-rank tensor spaces. In the clustering problem, given a partially sampled tensor data that is composed of a number of subtensors, each chosen from one of a certain number of unknown tensor spaces, we need to group the subtensors that belong to the same tensor space. We provide a geometrical analysis on the sampling pattern and subsequently derive the sampling rate that guarantees the correct clustering under some assumptions with high probability. Moreover, we investigate the fundamental conditions for finite/unique completability for the union of tensor spaces completion problem. Both deterministic and probabilistic conditions on the sampling pattern to ensure finite/unique completability are obtained. For both the clustering and completion problems, our tensor analysis provides significantly better bound than the bound given by the matrix analysis applied to any unfolding of the tensor data.




d

Representation Learning for Dynamic Graphs: A Survey

Graphs arise naturally in many real-world applications including social networks, recommender systems, ontologies, biology, and computational finance. Traditionally, machine learning models for graphs have been mostly designed for static graphs. However, many applications involve evolving graphs. This introduces important challenges for learning and inference since nodes, attributes, and edges change over time. In this survey, we review the recent advances in representation learning for dynamic graphs, including dynamic knowledge graphs. We describe existing models from an encoder-decoder perspective, categorize these encoders and decoders based on the techniques they employ, and analyze the approaches in each category. We also review several prominent applications and widely used datasets and highlight directions for future research.




d

Estimation of a Low-rank Topic-Based Model for Information Cascades

We consider the problem of estimating the latent structure of a social network based on the observed information diffusion events, or cascades, where the observations for a given cascade consist of only the timestamps of infection for infected nodes but not the source of the infection. Most of the existing work on this problem has focused on estimating a diffusion matrix without any structural assumptions on it. In this paper, we propose a novel model based on the intuition that an information is more likely to propagate among two nodes if they are interested in similar topics which are also prominent in the information content. In particular, our model endows each node with an influence vector (which measures how authoritative the node is on each topic) and a receptivity vector (which measures how susceptible the node is for each topic). We show how this node-topic structure can be estimated from the observed cascades, and prove the consistency of the estimator. Experiments on synthetic and real data demonstrate the improved performance and better interpretability of our model compared to existing state-of-the-art methods.




d

(1 + epsilon)-class Classification: an Anomaly Detection Method for Highly Imbalanced or Incomplete Data Sets

Anomaly detection is not an easy problem since distribution of anomalous samples is unknown a priori. We explore a novel method that gives a trade-off possibility between one-class and two-class approaches, and leads to a better performance on anomaly detection problems with small or non-representative anomalous samples. The method is evaluated using several data sets and compared to a set of conventional one-class and two-class approaches.




d

High-dimensional Gaussian graphical models on network-linked data

Graphical models are commonly used to represent conditional dependence relationships between variables. There are multiple methods available for exploring them from high-dimensional data, but almost all of them rely on the assumption that the observations are independent and identically distributed. At the same time, observations connected by a network are becoming increasingly common, and tend to violate these assumptions. Here we develop a Gaussian graphical model for observations connected by a network with potentially different mean vectors, varying smoothly over the network. We propose an efficient estimation algorithm and demonstrate its effectiveness on both simulated and real data, obtaining meaningful and interpretable results on a statistics coauthorship network. We also prove that our method estimates both the inverse covariance matrix and the corresponding graph structure correctly under the assumption of network “cohesion”, which refers to the empirically observed phenomenon of network neighbors sharing similar traits.




d

Identifiability of Additive Noise Models Using Conditional Variances

This paper considers a new identifiability condition for additive noise models (ANMs) in which each variable is determined by an arbitrary Borel measurable function of its parents plus an independent error. It has been shown that ANMs are fully recoverable under some identifiability conditions, such as when all error variances are equal. However, this identifiable condition could be restrictive, and hence, this paper focuses on a relaxed identifiability condition that involves not only error variances, but also the influence of parents. This new class of identifiable ANMs does not put any constraints on the form of dependencies, or distributions of errors, and allows different error variances. It further provides a statistically consistent and computationally feasible structure learning algorithm for the identifiable ANMs based on the new identifiability condition. The proposed algorithm assumes that all relevant variables are observed, while it does not assume faithfulness or a sparse graph. Demonstrated through extensive simulated and real multivariate data is that the proposed algorithm successfully recovers directed acyclic graphs.




d

GADMM: Fast and Communication Efficient Framework for Distributed Machine Learning

When the data is distributed across multiple servers, lowering the communication cost between the servers (or workers) while solving the distributed learning problem is an important problem and is the focus of this paper. In particular, we propose a fast, and communication-efficient decentralized framework to solve the distributed machine learning (DML) problem. The proposed algorithm, Group Alternating Direction Method of Multipliers (GADMM) is based on the Alternating Direction Method of Multipliers (ADMM) framework. The key novelty in GADMM is that it solves the problem in a decentralized topology where at most half of the workers are competing for the limited communication resources at any given time. Moreover, each worker exchanges the locally trained model only with two neighboring workers, thereby training a global model with a lower amount of communication overhead in each exchange. We prove that GADMM converges to the optimal solution for convex loss functions, and numerically show that it converges faster and more communication-efficient than the state-of-the-art communication-efficient algorithms such as the Lazily Aggregated Gradient (LAG) and dual averaging, in linear and logistic regression tasks on synthetic and real datasets. Furthermore, we propose Dynamic GADMM (D-GADMM), a variant of GADMM, and prove its convergence under the time-varying network topology of the workers.




d

Multi-Player Bandits: The Adversarial Case

We consider a setting where multiple players sequentially choose among a common set of actions (arms). Motivated by an application to cognitive radio networks, we assume that players incur a loss upon colliding, and that communication between players is not possible. Existing approaches assume that the system is stationary. Yet this assumption is often violated in practice, e.g., due to signal strength fluctuations. In this work, we design the first multi-player Bandit algorithm that provably works in arbitrarily changing environments, where the losses of the arms may even be chosen by an adversary. This resolves an open problem posed by Rosenski et al. (2016).




d

TIGER: using artificial intelligence to discover our collections

The State Library of NSW has almost 4 million digital files in its collection.




d

COVID-19 collecting drive

We need your help!   We are collecting posters, flyers and mail-outs appearing in our local neighbourhoods in respo




d

Top books to read at home

Looking for a new book to read while staying safely at home? The Library has expanded its ebook collection to over 6000 




d

Access thousands of newspapers and magazines with PressReader

Want to access thousands of newspapers and magazines wherever you are?




d

Q&A with Adam Ferguson

Each year the Library hosts the popular World Press Photo exhibition, bringing together award-winning photographs from t




d

Youth & Community Initiatives Funding available




d

Have your say on the Highway 404 Employment Corridor Secondary Plan




d

Share your fall and winter photos with us!




d

Branching random walks with uncountably many extinction probability vectors

Daniela Bertacchi, Fabio Zucca.

Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 2, 426--438.

Abstract:
Given a branching random walk on a set $X$, we study its extinction probability vectors $mathbf{q}(cdot,A)$. Their components are the probability that the process goes extinct in a fixed $Asubseteq X$, when starting from a vertex $xin X$. The set of extinction probability vectors (obtained letting $A$ vary among all subsets of $X$) is a subset of the set of the fixed points of the generating function of the branching random walk. In particular here we are interested in the cardinality of the set of extinction probability vectors. We prove results which allow to understand whether the probability of extinction in a set $A$ is different from the one of extinction in another set $B$. In many cases there are only two possible extinction probability vectors and so far, in more complicated examples, only a finite number of distinct extinction probability vectors had been explicitly found. Whether a branching random walk could have an infinite number of distinct extinction probability vectors was not known. We apply our results to construct examples of branching random walks with uncountably many distinct extinction probability vectors.




d

Oriented first passage percolation in the mean field limit

Nicola Kistler, Adrien Schertzer, Marius A. Schmidt.

Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 2, 414--425.

Abstract:
The Poisson clumping heuristic has lead Aldous to conjecture the value of the oriented first passage percolation on the hypercube in the limit of large dimensions. Aldous’ conjecture has been rigorously confirmed by Fill and Pemantle ( Ann. Appl. Probab. 3 (1993) 593–629) by means of a variance reduction trick. We present here a streamlined and, we believe, more natural proof based on ideas emerged in the study of Derrida’s random energy models.




d

Stein characterizations for linear combinations of gamma random variables

Benjamin Arras, Ehsan Azmoodeh, Guillaume Poly, Yvik Swan.

Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 2, 394--413.

Abstract:
In this paper we propose a new, simple and explicit mechanism allowing to derive Stein operators for random variables whose characteristic function satisfies a simple ODE. We apply this to study random variables which can be represented as linear combinations of (not necessarily independent) gamma distributed random variables. The connection with Malliavin calculus for random variables in the second Wiener chaos is detailed. An application to McKay Type I random variables is also outlined.




d

Measuring symmetry and asymmetry of multiplicative distortion measurement errors data

Jun Zhang, Yujie Gai, Xia Cui, Gaorong Li.

Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 2, 370--393.

Abstract:
This paper studies the measure of symmetry or asymmetry of a continuous variable under the multiplicative distortion measurement errors setting. The unobservable variable is distorted in a multiplicative fashion by an observed confounding variable. First, two direct plug-in estimation procedures are proposed, and the empirical likelihood based confidence intervals are constructed to measure the symmetry or asymmetry of the unobserved variable. Next, we propose four test statistics for testing whether the unobserved variable is symmetric or not. The asymptotic properties of the proposed estimators and test statistics are examined. We conduct Monte Carlo simulation experiments to examine the performance of the proposed estimators and test statistics. These methods are applied to analyze a real dataset for an illustration.




d

Reliability estimation in a multicomponent stress-strength model for Burr XII distribution under progressive censoring

Raj Kamal Maurya, Yogesh Mani Tripathi.

Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 2, 345--369.

Abstract:
We consider estimation of the multicomponent stress-strength reliability under progressive Type II censoring under the assumption that stress and strength variables follow Burr XII distributions with a common shape parameter. Maximum likelihood estimates of the reliability are obtained along with asymptotic intervals when common shape parameter may be known or unknown. Bayes estimates are also derived under the squared error loss function using different approximation methods. Further, we obtain exact Bayes and uniformly minimum variance unbiased estimates of the reliability for the case common shape parameter is known. The highest posterior density intervals are also obtained. We perform Monte Carlo simulations to compare the performance of proposed estimates and present a discussion based on this study. Finally, two real data sets are analyzed for illustration purposes.




d

A Bayesian sparse finite mixture model for clustering data from a heterogeneous population

Erlandson F. Saraiva, Adriano K. Suzuki, Luís A. Milan.

Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 2, 323--344.

Abstract:
In this paper, we introduce a Bayesian approach for clustering data using a sparse finite mixture model (SFMM). The SFMM is a finite mixture model with a large number of components $k$ previously fixed where many components can be empty. In this model, the number of components $k$ can be interpreted as the maximum number of distinct mixture components. Then, we explore the use of a prior distribution for the weights of the mixture model that take into account the possibility that the number of clusters $k_{mathbf{c}}$ (e.g., nonempty components) can be random and smaller than the number of components $k$ of the finite mixture model. In order to determine clusters we develop a MCMC algorithm denominated Split-Merge allocation sampler. In this algorithm, the split-merge strategy is data-driven and was inserted within the algorithm in order to increase the mixing of the Markov chain in relation to the number of clusters. The performance of the method is verified using simulated datasets and three real datasets. The first real data set is the benchmark galaxy data, while second and third are the publicly available data set on Enzyme and Acidity, respectively.




d

Bayesian modeling and prior sensitivity analysis for zero–one augmented beta regression models with an application to psychometric data

Danilo Covaes Nogarotto, Caio Lucidius Naberezny Azevedo, Jorge Luis Bazán.

Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 2, 304--322.

Abstract:
The interest on the analysis of the zero–one augmented beta regression (ZOABR) model has been increasing over the last few years. In this work, we developed a Bayesian inference for the ZOABR model, providing some contributions, namely: we explored the use of Jeffreys-rule and independence Jeffreys prior for some of the parameters, performing a sensitivity study of prior choice, comparing the Bayesian estimates with the maximum likelihood ones and measuring the accuracy of the estimates under several scenarios of interest. The results indicate, in a general way, that: the Bayesian approach, under the Jeffreys-rule prior, was as accurate as the ML one. Also, different from other approaches, we use the predictive distribution of the response to implement Bayesian residuals. To further illustrate the advantages of our approach, we conduct an analysis of a real psychometric data set including a Bayesian residual analysis, where it is shown that misleading inference can be obtained when the data is transformed. That is, when the zeros and ones are transformed to suitable values and the usual beta regression model is considered, instead of the ZOABR model. Finally, future developments are discussed.




d

Adaptive two-treatment three-period crossover design for normal responses

Uttam Bandyopadhyay, Shirsendu Mukherjee, Atanu Biswas.

Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 2, 291--303.

Abstract:
In adaptive crossover design, our goal is to allocate more patients to a promising treatment sequence. The present work contains a very simple three period crossover design for two competing treatments where the allocation in period 3 is done on the basis of the data obtained from the first two periods. Assuming normality of response variables we use a reliability functional for the choice between two treatments. We calculate the allocation proportions and their standard errors corresponding to the possible treatment combinations. We also derive some asymptotic results and provide solutions on related inferential problems. Moreover, the proposed procedure is compared with a possible competitor. Finally, we use a data set to illustrate the applicability of the proposed design.




d

Symmetrical and asymmetrical mixture autoregressive processes

Mohsen Maleki, Arezo Hajrajabi, Reinaldo B. Arellano-Valle.

Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 2, 273--290.

Abstract:
In this paper, we study the finite mixtures of autoregressive processes assuming that the distribution of innovations (errors) belongs to the class of scale mixture of skew-normal (SMSN) distributions. The SMSN distributions allow a simultaneous modeling of the existence of outliers, heavy tails and asymmetries in the distribution of innovations. Therefore, a statistical methodology based on the SMSN family allows us to use a robust modeling on some non-linear time series with great flexibility, to accommodate skewness, heavy tails and heterogeneity simultaneously. The existence of convenient hierarchical representations of the SMSN distributions facilitates also the implementation of an ECME-type of algorithm to perform the likelihood inference in the considered model. Simulation studies and the application to a real data set are finally presented to illustrate the usefulness of the proposed model.




d

Random environment binomial thinning integer-valued autoregressive process with Poisson or geometric marginal

Zhengwei Liu, Qi Li, Fukang Zhu.

Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 2, 251--272.

Abstract:
To predict time series of counts with small values and remarkable fluctuations, an available model is the $r$ states random environment process based on the negative binomial thinning operator and the geometric marginal. However, we argue that the aforementioned model may suffer from the following two drawbacks. First, under the condition of no prior information, the overdispersed property of the geometric distribution may cause the predictions fluctuate greatly. Second, because of the constraints on the model parameters, some estimated parameters are close to zero in real-data examples, which may not objectively reveal the correlation relationship. For the first drawback, an $r$ states random environment process based on the binomial thinning operator and the Poisson marginal is introduced. For the second drawback, we propose a generalized $r$ states random environment integer-valued autoregressive model based on the binomial thinning operator to model fluctuations of data. Yule–Walker and conditional maximum likelihood estimates are considered and their performances are assessed via simulation studies. Two real-data sets are conducted to illustrate the better performances of the proposed models compared with some existing models.




d

Agnostic tests can control the type I and type II errors simultaneously

Victor Coscrato, Rafael Izbicki, Rafael B. Stern.

Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 2, 230--250.

Abstract:
Despite its common practice, statistical hypothesis testing presents challenges in interpretation. For instance, in the standard frequentist framework there is no control of the type II error. As a result, the non-rejection of the null hypothesis $(H_{0})$ cannot reasonably be interpreted as its acceptance. We propose that this dilemma can be overcome by using agnostic hypothesis tests, since they can control the type I and II errors simultaneously. In order to make this idea operational, we show how to obtain agnostic hypothesis in typical models. For instance, we show how to build (unbiased) uniformly most powerful agnostic tests and how to obtain agnostic tests from standard p-values. Also, we present conditions such that the above tests can be made logically coherent. Finally, we present examples of consistent agnostic hypothesis tests.




d

Recent developments in complex and spatially correlated functional data

Israel Martínez-Hernández, Marc G. Genton.

Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 2, 204--229.

Abstract:
As high-dimensional and high-frequency data are being collected on a large scale, the development of new statistical models is being pushed forward. Functional data analysis provides the required statistical methods to deal with large-scale and complex data by assuming that data are continuous functions, for example, realizations of a continuous process (curves) or continuous random field (surfaces), and that each curve or surface is considered as a single observation. Here, we provide an overview of functional data analysis when data are complex and spatially correlated. We provide definitions and estimators of the first and second moments of the corresponding functional random variable. We present two main approaches: The first assumes that data are realizations of a functional random field, that is, each observation is a curve with a spatial component. We call them spatial functional data . The second approach assumes that data are continuous deterministic fields observed over time. In this case, one observation is a surface or manifold, and we call them surface time series . For these two approaches, we describe software available for the statistical analysis. We also present a data illustration, using a high-resolution wind speed simulated dataset, as an example of the two approaches. The functional data approach offers a new paradigm of data analysis, where the continuous processes or random fields are considered as a single entity. We consider this approach to be very valuable in the context of big data.




d

A message from the editorial board

Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 2, 203--203.




d

A note on the “L-logistic regression models: Prior sensitivity analysis, robustness to outliers and applications”

Saralees Nadarajah, Yuancheng Si.

Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 1, 183--187.

Abstract:
Da Paz, Balakrishnan and Bazan [Braz. J. Probab. Stat. 33 (2019), 455–479] introduced the L-logistic distribution, studied its properties including estimation issues and illustrated a data application. This note derives a closed form expression for moment properties of the distribution. Some computational issues are discussed.




d

On estimating the location parameter of the selected exponential population under the LINEX loss function

Mohd Arshad, Omer Abdalghani.

Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 1, 167--182.

Abstract:
Suppose that $pi_{1},pi_{2},ldots ,pi_{k}$ be $k(geq2)$ independent exponential populations having unknown location parameters $mu_{1},mu_{2},ldots,mu_{k}$ and known scale parameters $sigma_{1},ldots,sigma_{k}$. Let $mu_{[k]}=max {mu_{1},ldots,mu_{k}}$. For selecting the population associated with $mu_{[k]}$, a class of selection rules (proposed by Arshad and Misra [ Statistical Papers 57 (2016) 605–621]) is considered. We consider the problem of estimating the location parameter $mu_{S}$ of the selected population under the criterion of the LINEX loss function. We consider three natural estimators $delta_{N,1},delta_{N,2}$ and $delta_{N,3}$ of $mu_{S}$, based on the maximum likelihood estimators, uniformly minimum variance unbiased estimator (UMVUE) and minimum risk equivariant estimator (MREE) of $mu_{i}$’s, respectively. The uniformly minimum risk unbiased estimator (UMRUE) and the generalized Bayes estimator of $mu_{S}$ are derived. Under the LINEX loss function, a general result for improving a location-equivariant estimator of $mu_{S}$ is derived. Using this result, estimator better than the natural estimator $delta_{N,1}$ is obtained. We also shown that the estimator $delta_{N,1}$ is dominated by the natural estimator $delta_{N,3}$. Finally, we perform a simulation study to evaluate and compare risk functions among various competing estimators of $mu_{S}$.




d

Application of weighted and unordered majorization orders in comparisons of parallel systems with exponentiated generalized gamma components

Abedin Haidari, Amir T. Payandeh Najafabadi, Narayanaswamy Balakrishnan.

Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 1, 150--166.

Abstract:
Consider two parallel systems, say $A$ and $B$, with respective lifetimes $T_{1}$ and $T_{2}$ wherein independent component lifetimes of each system follow exponentiated generalized gamma distribution with possibly different exponential shape and scale parameters. We show here that $T_{2}$ is smaller than $T_{1}$ with respect to the usual stochastic order (reversed hazard rate order) if the vector of logarithm (the main vector) of scale parameters of System $B$ is weakly weighted majorized by that of System $A$, and if the vector of exponential shape parameters of System $A$ is unordered mojorized by that of System $B$. By means of some examples, we show that the above results can not be extended to the hazard rate and likelihood ratio orders. However, when the scale parameters of each system divide into two homogeneous groups, we verify that the usual stochastic and reversed hazard rate orders can be extended, respectively, to the hazard rate and likelihood ratio orders. The established results complete and strengthen some of the known results in the literature.




d

Multivariate normal approximation of the maximum likelihood estimator via the delta method

Andreas Anastasiou, Robert E. Gaunt.

Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 1, 136--149.

Abstract:
We use the delta method and Stein’s method to derive, under regularity conditions, explicit upper bounds for the distributional distance between the distribution of the maximum likelihood estimator (MLE) of a $d$-dimensional parameter and its asymptotic multivariate normal distribution. Our bounds apply in situations in which the MLE can be written as a function of a sum of i.i.d. $t$-dimensional random vectors. We apply our general bound to establish a bound for the multivariate normal approximation of the MLE of the normal distribution with unknown mean and variance.




d

Nonparametric discrimination of areal functional data

Ahmad Younso.

Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 1, 112--126.

Abstract:
We consider a new nonparametric rule of classification, inspired from the classical moving window rule, that allows for the classification of spatially dependent functional data containing some completely missing curves. We investigate the consistency of this classifier under mild conditions. The practical use of the classifier will be illustrated through simulation studies.




d

On the Nielsen distribution

Fredy Castellares, Artur J. Lemonte, Marcos A. C. Santos.

Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 1, 90--111.

Abstract:
We introduce a two-parameter discrete distribution that may have a zero vertex and can be useful for modeling overdispersion. The discrete Nielsen distribution generalizes the Fisher logarithmic (i.e., logarithmic series) and Stirling type I distributions in the sense that both can be considered displacements of the Nielsen distribution. We provide a comprehensive account of the structural properties of the new discrete distribution. We also show that the Nielsen distribution is infinitely divisible. We discuss maximum likelihood estimation of the model parameters and provide a simple method to find them numerically. The usefulness of the proposed distribution is illustrated by means of three real data sets to prove its versatility in practical applications.




d

Effects of gene–environment and gene–gene interactions in case-control studies: A novel Bayesian semiparametric approach

Durba Bhattacharya, Sourabh Bhattacharya.

Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 1, 71--89.

Abstract:
Present day bio-medical research is pointing towards the fact that cognizance of gene–environment interactions along with genetic interactions may help prevent or detain the onset of many complex diseases like cardiovascular disease, cancer, type2 diabetes, autism or asthma by adjustments to lifestyle. In this regard, we propose a Bayesian semiparametric model to detect not only the roles of genes and their interactions, but also the possible influence of environmental variables on the genes in case-control studies. Our model also accounts for the unknown number of genetic sub-populations via finite mixtures composed of Dirichlet processes. An effective parallel computing methodology, developed by us harnesses the power of parallel processing technology to increase the efficiencies of our conditionally independent Gibbs sampling and Transformation based MCMC (TMCMC) methods. Applications of our model and methods to simulation studies with biologically realistic genotype datasets and a real, case-control based genotype dataset on early onset of myocardial infarction (MI) have yielded quite interesting results beside providing some insights into the differential effect of gender on MI.




d

Robust Bayesian model selection for heavy-tailed linear regression using finite mixtures

Flávio B. Gonçalves, Marcos O. Prates, Victor Hugo Lachos.

Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 1, 51--70.

Abstract:
In this paper, we present a novel methodology to perform Bayesian model selection in linear models with heavy-tailed distributions. We consider a finite mixture of distributions to model a latent variable where each component of the mixture corresponds to one possible model within the symmetrical class of normal independent distributions. Naturally, the Gaussian model is one of the possibilities. This allows for a simultaneous analysis based on the posterior probability of each model. Inference is performed via Markov chain Monte Carlo—a Gibbs sampler with Metropolis–Hastings steps for a class of parameters. Simulated examples highlight the advantages of this approach compared to a segregated analysis based on arbitrarily chosen model selection criteria. Examples with real data are presented and an extension to censored linear regression is introduced and discussed.




d

A joint mean-correlation modeling approach for longitudinal zero-inflated count data

Weiping Zhang, Jiangli Wang, Fang Qian, Yu Chen.

Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 1, 35--50.

Abstract:
Longitudinal zero-inflated count data are widely encountered in many fields, while modeling the correlation between measurements for the same subject is more challenge due to the lack of suitable multivariate joint distributions. This paper studies a novel mean-correlation modeling approach for longitudinal zero-inflated regression model, solving both problems of specifying joint distribution and parsimoniously modeling correlations with no constraint. The joint distribution of zero-inflated discrete longitudinal responses is modeled by a copula model whose correlation parameters are innovatively represented in hyper-spherical coordinates. To overcome the computational intractability in maximizing the full likelihood function of the model, we further propose a computationally efficient pairwise likelihood approach. We then propose separated mean and correlation regression models to model these key quantities, such modeling approach can also handle irregularly and possibly subject-specific times points. The resulting estimators are shown to be consistent and asymptotically normal. Data example and simulations support the effectiveness of the proposed approach.




d

Bootstrap-based testing inference in beta regressions

Fábio P. Lima, Francisco Cribari-Neto.

Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 1, 18--34.

Abstract:
We address the issue of performing testing inference in small samples in the class of beta regression models. We consider the likelihood ratio test and its standard bootstrap version. We also consider two alternative resampling-based tests. One of them uses the bootstrap test statistic replicates to numerically estimate a Bartlett correction factor that can be applied to the likelihood ratio test statistic. By doing so, we avoid estimation of quantities located in the tail of the likelihood ratio test statistic null distribution. The second alternative resampling-based test uses a fast double bootstrap scheme in which a single second level bootstrapping resample is performed for each first level bootstrap replication. It delivers accurate testing inferences at a computational cost that is considerably smaller than that of a standard double bootstrapping scheme. The Monte Carlo results we provide show that the standard likelihood ratio test tends to be quite liberal in small samples. They also show that the bootstrap tests deliver accurate testing inferences even when the sample size is quite small. An empirical application is also presented and discussed.




d

Simple step-stress models with a cure fraction

Nandini Kannan, Debasis Kundu.

Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 1, 2--17.

Abstract:
In this article, we consider models for time-to-event data obtained from experiments in which stress levels are altered at intermediate stages during the observation period. These experiments, known as step-stress tests, belong to the larger class of accelerated tests used extensively in the reliability literature. The analysis of data from step-stress tests largely relies on the popular cumulative exposure model. However, despite its simple form, the utility of the model is limited, as it is assumed that the hazard function of the underlying distribution is discontinuous at the points at which the stress levels are changed, which may not be very reasonable. Due to this deficiency, Kannan et al. ( Journal of Applied Statistics 37 (2010b) 1625–1636) introduced the cumulative risk model, where the hazard function is continuous. In this paper, we propose a class of parametric models based on the cumulative risk model assuming the underlying population contains long-term survivors or ‘cured’ fraction. An EM algorithm to compute the maximum likelihood estimators of the unknown parameters is proposed. This research is motivated by a study on altitude decompression sickness. The performance of different parametric models will be evaluated using data from this study.




d

A message from the editorial board

Source: Brazilian Journal of Probability and Statistics, Volume 34, Number 1, 1--1.




d

Bayesian inference on power Lindley distribution based on different loss functions

Abbas Pak, M. E. Ghitany, Mohammad Reza Mahmoudi.

Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 4, 894--914.

Abstract:
This paper focuses on Bayesian estimation of the parameters and reliability function of the power Lindley distribution by using various symmetric and asymmetric loss functions. Assuming suitable priors on the parameters, Bayes estimates are derived by using squared error, linear exponential (linex) and general entropy loss functions. Since, under these loss functions, Bayes estimates of the parameters do not have closed forms we use lindley’s approximation technique to calculate the Bayes estimates. Moreover, we obtain the Bayes estimates of the parameters using a Markov Chain Monte Carlo (MCMC) method. Simulation studies are conducted in order to evaluate the performances of the proposed estimators under the considered loss functions. Finally, analysis of a real data set is presented for illustrative purposes.




d

Subjective Bayesian testing using calibrated prior probabilities

Dan J. Spitzner.

Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 4, 861--893.

Abstract:
This article proposes a calibration scheme for Bayesian testing that coordinates analytically-derived statistical performance considerations with expert opinion. In other words, the scheme is effective and meaningful for incorporating objective elements into subjective Bayesian inference. It explores a novel role for default priors as anchors for calibration rather than substitutes for prior knowledge. Ideas are developed for use with multiplicity adjustments in multiple-model contexts, and to address the issue of prior sensitivity of Bayes factors. Along the way, the performance properties of an existing multiplicity adjustment related to the Poisson distribution are clarified theoretically. Connections of the overall calibration scheme to the Schwarz criterion are also explored. The proposed framework is examined and illustrated on a number of existing data sets related to problems in clinical trials, forensic pattern matching, and log-linear models methodology.




d

Bayesian approach for the zero-modified Poisson–Lindley regression model

Wesley Bertoli, Katiane S. Conceição, Marinho G. Andrade, Francisco Louzada.

Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 4, 826--860.

Abstract:
The primary goal of this paper is to introduce the zero-modified Poisson–Lindley regression model as an alternative to model overdispersed count data exhibiting inflation or deflation of zeros in the presence of covariates. The zero-modification is incorporated by considering that a zero-truncated process produces positive observations and consequently, the proposed model can be fitted without any previous information about the zero-modification present in a given dataset. A fully Bayesian approach based on the g-prior method has been considered for inference concerns. An intensive Monte Carlo simulation study has been conducted to evaluate the performance of the developed methodology and the maximum likelihood estimators. The proposed model was considered for the analysis of a real dataset on the number of bids received by $126$ U.S. firms between 1978–1985, and the impact of choosing different prior distributions for the regression coefficients has been studied. A sensitivity analysis to detect influential points has been performed based on the Kullback–Leibler divergence. A general comparison with some well-known regression models for discrete data has been presented.




d

Option pricing with bivariate risk-neutral density via copula and heteroscedastic model: A Bayesian approach

Lucas Pereira Lopes, Vicente Garibay Cancho, Francisco Louzada.

Source: Brazilian Journal of Probability and Statistics, Volume 33, Number 4, 801--825.

Abstract:
Multivariate options are adequate tools for multi-asset risk management. The pricing models derived from the pioneer Black and Scholes method under the multivariate case consider that the asset-object prices follow a Brownian geometric motion. However, the construction of such methods imposes some unrealistic constraints on the process of fair option calculation, such as constant volatility over the maturity time and linear correlation between the assets. Therefore, this paper aims to price and analyze the fair price behavior of the call-on-max (bivariate) option considering marginal heteroscedastic models with dependence structure modeled via copulas. Concerning inference, we adopt a Bayesian perspective and computationally intensive methods based on Monte Carlo simulations via Markov Chain (MCMC). A simulation study examines the bias, and the root mean squared errors of the posterior means for the parameters. Real stocks prices of Brazilian banks illustrate the approach. For the proposed method is verified the effects of strike and dependence structure on the fair price of the option. The results show that the prices obtained by our heteroscedastic model approach and copulas differ substantially from the prices obtained by the model derived from Black and Scholes. Empirical results are presented to argue the advantages of our strategy.