ntra

Estimation of the rate of convergence in the central limit theorem for a sequence of series in terms of averaged pseudomoments

M. M. Kapustei and P. V. Slyusarchuk
Theor. Probability and Math. Statist. 99 (2020), 101-111.
Abstract, references and article information




ntra

Continuous Intravenous Insulin: Ready for Prime Time

Nancy J. D'Hondt
Oct 1, 2008; 21:255-261
Articles




ntra

New notification arrangements on Secondary One discretionary places and distribution of school choice documents for Central Allocation




ntra

Primary One Central Allocation results to be posted to parents in early June




ntra

GSA's North-Central Section Meeting goes virtual

(Geological Society of America) The annual meeting of The Geological Society of America's North-Central Section, originally scheduled to take place in Duluth, Minnesota, will be held virtually on May 18-19, 2020, with technical sessions in the morning and student programming in the afternoon. The online meeting is open and available to everyone for free. No registration is required.




ntra

Cool Met Stuff, composition of air, main gases, climate change, global warming, carbon dioxide concentration, fraction, atmosphere

Do you know which main gases are contained in the composition of air? Under climate change and global warming, carbon dioxide ...




ntra

Investigation of inter- and intra-tumoral heterogeneity of glioblastoma using TOF-SIMS

Samvel K Gularyan
Apr 6, 2020; 0:RA120.001986v1-mcp.RA120.001986
Research




ntra

How to remove unused devices from Sophos Central

We take you through the steps to clear your old devices from Sophos Central, so you've got more time to focus on the devices that matter.




ntra

Webinar: Federalism in a Fragmented State: Rethinking Decentralization in Yemen

Research Event

15 April 2020 - 1:00pm to 2:00pm

Event participants

Osamah Al Rawhani, Deputy Director, Sana’a Center for Strategic Studies
Moderator: Nadim Houry, Executive Director, Arab Reform Initiative

Yemen suffered from the excessive control of the central government prior to the current conflict. Federalism has been put forward by many Yemeni political parties since the National Dialogue Conference (NDC) as the supposed magic cure for this significant problem. Today, Yemen is more fragmented than ever, its state central institutions have been scattered and lack leadership and the state has lost most of its sovereignty. The prevailing narrative that decentralization through federalism is Yemen’s inevitable path post-conflict often fails to acknowledge that there are prerequisites for effective local governance, beyond political will.  

In a recent article, Osamah Al Rawhani addressed how the weakness of central state institutions is the key challenge to proceeding with federalism in Yemen and highlighted prerequisites and contextual factors that need to be addressed before reforming the structure of the state. He argued that the viability of decentralization relies on the presence of a functioning, representative central government that is capable of devolving power but also able to keep the state from further fragmentation. 

In this webinar, part of the Chatham House project on The Future of the State in the Middle East and North Africa, the article’s author will discuss recent developments in Yemen, where shifting frontlines and regional divisions are fragmenting the country in new ways. The speaker will explore alternative approaches to pursue the path of federalism that recognize the current realities and the critical need for strong central institutions. He will also survey the internal and external factors that must be considered to rebuild a stable state in Yemen.

You can express your interest in attending by following this link. You will receive a Zoom confirmation email should your registration be successful. Alternatively, you can watch the event live on the MENA Programme Facebook page.

Reni Zhelyazkova

Programme Coordinator, Middle East and North Africa Programme
+44 (0)20 7314 3624




ntra

Evidence Against an Important Role of Plasma Insulin and Glucagon Concentrations in the Increase in EGP Caused by SGLT2 Inhibitors

Sodium–glucose cotransport 2 inhibitors (SGLT2i) lower plasma glucose but stimulate endogenous glucose production (EGP). The current study examined the effect of dapagliflozin on EGP while clamping plasma glucose, insulin, and glucagon concentrations at their fasting level. Thirty-eight patients with type 2 diabetes received an 8-h measurement of EGP ([3-3H]-glucose) on three occasions. After a 3-h tracer equilibration, subjects received 1) dapagliflozin 10 mg (n = 26) or placebo (n = 12); 2) repeat EGP measurement with the plasma glucose concentration clamped at the fasting level; and 3) repeat EGP measurement with inhibition of insulin and glucagon secretion with somatostatin infusion and replacement of basal plasma insulin and glucagon concentrations. In study 1, the change in EGP (baseline to last hour of EGP measurement) in subjects receiving dapagliflozin was 22% greater (+0.66 ± 0.11 mg/kg/min, P < 0.05) than in subjects receiving placebo, and it was associated with a significant increase in plasma glucagon and a decrease in the plasma insulin concentration compared with placebo. Under glucose clamp conditions (study 2), the change in plasma insulin and glucagon concentrations was comparable in subjects receiving dapagliflozin and placebo, yet the difference in EGP between dapagliflozin and placebo persisted (+0.71 ± 0.13 mg/kg/min, P < 0.01). Under pancreatic clamp conditions (study 3), dapagliflozin produced an initial large decrease in EGP (8% below placebo), followed by a progressive increase in EGP that was 10.6% greater than placebo during the last hour. Collectively, these results indicate that 1) the changes in plasma insulin and glucagon concentration after SGLT2i administration are secondary to the decrease in plasma glucose concentration, and 2) the dapagliflozin-induced increase in EGP cannot be explained by the increase in plasma glucagon or decrease in plasma insulin or glucose concentrations.




ntra

Initial studies with [11C]vorozole positron emission tomography detect over-expression of intra-tumoral aromatase in breast cancer

Introduction: Aromatase inhibitors are the mainstay of hormonal therapy in estrogen receptor positive, postmenopausal breast cancer, although response rate is just over 50%. The goal of the present study was to validate and optimize positron emission tomography (PET) with 11C-vorozole for measuring aromatase expression in postmenopausal breast cancer. Methods: Ten newly diagnosed, postmenopausal women with biopsy confirmed breast cancer were administered 11C-vorozole intravenously and PET emission data collected between 40 – 90 minutes post-injection. Tracer injection and scanning were repeated 2 hours after ingestion of 2.5mg letrozole p.o. Mean and maximal standard uptake values and ratios to non-tumor tissue (SUVs, SUVRs) were calculated for tumor and non-tumor regions at baseline and after letrozole. Biopsy specimens from the same tumors were stained for aromatase using immunohistochemistry and evaluated for stain intensity and the percentage of immune-positive cells. Results: Seven of the 10 women (70%) demonstrated increased focal uptake of tracer (SUVR>1.1) coinciding with the mammographic location of the lesion. The other 3 women (30%) did not show increased uptake in the tumor (SUVR <1.0). All of the cases with SUVR above 1.1 had SUVs above 2.4 and there was no overlap in SUV between the two groups, with mean SUV in tumors overexpressing aromatase (SUVR>1.1) ranging from 2.47 to 13.6, while tumors not overexpressing aromatase (SUVR<1) ranged from 0.8 to 1.8. Pretreatment with letrozole reduced tracer uptake in the majority of subjects; although the %blocking varied across and within tumors. Tumors with high SUV in vivo also showed high staining intensity on IHC. Conclusion: PET with 11C-vorozole is a useful technique for measuring aromatase expression in individual breast lesions, enabling a non-invasive quantitative measurement of baseline and post-treatment aromatase availability in primary tumors and metastatic lesions.




ntra

Label-free Visualization of Early Cancer Hepatic Micrometastasis and Intraoperative Image-guided Surgery by Photoacoustic Imaging

Objectives: The detection of cancer micrometastasis for early diagnosis and treatment poses a great challenge for conventional imaging techniques. The aim of study is to evaluate the performance of photoacoustic imaging (PAI) in detecting hepatic micrometastases from melanoma in a very early stage and perform tumor resection by intraoperative photoacoustic image-guidance. Methods: In vivo studies were performed by following protocols approved by the Ethical Committee for Animal Research at Xiamen University. First, a B16 melanoma hepatic metastasis mouse model (n = 10) was established to study the development of micrometastases in vivo. Next, the hepatic metastasis mice models were imaged by scalable PAI instrument, ultrasound, 9.4 T high-resolution magnetic resonance imaging (MRI), positron emission tomography/computed tomography (PET/CT), and bioluminescence imaging. Photoacoustic images acquired with optical wavelengths spanning from 680 to 850 nm were spectrally unmixed by using a linear least-squares method to differentiate various components. Differences in the signal-to-background ratios among different modalities were determined with the two-tailed paired t test. The diagnosis results were assessed with histologic examinations. Excised liver samples from patients diagnosed with hepatic cancer were also examined to identify tumor boundary. In vivo metastatic melanoma removal in surgery was precisely guided by the portable PAI system. Results: PAI achieved as small as ~400 µm hepatic melanoma detection at a depth up to 7 mm in vivo, which could early detect small melanoma compared with ultrasound and MRI in mouse models. The signal ratio of tumor-to-liver acquired with PAI in micrometastases at 8 days (4.2 ± 0.2, n = 6) and 14 days (9.2 ± 0.4, n = 5) were significantly higher than those obtained with PET/CT (1.8 ± 0.1, n = 5 and 4.5 ± 0.2, n = 5, P <0.001 for both). Functional PAI provided dynamic oxygen saturation changes during tumor growth. The limit of detection was measured to be approximately 219 cells per microliter in vitro. We successfully performed intraoperative photoacoustic image-guided surgery in vivo using the rapid portable PAI system. Conclusion: Our findings offer a rapid and effective tool to noninvasively detect micrometastases and guide intraoperative resection as a complementary clinical imaging application.




ntra

Positron lymphography via intracervical 18F-FDG injection for pre-surgical lymphatic mapping in cervical and endometrial malignancies

Rationale: The presence of metastasis in local lymph nodes (LNs) is a key factor influencing choice of therapy and prognosis in cervical and endometrial cancers; therefore, the exploration of sentinel LNs (SLNs) is highly important. Currently, however, SLN mapping requires LN biopsy for pathologic evaluation, since there are no clinical imaging approaches that can identify tumor-positive LNs in early stages. Staging lymphadenectomy poses risks, such as leg lymphedema or lymphocyst formation. Furthermore, in 80% to 90% of patients, the explored LNs are ultimately tumor free, meaning the vast majority of patients are unnecessarily subjected to lymphadenectomy. Methods: Current lymphoscintigraphy methods only identify the anatomic location of the SLNs but do not provide information on their tumor status. There are no non-invasive methods to reliably identify metastases in LNs before surgery. We have developed positron lymphography (PLG), a method to detect tumor-positive LNs, where 18F-fluoro-2-deoxy-D-glucose (18F-FDG) is injected interstitially into the uterine cervix the day of surgery, and its rapid transport through the lymphatic vessels to the SLN is then visualized with dynamic positron emission tomography/computed tomography (PET/CT). We previously showed that PLG was able to identify metastatic LNs in animal models. Here, we present the first results from our pilot clinical trial (clinical trials identifier NCT02285192) in 23 patients with uterine or cervical cancer. On the morning of surgery, 18F-FDG was injected into the cervix, followed by an immediate dynamic PET/CT scan of the pelvis and a delayed 1-h whole body scan. Results: There were 3 (15%) node-positive cases on final pathologic analysis, and all LNs (including one with a focus of only 80 tumor cells) were identified by PLG except one node with an 11-mm micrometastasis. There were 2 (10%) false-positive cases with PLG, in which final pathology of the corresponding SLNs was negative for tumor. Methods: Current lymphoscintigraphy methods only identify the anatomic location of the SLNs but do not provide information on their tumor status. There are no non-invasive methods to reliably identify metastases in LNs before surgery. We have developed positron lymphography (PLG), a method to detect tumor-positive LNs, where 18F-fluoro-2-deoxy-D-glucose (18F-FDG) is injected interstitially into the uterine cervix the day of surgery, and its rapid transport through the lymphatic vessels to the SLN is then visualized with dynamic positron emission tomography/computed tomography (PET/CT). We previously showed that PLG was able to identify metastatic LNs in animal models. Here, we present the first results from our pilot clinical trial (clinical trials identifier NCT02285192) in 23 patients with uterine or cervical cancer. On the morning of surgery, 18F-FDG was injected into the cervix, followed by an immediate dynamic PET/CT scan of the pelvis and a delayed 1-h whole body scan. Results: There were 3 (15%) node-positive cases on final pathologic analysis, and all LNs (including one with a focus of only 80 tumor cells) were identified by PLG, except for one node with an 11-mm micrometastasis. There were 2 (10%) false-positive cases with PLG, in which final pathology of the corresponding SLNs was negative for tumor. Conclusion: This first-in-human study of PLG in women with uterine and cervical cancer demonstrates its feasibility and its ability to identify patients with nodal metastases, and warrants further evaluation in additional studies.




ntra

Will SPECT/CT Cameras soon be able to display Absorbed Doses? Dosimetry from Single Activity Concentration Measurements.




ntra

Demarcation of Sepsis-Induced Peripheral and Central Acidosis with pH-Low Insertion Cyclic (pHLIC) Peptide

Acidosis is a key driver for many diseases, including cancer, sepsis, and stroke. The spatiotemporal dynamics of dysregulated pH across disease remains elusive and current diagnostic strategies do not provide localization of pH alterations. We sought to explore if PET imaging using hydrophobic cyclic peptides that partition into the cellular membrane at low extracellular pH (denoted as "pHLIC") can permit accurate in vivo visualization of acidosis. Methods: Acid-sensitive cyclic peptide c[E4W5C] pHLIC was conjugated to bifunctional maleimide-NO2A and radiolabeled with copper-64 (t1/2 = 12.7 h). C57BL/6J mice were administered LPS (15 mg/kg) or saline (vehicle) and serially imaged with [64Cu]Cu-c[E4W5C] over 24 h. Ex vivo autoradiography was performed on resected brain slices and subsequently stained with cresyl violet to enable high-resolution spatial analysis of tracer accumulation. A non- pH-sensitive cell-penetrating control peptide (c[R4W5C]) was used to confirm specificity of [64Cu]Cu-c[E4W5C]. CD11b (macrophage/microglia) and TMEM119 (microglia) immunostaining was performed to correlate extent of neuroinflammation with [64Cu]Cu-c[E4W5C] PET signal. Results: [64Cu]Cu-c[E4W5C] radiochemical yield and purity was >95% and >99% respectively, with molar activity >0.925 MBq/nmol. Significantly increased [64Cu]Cu-c[E4W5C] uptake was observed in LPS-treated mice (vs. vehicle) within peripheral tissues including blood, lungs, liver, and small intestines (P < 0.001-0.05). Additionally, there was significantly increased [64Cu]Cu-c[E4W5C] uptake in the brains of LPS-treated animals. Autoradiography confirmed increased uptake in the cerebellum, cortex, hippocampus, striatum, and hypothalamus of LPS-treated mice (vs. vehicle). Immunohistochemical (IHC) analysis revealed microglial/macrophage infiltrate, suggesting activation in brain regions containing increased tracer uptake. [64Cu]Cu-c[R4W5C] demonstrated significantly reduced uptake in the brain and periphery of LPS mice compared to the acid-mediated [64Cu]Cu-c[E4W5C] tracer. Conclusion: Here, we demonstrate that a pH-sensitive PET tracer specifically detects acidosis in regions associated with sepsis-driven pro-inflammatory responses. This study suggests that [64Cu]Cu-pHLIC is a valuable tool to noninvasively assess acidosis associated with both central and peripheral innate immune activation.




ntra

Intraoperative 68Gallium-PSMA Cerenkov Luminescence Imaging for surgical margins in radical prostatectomy - a feasibility study

Objective: To assess the feasibility and accuracy of Cerenkov Luminescence Imaging (CLI) for assessment of surgical margins intraoperatively during radical prostatectomy (RPE). Methods: A single centre feasibility study included 10 patients with high-risk primary prostate cancer (PC). 68Ga-PSMA PET/CT scans were performed followed by RPE and intraoperative CLI of the excised prostate. In addition to imaging the intact prostate, in the first two patients the prostate gland was incised and imaged with CLI to visualise the primary tumour. We compared the tumour margin status on CLI to postoperative histopathology. Measured CLI intensities were determined as tumour to background ratio (TBR). Results: Tumour cells were successfully detected on the incised prostate CLI images as confirmed by histopathology. 3 of 10 men had histopathological positive surgical margins (PSMs), and 2 of 3 PSMs were accurately detected on CLI. Overall, 25 (72%) out of 35 regions of interest (ROIs) proved to visualize a tumour signal according to standard histopathology. The median tumour radiance in these areas was 11301 photons/s/cm2/sr (range 3328 - 25428 photons/s/cm2/sr) and median TBR was 4.2 (range 2.1 – 11.6). False positive signals were seen mainly at the prostate base with PC cells overlaid by benign tissue. PSMA-immunohistochemistry (PSMA-IHC) revealed strong PSMA staining of benign gland tissue, which impacts measured activities. Conclusion: This feasibility showed that 68Ga-PSMA CLI is a new intraoperative imaging technique capable of imaging the entire specimen’s surface to detect PC tissue at the resection margin. Further optimisation of the CLI protocol, or the use of lower-energetic imaging tracers such as 18F-PSMA, are required to reduce false positives. A larger study will be performed to assess diagnostic performance.




ntra

Digital Solid-State SPECT/CT Quantitation of Absolute 177Lu-Radiotracer Concentration: In Vivo/In Vitro Validation

The accuracy of lutetium-177 (177Lu) radiotracer concentration measurements using quantitative clinical software was determined by comparing in vivo results for a digital solid-state cadmium-zinc-telluride SPECT/CT (single photon emission computed tomography / x-ray computed tomography) system to in vitro sampling. First, image acquisition parameters were assessed for an International Electrotechnical Commission (IEC) body phantom emulating clinical count rates loaded with a "lung" insert and 6 hot spheres with a 12:1 target-to-background ratio of 177Lu solution. Then, the data of 28 whole-body SPECT/CT scans of 7 patients who underwent 177Lu prostate membrane antigen (177Lu-PSMA) radioligand therapy was retrospectively analyzed. Three users analyzed SPECT/CT images for in vivo urinary bladder radiotracer uptake using quantitative software (Q.Metrix, GE Healthcare). In vitro radiopharmaceutical concentrations were calculated using urine sampling obtained immediately after each scan, scaled to standardized uptake values (SUVs). Any in vivo/in vitro identity relations were determined by linear regression (ideally slope=1, intercept=0), within a 95 % confidence interval (CI). Phantom results demonstrated lower quantitative error for acquisitions using the 113 keV 177Lu energy peak rather than including the 208 keV peak, given that only low-energy collimation was available in this camera configuration. In the clinical study, 24 in vivo/in vitro pairs were eligible for further analysis, having rejected 4 as outliers (via Cook’s distance calculations). All linear regressions (R2 ≥ 0.92, P<0.0001) provided identity in vivo/in vitro relations (95 % CI), with SUV averages from all users giving a slope of 1.03±0.09, an intercept of –0.25±0.64 g/mL, and an average residual difference of 20.4 %. Acquiring with the lower energy 177Lu energy peak, solid-state SPECT/CT imaging provides an accuracy to within ~20 % for in vivo urinary bladder radiotracer concentrations. This non-invasive in vivo quantitation method can potentially improve diagnosis, improve patient management and treatment response assessment, and provide data essential to 177Lu dosimetry.




ntra

FDG-PET assessment of malignant pleural mesothelioma: Total Lesion volume and Total Lesion Glycolysis; the central role of volume.

Cancer Survival is related to tumor volume. FDG PET measurement of tumor volume holds promise but is not yet a clinical tool. Measurements come in two forms: the total lesion volume (TLV) based on the number of voxels in the tumor and secondly the total lesion glycolysis (TLG) which is the TLV multiplied by the average SUL per voxel of the tumor (SUL is the standardize uptake value normalized for lean mass). In this study we measured tumor volume in patients with malignant pleural mesothelioma (MPM). METHODS: A threshold-based program in IDL was developed to measure tumor volume in FDG PET images. 19 patients with malignant pleural mesothelioma (MPM) were studied before and after two cycles (6 weeks) of chemo-immunotherapy. Measurements included the total lesion volume (TLV), Total Lesion Glycolysis (TLG), the sum of the SULs in the tumor (SUL- total), a measure of total FDG uptake, and the average SUL per voxel. RESULTS: Baseline MPM volumes (TLV) ranged from 11 to 2610 cc. TLG values ranged from 32 to 8552 SUL-cc and were strongly correlated with TLV. While tumor volumes ranged over 3 orders of magnitude, the average SUL per voxel, SUL-average, stayed within a narrow range of 2.4 to 5.3 units. Thus, TLV was the major component of TLG while SUL-average was a minor component and was essentially constant. Further evaluation of SUL-average showed that in this cohort it’s two components SUL-total and tumor volume changed in parallel and were strongly correlated, r= 0.99, p<.01. Thus, whether the tumors were large or small, the FDG uptake as measured by SUL-total was proportional to the total tumor volume. Conclusion: TLG equals TLV multiplied by the average SUL per voxel, essentially TLV multiplied by a constant. Thus TLG, commonly considered a measure of "metabolic activity" in tumors, is also in this cohort a measure of tumor volume. The constancy of SUL per voxel is due to FDG uptake being proportional to tumor volume. Thus, in this study, the FDG uptake was also a measure of volume.




ntra

CXCR4-targeted positron emission tomography imaging of central nervous system B-cell lymphoma

C-X-C chemokine receptor 4 is a transmembrane chemokine receptor involved in growth, survival, and dissemination of cancer, including aggressive B-cell lymphoma. Magnetic resonance imaging (MRI) is the standard imaging technology for central nervous system involvement of B-cell lymphoma and provides high sensitivity but moderate specificity. Therefore, novel molecular and functional imaging strategies are urgently required. Methods: In this proof-of-concept study, 11 patients with lymphoma of the CNS (CNSL, n = 8 primary and n = 3 secondary involvement) were imaged with the CXCR4-directed positron emission tomography (PET) tracer 68Ga-Pentixafor. To evaluate the predictive value of this imaging modality, treatment response, as determined by MRI, was correlated with quantification of CXCR4 expression by 68Ga-Pentixafor PET in vivo before initiation of treatment in 7 of 11 patients. Results: 68Ga-Pentixafor-PET showed excellent contrast characteristics to the surrounding brain parenchyma in all patients with active disease. Furthermore, initial CXCR4 uptake determined by PET correlated with subsequent treatment response as assessed by MRI. Conclusion: 68Ga-Pentixafor-PET represents a novel diagnostic tool for central nervous system lymphoma with potential implications for theranostic approaches as well as response and risk assessment.




ntra

The effects of monosodium glutamate on PSMA radiotracer uptake in men with recurrent prostate cancer: a prospective, randomized, double-blind, placebo-controlled intra-individual imaging study.

The prostate-specific membrane antigen (PSMA) is an excellent target for theranostic applications in prostate cancer (PCa). However, PSMA-targeted radioligand therapy can cause undesirable effects due to high accumulation of PSMA radiotracers in salivary glands and kidneys. This study assessed orally administered monosodium glutamate (MSG) as a potential means of reducing kidney and salivary gland radiation exposure using a PSMA targeting radiotracer. Methods: This prospective, double-blind, placebo-controlled study enrolled 10 biochemically recurrent PCa patients. Each subject served as his own control. [18F]DCFPyl PET/CT imaging sessions were performed 3 – 7 days apart, following oral administration of either 12.7 g of MSG or placebo. Data from the two sets of images were analyzed by placing regions of interest on lacrimal, parotid and submandibular glands, left ventricle, liver, spleen, kidneys, bowel, urinary bladder, gluteus muscle and malignant lesions. The results from MSG and placebo scans were compared by paired analysis of the ROI data. Results: A total of 142 pathological lesions along with normal tissues were analyzed. As hypothesized a priori, there was a significant decrease in maximal standardized uptake values corrected for lean body mass (SULmax) on images obtained following MSG administration in the parotids (24 ± 14%, P = 0.001), submandibular glands (35 ± 11%, P<0.001) and kidneys (23 ± 26%, P = 0.014). Significant decreases were also observed in lacrimal glands (49 ± 13%, P<0.001), liver (15 ± 6%, P<0.001), spleen (28 ± 13%, P = 0.001) and bowel (44 ± 13%, P<0.001). Mildly lower blood pool SULmean was observed after MSG administration (decrease of 11 ± 13%, P = 0.021). However, significantly lower radiotracer uptake in terms of SULmean, SULpeak, and SULmax was observed in malignant lesions on scans performed after MSG administration compared to the placebo studies (SULmax median decrease 33%, range -1 to 75%, P<0.001). No significant adverse events occurred and vital signs were stable following placebo or MSG administration. Conclusion: Orally administered MSG significantly decreased salivary gland, kidney and other normal organ PSMA radiotracer uptake in human subjects, using [18F]DCFPyL as an exemplar. However, MSG caused a corresponding reduction in tumor uptake, which may limit the benefits of this approach for diagnostic and therapeutic applications.




ntra

Central and Eastern Europe and Sub-Saharan Africa: The Potential of Investment Partnerships for Mutual Benefit

31 October 2019

Trade between Central and Eastern Europe and sub-Saharan Africa has increased significantly in the last decade and a half. There is a strong case to be made for greater economic re-engagement, especially in terms of investment, that has the potential to support inclusive growth in both regions.

Damir Kurtagic

Former Academy Robert Bosch Fellow, Africa Programme

recycled-containerboard-warehouse_mondi_poland.jpg

Recycled containerboard warehouse, Mondi Group, Poland. Photo: Mondi Group.

Summary

  • There are growing economic links between the economies of Central and Eastern Europe and sub-Saharan Africa in terms of both trade and investment. However, while trade has picked up significantly from pre-EU accession levels, investment has not increased to the same extent.
  • Contrary to common assumption, investment flows are not solely from Central and Eastern Europe to sub-Saharan Africa. In reality, the largest investment flow between the two blocs occurs in the opposite direction – from South Africa into Central and Eastern Europe.
  • Sub-Saharan Africa can benefit from a greater commercial relationship focused on attracting sustainable investment from Central and Eastern Europe. For this to happen, commercial strategies towards Central and Eastern European countries need to be put in place before strategy can be reinforced by greater diplomatic and informational support.
  • For many sub-Saharan African governments, there is no overall targeted approach to attracting Central and Eastern European investors. A notable exception is South Africa, where departments have been established at provincial government level to specifically target investment from Central and Eastern Europe.
  • Sub-Saharan African governments expect Central and Eastern European private-sector investment to result not only in job creation, but also to bring spillover benefits such as the transfer of skills and knowledge to domestic industries.
  • Each sub-Saharan African country, in accordance with its individual circumstances, will need to adopt a discrete mix of administrative reform (particularly aimed at cutting red tape), as well as infrastructural and other policies that improve the business environment and generate investor confidence.
  • Much of the private sector in Central and Eastern Europe is somewhat hesitant to invest in sub-Saharan Africa on a greater scale. Many companies are most comfortable operating within their domestic environment; when they invest abroad, it tends to be in the ‘neighbourhood’ with which they are already familiar. Perceptions of risk are often compounded by popular misperceptions and generalizations about sub-Saharan Africa.
  • Central and Eastern European countries stand to gain from a deeper investment relationship. While greater engagement with sub-Saharan Africa has already been pursued by some countries, most of them focus on trade. Institutional support to companies from Central and Eastern Europe (both public and private) has evolved to a degree, but is still not comprehensive. Information for companies interested in investing is either lacking or not shared in an efficient way. And the greatest challenge is ensuring top-level political engagement.
  • EU membership offers clear opportunities for Central and Eastern European countries to invest sustainably and responsibly in sub-Saharan Africa. Not only is financial support forthcoming, through innovative EU financial instruments, but the availability of information relevant to business and the EU’s extensive diplomatic presence in Africa should help to alleviate some of the concerns of Central and Eastern European investors.




ntra

Central & Eastern Europe and Africa Engagement: Labour Mobility and Policy in East Africa

Research Event

15 January 2020 - 10:00am to 12:30pm

Nairobi, Kenya

Strengthened links between the states of sub-Saharan Africa (SSA) and Central and Eastern Europe (CEE) are emerging marked by growth in diplomatic representation, trade and economic ties and supporting networks.

Against this backdrop, labour migration within and from the CEE and East Africa sub-regions are a key policy area with significant potential for shared learning and cooperation. For both regions, migration trends in recent years have evolved as a result of a diverse range of interactions among public, private and civil society actors and at local, national, regional and international levels. Unpacking such interactions and their political and geographical specificities is essential to effective engagement and cooperation within and between the regions on issues of labour migration and their management.

This roundtable brainstorming workshop will provide a platform for stakeholders based in East Africa to discuss the way in which different actors and agencies in the region influence and shape labour migration processes and policy responses.

This event is supported by the Robert Bosch Stiftung.

Event attributes

Chatham House Rule

Fergus Kell

Projects Assistant, Africa Programme
+ 44 (0) 20 7314 3671




ntra

The Central African Republic: Security, Development and Responding to the Humanitarian Situation

Invitation Only Research Event

3 February 2020 - 2:00pm to 3:00pm

Chatham House | 10 St James's Square | London | SW1Y 4LE

Event participants

Denise Brown, United Nations Deputy Special Representative of the Secretary-General, Resident and Humanitarian Coordinator in the Central African Republic
Chair: Ben Shepherd, Consulting Fellow, Africa Programme, Chatham House

With two-thirds of the country’s population estimated to be in need of humanitarian aid and one-quarter either internally displaced or living as refugees in neighbouring countries, the Central African Republic (CAR) continues to face serious and complex humanitarian challenges. The country’s forthcoming presidential elections scheduled for December 2020 risk inflaming CAR’s volatile security situation particularly with the return of former leader, François Bozizé, ousted by the Séléka rebel coalition leader, Michel Djotodia, who has also returned from exile.

At this event, Denise Brown will discuss CAR’s current security, humanitarian and development situations and the role of actors such as the United Nations Multidimensional Integrated Stabilization Mission in the Central African Republic (MINUSCA). She will also discuss prospects for much-needed governance reform and reconciliation.

Attendance at this event is by invitation only. 

Event attributes

Chatham House Rule

Hanna Desta

Programme Assistant, Africa Programme




ntra

Decentralization and Cross-border Integration in the Horn of Africa

Research Event

4 February 2020 - 5:00pm to 6:15pm

Chatham House | 10 St James's Square | London | SW1Y 4LE

Event participants

Mohamed Guleid, Chief Executive Officer, Frontier Counties Development Council
Nuradin Dirie, Chair, Puntland Presidential Advisory Council
Aden Abdi, Horn of Africa Programme Director, Conciliation Resources
Chair: Dr Zahbia Yousuf, Senior Research Advisor, Saferworld 

The interdependence of communities across the Horn of Africa results from social, familial, linguistic and cultural ties that cross territorial borders. Such linkages are reinforced by established patterns of movement and trade, often leading to stronger political and social connections between communities on either side of borders, than with their respective national capitals. States in the region are increasingly being challenged by demands for decentralization and more effective local governance. Improved understanding of the complexity of sub-national and cross-border political and economic contexts will be required to meet these demands and support enhanced governance so that challenges such as marginalization, intercommunal conflict and more equitable sharing of resources can be effectively addressed.

At this event, speakers will examine some of the key subnational and cross-border relations in the Horn of Africa. They will also discuss initiatives and stakeholders needed to support common solutions to building peace, furthering development and bolstering inclusive growth and integration. 

THIS EVENT IS NOW FULL AND REGISTRATION HAS CLOSED.

Sahar Eljack

Programme Administrator, Africa Programme
+ 44 (0) 20 7314 3660




ntra

Concentration Determination of >200 Proteins in Dried Blood Spots for Biomarker Discovery and Validation [Technological Innovation and Resources]

The use of protein biomarkers as surrogates for clinical endpoints requires extensive multilevel validation including development of robust and sensitive assays for precise measurement of protein concentration. Multiple reaction monitoring (MRM) is a well-established mass-spectrometric method that can be used for reproducible protein-concentration measurements in biological specimens collected via microsampling. The dried blood spot (DBS) microsampling technique can be performed non-invasively without the expertise of a phlebotomist, and can enhance analyte stability which facilitate the application of this technique in retrospective studies while providing lower storage and shipping costs, because cold-chain logistics can be eliminated. Thus, precise, sensitive, and multiplexed methods for measuring protein concentrations in DBSs can be used for de novo biomarker discovery and for biomarker quantification or verification experiments. To achieve this goal, MRM assays were developed for multiplexed concentration measurement of proteins in DBSs.

The lower limit of quantification (LLOQ) was found to have a median total coefficient of variation (CV) of 18% for 245 proteins, whereas the median LLOQ was 5 fmol of peptide injected on column, and the median inter-day CV over 4 days for measuring endogenous protein concentration was 8%. The majority (88%) of the assays displayed parallelism, whereas the peptide standards remained stable throughout the assay workflow and after exposure to multiple freeze-thaw cycles. For 190 proteins, the measured protein concentrations remained stable in DBS stored at ambient laboratory temperature for up to 2 months. Finally, the developed assays were used to measure the concentration ranges for 200 proteins in twenty same sex, same race and age matched individuals.




ntra

$212,000 per public service IT contractor, and we're hiring more of them

Contractors cost 80 grand more than public servants, Finance Departments says, and the public service hires more of them.




ntra

Brisbane City Council IT contract faces potential $60 million blow-out

A $122 million Brisbane City Council IT contract will be renegotiated after a systems replacement program was delayed by 18 months, with a potential cost blow-out of up to $60 million.




ntra

Brisbane City Council terminates $122 million IT contract

Brisbane CIty Council has terminated a $122 million IT contract that had been plagued with cost blow outs and lengthy delays.




ntra

Commentary on SSO and other putative inhibitors of FA transport across membranes by CD36 disrupt intracellular metabolism, but do not affect fatty acid translocation

Henry J. Pownall
May 1, 2020; 61:595-597
Commentary




ntra

Investigation of inter- and intra-tumoral heterogeneity of glioblastoma using TOF-SIMS [Research]

Glioblastoma (GBM) is one of the most aggressive human cancers with a median survival of less than two years. A distinguishing pathological feature of GBM is a high degree of inter- and intratumoral heterogeneity. Intertumoral heterogeneity of GBM has been extensively investigated on genomic, methylomic, transcriptomic, proteomic and metabolomics levels, however only a few studies describe intratumoral heterogeneity due to the lack of methods allowing to analyze GBM samples with high spatial resolution. Here, we applied TOF-SIMS (Time-of-flight secondary ion mass spectrometry) for the analysis of single cells and clinical samples such as paraffin and frozen tumor sections obtained from 57 patients. We developed a technique that allows us to simultaneously detect the distribution of proteins and metabolites in glioma tissue with 800 nm spatial resolution. Our results demonstrate that according to TOF-SIMS data glioma samples can be subdivided into clinically relevant groups and distinguished from the normal brain tissue. In addition, TOF-SIMS was able to elucidate differences between morphologically distinct regions of GBM within the same tumor. By staining GBM sections with gold-conjugated antibodies against Caveolin-1 we could visualize border between zones of necrotic and cellular tumor and subdivide glioma samples into groups characterized by different survival of the patients. Finally, we demonstrated that GBM contains cells that are characterized by high levels of Caveolin-1 protein and cholesterol. This population may partly represent a glioma stem cells. Collectively, our results show that the technique described here allows to analyze glioma tissues with a spatial resolution beyond reach of most of other omics approaches and the obtained data may be used to predict clinical behavior of the tumor.




ntra

Kazakhstan: Reaching Out to Central Asian Neighbours

4 December 2019

Annette Bohr

Associate Fellow, Russia and Eurasia Programme
Despite its regional outreach, Kazakhstan’s diplomatic priority will remain Russia, China, and Europe.

2019-12-04-Kaz.jpg

Kazakhstan's President Kassym-Jomart Tokayev, Kazakh Majilis Chairman Nurlan Nigmatulin and ex-president Nursultan Nazarbayev at an inauguration ceremony in parliament. Photo: Pavel AleksandrovTASS via Getty Images.

Leaders of the resource-rich Central Asian region have the propensity to remain in power until mortality dictates otherwise. Much like the UK and Brexit, however, few wanted to see Central Asia’s longest reigning ruler, Kazakhstan’s septuagenarian president Nursultan Nazarbayev, crash out without a deal.

The sudden departure of the country’s official leader of the nation with no clear succession plan could have led to investment chaos, intra-elite fighting and the unravelling in a matter of months of a system he had built over decades, à la Uzbekistan following the death of long-serving autocrat Islam Karimov in 2016.

In order to avoid just such a ‘no-deal’ scenario and ensure the continuity of his policies, in March Nazarbayev carefully choreographed his own resignation and the election of a hand-picked successor, President Kassym-Jomart Tokayev, while retaining plum positions and powers for himself.

Tokayev’s assumption of the presidency was accompanied by protesters in the streets, increasing wealth inequality, rising Sinophobia among rank-and-file Kazakhstanis, a hard-to-kick economic dependence on oil revenues and a lack of clarity as to which leader—the old or the new president—would actually be calling the shots. But, amidst this plethora of concerns, as argued in a recent Chatham House report, Kazakhstan: Tested by Transition, one bright spot has been the tangible growth of intra-Central Asian cooperation, with the Nazarbayev-Tokayev ruling duo appearing eager to improve the regional dialogue.

Kazakhstan has long shaped its identity as a Eurasian state that has acted as more of an intermediary between Russia and Central Asia than as an integral part of the Central Asian region. But since 2017, in particular, Kazakhstan has been increasingly looking for opportunities to boost hitherto weak cooperation with its Central Asian neighbours. While this is first and foremost owing to the liberalization of Uzbekistan’s large market, there are other factors at work that get less airplay.

One such factor is a perceptible disentangling from the Kremlin’s policy directions as Kazakhstan has come to view Russia’s foreign policy as increasingly neo-colonial. The example of the Russia-led Eurasian Economic Union is in many respects more off-putting than inspiring, and Nur-Sultan does not want to be locked tightly into the union’s economic orbit. And in distancing itself slightly from Moscow in order to limit Russian leverage in its affairs, Nur-Sultan has shown itself to be more open to Central Asian regional initiatives.

As part of the leadership’s plan to offset oil dependence, Kazakhstan aspires to become the transport, telecommunications and investment hub for Eurasian integration. The intense focus on connectivity and the development of logistical arteries and infrastructure could have the knock-on effect of boosting trade within the Central Asian region and reducing transit times, which are currently greater than in most other parts of the globe.

In addition, demographic trends and educational shifts that favour ethnic Kazakhs, together with a growing ethno-nationalist narrative, have allowed the state’s leadership to identify more closely with Kazakhstan’s common Central Asian heritage and, by extension, a common Central Asian region—although Kazakhstan’s leadership still remains eager to demonstrate that the country is not just another ‘stan’. The coming to power of President Mirziyoyev in Uzbekistan appears to have made Kazakhstan more aware of the interconnectedness of the two countries in terms of geographical location and potential economic complementarities, as well as culture and history.

Not least, there is a growing recognition among the Central Asian states themselves—including isolationist Turkmenistan to a degree—that deepening regional trade is mutually beneficial, especially given the constraints associated with Russia’s economic problems. The strengthening of Kazakhstan’s ties with Uzbekistan has slowly kick-started regional cooperation as a whole: trade turnover between the Central Asian states in 2018 grew by 35 per cent on the previous year.

But both Kazakhstan and Uzbekistan are keen to stress that there is no discussion of integration or institutionalization, not least because previous attempts at integration have been overtaken by Russia, leaving Central Asia without its own coordinating body.

The official consensus in Kazakhstan is that Uzbekistan’s economic reforms after years of isolation will spur ‘a healthy rivalry’ and ultimately boost Kazakhstan’s own economy, in so far as the competition for foreign investment will require both countries to work harder to improve their respective business and regulatory environments.

At the unofficial level, however, some Kazakhstani analysts view Uzbekistan’s rise as potentially unprofitable, given the possible diversion of some investments and market activity from Kazakhstan to Uzbekistan. Moreover, Uzbekistan has the advantage of having undergone a clear change of executive, while it remains unclear which developments await Kazakhstan once First President Nazarbayev leaves the scene for good.

It can certainly be argued that Uzbekistan does pose a potential threat in the long-term to Kazakhstan’s entrenched position as Central Asia’s economic powerhouse: Uzbekistan’s population is one-and-a-half times bigger, even if its nominal GDP is three times smaller. Uzbekistan has a bigger market and a well-developed industrial sector, and is already the regional leader in terms of security. But it is not as though the world’s interest is moving from Kazakhstan to Uzbekistan; rather, Uzbekistan is in the process of trying to catch up.

Despite this relatively upbeat picture, Kazakhstan’s combined trade with the other Central Asian states accounts for less than 5 per cent of its total volume of foreign trade—a figure that cannot begin to equal its trade with Russia, China, and Europe. As a result, Kazakhstan will continue to give greater importance to positioning itself as a global player than as a regional leader.

This article was originally published in The Diplomat.




ntra

Functional recombinant apolipoprotein A5 that is stable at high concentrations at physiological pH [Methods]

APOA5 is a low-abundance exchangeable apolipoprotein that plays critical roles in human triglyceride (TG) metabolism. Indeed, aberrations in the plasma concentration or structure of APOA5 are linked to hypertriglyceridemia, hyperchylomicronemia, myocardial infarction risk, obesity, and coronary artery disease. While it has been successfully produced at low yield in bacteria, the resulting protein had limitations for structure-function studies due to its low solubility under physiological buffer conditions. We hypothesized that the yield and solubility of recombinant APOA5 could be increased by: i) engineering a fusion protein construct in a codon optimized expression vector, ii) optimizing an efficient refolding protocol, and iii) screening buffer systems at physiological pH. The result was a high-yield (25 mg/l) bacterial expression system that produces lipid-free APOA5 soluble at concentrations of up to 10 mg/ml at a pH of 7.8 in bicarbonate buffers. Physical characterization of lipid-free APOA5 indicated that it exists as an array of multimers in solution, and far UV circular dichroism analyses show differences in total α-helicity between acidic and neutral pH buffering conditions. The protein was functional in that it bound and emulsified multilamellar dimyristoyl-phosphatidylcholine vesicles and could inhibit postprandial plasma TG accumulation when injected into C57BL/6J mice orally gavaged with Intralipid.




ntra

Effects of omega-O-acylceramide structures and concentrations in healthy and diseased skin barrier lipid membrane models [Research Articles]

Ceramides (Cers) with ultralong (~32-carbon) chains and -esterified linoleic acid, composing a subclass called omega-O-acylceramides (acylCers), are indispensable components of the skin barrier. Normal barriers typically contain acylCer concentrations of ~10 mol%; diminished concentrations, along with altered or missing long periodicity lamellar phase (LPP), and increased permeability accompany an array of skin disorders, including atopic dermatitis, psoriasis, and ichthyoses. We developed model membranes to investigate the effects of the acylCer structure and concentration on skin lipid organization and permeability. The model membrane systems contained six to nine Cer subclasses as well as fatty acids, cholesterol, and cholesterol sulfate; acylCer content—namely, acylCers containing sphingosine (Cer EOS), dihydrosphingosine (Cer EOdS), and phytosphingosine (Cer EOP) ranged from zero to 30 mol%. Systems with normal physiologic concentrations of acylCer mixture mimicked the permeability and nanostructure of human skin lipids (with regard to LPP, chain order, and lateral packing). The models also showed that the sphingoid base in acylCer significantly affects the membrane architecture and permeability and that Cer EOP, notably, is a weaker barrier component than Cer EOS and Cer EOdS. Membranes with diminished or missing acylCers displayed some of the hallmarks of diseased skin lipid barriers (i.e., lack of LPP, less ordered lipids, less orthorhombic chain packing, and increased permeability). These results could inform the rational design of new and improved strategies for the barrier-targeted treatment of skin diseases.




ntra

SSO and other putative inhibitors of FA transport across membranes by CD36 disrupt intracellular metabolism, but do not affect FA translocation [Research Articles]

Membrane-bound proteins have been proposed to mediate the transport of long-chain FA (LCFA) transport through the plasma membrane (PM). These proposals are based largely on reports that PM transport of LCFAs can be blocked by a number of enzymes and purported inhibitors of LCFA transport. Here, using the ratiometric pH indicator (2',7'-bis-(2-carboxyethyl)-5-(and-6-)-carboxyfluorescein and acrylodated intestinal FA-binding protein-based dual fluorescence assays, we investigated the effects of nine inhibitors of the putative FA transporter protein CD36 on the binding and transmembrane movement of LCFAs. We particularly focused on sulfosuccinimidyl oleate (SSO), reported to be a competitive inhibitor of CD36-mediated LCFA transport. Using these assays in adipocytes and inhibitor-treated protein-free lipid vesicles, we demonstrate that rapid LCFA transport across model and biological membranes remains unchanged in the presence of these purported inhibitors. We have previously shown in live cells that CD36 does not accelerate the transport of unesterified LCFAs across the PM. Our present experiments indicated disruption of LCFA metabolism inside the cell within minutes upon treatment with many of the "inhibitors" previously assumed to inhibit LCFA transport across the PM. Furthermore, using confocal microscopy and a specific anti-SSO antibody, we found that numerous intracellular and PM-bound proteins are SSO-modified in addition to CD36. Our results support the hypothesis that LCFAs diffuse rapidly across biological membranes and do not require an active protein transporter for their transmembrane movement.




ntra

The ins and outs of lipid rafts: functions in intracellular cholesterol homeostasis, microparticles, and cell membranes [Thematic Reviews]

Cellular membranes are not homogenous mixtures of proteins; rather, they are segregated into microdomains on the basis of preferential association between specific lipids and proteins. These microdomains, called lipid rafts, are well known for their role in receptor signaling on the plasma membrane (PM) and are essential to such cellular functions as signal transduction and spatial organization of the PM. A number of disease states, including atherosclerosis and other cardiovascular disorders, may be caused by dysfunctional maintenance of lipid rafts. Lipid rafts do not occur only in the PM but also have been found in intracellular membranes and extracellular vesicles (EVs). Here, we focus on discussing newly discovered functions of lipid rafts and microdomains in intracellular membranes, including lipid and protein trafficking from the ER, Golgi bodies, and endosomes to the PM, and we examine lipid raft involvement in the production and composition of EVs. Because lipid rafts are small and transient, visualization remains challenging. Future work with advanced techniques will continue to expand our knowledge about the roles of lipid rafts in cellular functioning.




ntra

Commentary on SSO and other putative inhibitors of FA transport across membranes by CD36 disrupt intracellular metabolism, but do not affect fatty acid translocation [Commentaries]




ntra

Rays' 2019 mantra: Prepare to win from within

Over the past couple seasons, the Rays have preached patience as the organization provided time for the top prospects to make it up to the Majors. Now, the focus has been primarily in remaining flexible and keeping positions open for the young talent arriving from the Minors.




ntra

Obesity Reduces Maternal Blood Triglyceride Concentrations by Reducing Angiopoietin-like Protein 4 Expression in Mice

To ensure fetal lipid supply, maternal blood triglyceride (TG) concentrations are robustly elevated during pregnancy. Interestingly, a lower increase in maternal blood TG concentrations has been observed in some obese mothers. We have shown that high-fat (HF) feeding during pregnancy significantly reduces maternal blood TG levels. Therefore, we performed this study to investigate if and how obesity alters maternal blood TG levels. Maternal obesity was established by prepregnant HF feeding (ppHF), which avoided the dietary effect during pregnancy. We found that maternal blood TG concentrations in ppHF dams were not only remarkably lower than control dams, but the TG peak occurred earlier during gestation. Hepatic TG production and intestinal TG absorption were unchanged in ppHF dams, but systemic lipoprotein lipase (LPL) activity was increased, suggesting that increased blood TG clearance contributes to the decreased blood TG concentrations in ppHF dams. Although significantly higher levels of UCP1 protein were observed in iBAT of ppHF dams, Ucp1 gene deletion did not restore blood TG concentrations in ppHF dams. Expression of the angiopoietin-like protein 4 (ANGPTL4), a potent endogenous LPL inhibitor, was significantly increased during pregnancy. However, the pregnancy-induced elevation of blood TG was almost abolished in Angptl4-/- dams. Compared with control dams, Angptl4 mRNA levels were significantly lower in iBAT, gWAT and livers of ppHF dams. Importantly, ectopic overexpression of ANGPTL4 restored maternal blood TG concentrations in ppHF dams. Together, these results indicate that ANGPTL4 plays a vital role in increasing maternal blood TG concentrations during pregnancy. Obesity impairs the rise of maternal blood TG concentrations by reducing ANGPTL4 expression in mice.




ntra

Central {alpha}-Klotho Suppresses NPY/AgRP Neuron Activity and Regulates Metabolism in Mice

α-Klotho is a circulating factor with well-documented anti-aging properties; however, the central role of α-klotho in metabolism remains largely unexplored. The current study investigated the potential role of central α-klotho to modulate NPY/AgRP neurons, energy balance, and glucose homeostasis. Intracerebroventricular (ICV) administration of α-klotho suppressed food intake, improved glucose profiles, and reduced body weight in mouse models of Type I and II diabetes. Furthermore, central α-klotho inhibition via an anti-α-klotho antibody impaired glucose tolerance. Ex vivo patch clamp electrophysiology and immunohistochemical analysis revealed that α-klotho suppresses NPY/AgRP neuron activity, at least in part, by enhancing mIPSC’s. Experiments in hypothalamic GT1-7 cells observed α-klotho induces phosphorylation of AKTser473, ERKthr202/tyr204, and FOXO1ser256, as well as blunts AgRP gene transcription. Mechanistically, fibroblast growth factor 1 (FGFR1) inhibition abolished the downstream signaling of α-klotho, negated its ability to modulate NPY/AgRP neurons, and blunted its therapeutic effects. PI3 kinase inhibition also abolished α-klotho’s ability to suppress food intake and improve glucose clearance. These results indicate a prominent role of hypothalamic α-klotho/FGFR1/PI3K signaling in the modulation of NPY/AgRP neuron activity and maintenance of energy homeostasis, thus providing new insight into the pathophysiology of metabolic disease.




ntra

Acute Hyperglycemia Increases Brain Pregenual Anterior Cingulate Cortex Glutamate Concentrations in Type 1 Diabetes Mellitus

The brain mechanisms underlying the association of hyperglycemia with depressive symptoms are unknown. We hypothesized that disrupted glutamate metabolism in pregenual anterior cingulate cortex (ACC) in type 1 diabetes (T1D) without depression affects emotional processing. Using proton magnetic resonance spectroscopy (MRS), we measured glutamate concentrations in ACC and occipital cortex (OCC) in 13 T1D without major depression (HbA1c=7.1±0.7% [54±7mmol/mol]) and 11 healthy non-diabetic controls (HbA1c=5.5±0.2% [37±3mmol/mol]) during fasting euglycemia (EU) followed by a 60-minute +5.5mmol/l hyperglycemic clamp (HG). Intrinsic neuronal activity was assessed using resting-state blood oxygen level dependent functional MRI to measure the fractional amplitude of low frequency fluctuations in slow-band 4 (fALFF4). Emotional processing and depressive symptoms were assessed using emotional tasks (Emotional-Stroop, Self-Referent-Encoding-Task SRET) and clinical ratings (HAM-D, SCL-90-R), respectively. During HG, ACC glutamate increased (1.2mmol/kg, +10%, p=0.014) while ACC fALFF4 was unchanged (-0.007, -2%, p=0.449) in T1D; in contrast, glutamate was unchanged (-0.2mmol/kg, -2%, p=0.578) while fALFF4 decreased (-0.05, -13%, p=0.002) in controls. OCC glutamate and fALFF4 were unchanged in both groups. T1D had longer SRET negative-word response-times (p=0.017) and higher depression-rating scores (HAM-D p=0.020; SCL-90-R-depression p=0.008). Higher glutamate change tended to associate with longer Emotional-Stroop response-times in T1D only. Brain glutamate must be tightly controlled during hyperglycemia due to the risk for neurotoxicity with excessive levels. Results suggest that ACC glutamate control mechanisms are disrupted in T1D, which affects glutamatergic neurotransmission related to emotional or cognitive processing. Increased prefrontal glutamate during acute hyperglycemic episodes could explain our previous findings of associations between chronic hyperglycemia, cortical thinning and depressive symptoms in T1D.




ntra

Central KATP Channels Modulate Glucose Effectiveness in Humans and Rodents

Hyperglycemia is a potent regulator of endogenous glucose production (EGP). Loss of this ‘glucose effectiveness’ is a major contributor to elevated plasma glucose concentrations in type 2 diabetes (T2D). ATP-sensitive potassium channels (KATP channels) in the central nervous system (CNS) have been shown to regulate EGP in humans and rodents. We examined the contribution of central KATP channels to glucose effectiveness. Under fixed hormonal conditions (‘pancreatic clamp’ studies), hyperglycemia suppressed EGP by ~50% in both non-diabetic humans and normal Sprague Dawley rats. By contrast, antagonism of KATP channels with glyburide significantly reduced the EGP-lowering effect of hyperglycemia in both humans and rats. Furthermore, the effects of glyburide on EGP and gluconeogenic enzymes in rats were abolished by intracerebroventricular (ICV) administration of the KATP channel agonist diazoxide. These findings indicate that about half of EGP suppression by hyperglycemia is mediated by central KATP channels. These central mechanisms may offer a novel therapeutic target for improving glycemic control in T2D.




ntra

The Metabolic Responses to 24-h Fasting and Mild Cold Exposure in Overweight Individuals are Correlated and Accompanied by Changes in FGF21 Concentration

A greater decrease in 24-h energy expenditure (24EE) during 24h fasting defines a thriftier metabolic phenotype prone to weight gain during overfeeding and resistant to weight loss during caloric restriction. As the thermogenic response to mild cold exposure (COLD) may similarly characterize this human phenotype identified by acute fasting conditions, we analyzed changes in 24EE and sleeping metabolic rate (SLEEP) in a whole-room indirect calorimeter during 24h fasting at thermoneutrality (24°C) and during energy balance both at thermoneutrality (24°C) and mild cold (19°C) in 20 healthy volunteers (80% male, age: 36.6±11.4y, percentage body fat: 34.8±10.5%). Greater decrease in 24EE during fasting (thriftier phenotype) was associated with less increase in 24EE during COLD, i.e. less cold-induced thermogenesis. Greater decreases in plasma fibroblast growth factor 21 (FGF21) after 24h fasting and after COLD were highly correlated and associated with greater decreases in SLEEP in both conditions. We conclude that the metabolic responses to short-term fasting and COLD are associated and mediated by the liver-derived hormone FGF21. Thus, the 24EE response to COLD further identifies the thrifty versus spendthrift phenotype, providing an additional setting to investigate the physiological mechanisms underlying the human metabolic phenotype and characterizing the individual susceptibility to weight change.




ntra

Effect of a Sustained Reduction in Plasma Free Fatty Acid Concentration on Intramuscular Long-Chain Fatty Acyl-CoAs and Insulin Action in Type 2 Diabetic Patients

Mandeep Bajaj
Nov 1, 2005; 54:3148-3153
Metabolism




ntra

Evidence Against an Important Role of Plasma Insulin and Glucagon Concentrations in the Increase in EGP Caused by SGLT2 Inhibitors

Mariam Alatrach
Apr 1, 2020; 69:681-688
Pathophysiology




ntra

The Morass of Central American Migration: Dynamics, Dilemmas and Policy Alternatives

Invitation Only Research Event

22 November 2019 - 8:15am to 9:30am

Chatham House | 10 St James's Square | London | SW1Y 4LE

Event participants

Anita Isaacs, Professor of Political Science, Haverford College; Co-Director, Migration Encounters Project
Juan Ricardo Ortega, Principal Advisor for Central America, Inter-American Development Bank
Chair: Amy Pope, Associate Fellow, Chatham House; US Deputy Homeland Security Adviser for the Obama Administration (2015-17)

2019 has seen a record number of people migrating from Central America’s Northern Triangle – an area that covers El Salvador, Guatemala and Honduras. Estimates from June 2019 have placed the number of migrants at nearly double of what they were in 2018 with the increase in numbers stemming from a lack of economic opportunity combined with a rise in crime and insecurity in the region. The impacts of migration can already be felt within the affected states as the exodus has played a significant role in weakening labour markets and contributing to a ‘brain drain’ in the region. It has also played an increasingly active role in the upcoming US presidential election with some calling for more security on the border to curb immigration while others argue that a more effective strategy is needed to address the sources of migration. 

What are the core causes of Central American migration and how have the US, Central American and now also Mexican governments facilitated and deterred migration from the region? Can institutions be strengthened to alleviate the causes of migration? And what possible policy alternatives and solutions are there that could alleviate the pressures individuals and communities feel to migrate?   

Anita Isaacs, professor of Political Science at Haverford College and co-director of the Migration Encounters Project, and Juan Ricard Ortega, principal advisor for Central America at the Inter-American Development Bank, will join us for a discussion on the core drivers of migration within and across Central America.

Attendance at this event is by invitation only. 

Event attributes

Chatham House Rule

Department/project

US and Americas Programme




ntra

Kazakhstan: Reaching Out to Central Asian Neighbours

4 December 2019

Annette Bohr

Associate Fellow, Russia and Eurasia Programme
Despite its regional outreach, Kazakhstan’s diplomatic priority will remain Russia, China, and Europe.

2019-12-04-Kaz.jpg

Kazakhstan's President Kassym-Jomart Tokayev, Kazakh Majilis Chairman Nurlan Nigmatulin and ex-president Nursultan Nazarbayev at an inauguration ceremony in parliament. Photo: Pavel AleksandrovTASS via Getty Images.

Leaders of the resource-rich Central Asian region have the propensity to remain in power until mortality dictates otherwise. Much like the UK and Brexit, however, few wanted to see Central Asia’s longest reigning ruler, Kazakhstan’s septuagenarian president Nursultan Nazarbayev, crash out without a deal.

The sudden departure of the country’s official leader of the nation with no clear succession plan could have led to investment chaos, intra-elite fighting and the unravelling in a matter of months of a system he had built over decades, à la Uzbekistan following the death of long-serving autocrat Islam Karimov in 2016.

In order to avoid just such a ‘no-deal’ scenario and ensure the continuity of his policies, in March Nazarbayev carefully choreographed his own resignation and the election of a hand-picked successor, President Kassym-Jomart Tokayev, while retaining plum positions and powers for himself.

Tokayev’s assumption of the presidency was accompanied by protesters in the streets, increasing wealth inequality, rising Sinophobia among rank-and-file Kazakhstanis, a hard-to-kick economic dependence on oil revenues and a lack of clarity as to which leader—the old or the new president—would actually be calling the shots. But, amidst this plethora of concerns, as argued in a recent Chatham House report, Kazakhstan: Tested by Transition, one bright spot has been the tangible growth of intra-Central Asian cooperation, with the Nazarbayev-Tokayev ruling duo appearing eager to improve the regional dialogue.

Kazakhstan has long shaped its identity as a Eurasian state that has acted as more of an intermediary between Russia and Central Asia than as an integral part of the Central Asian region. But since 2017, in particular, Kazakhstan has been increasingly looking for opportunities to boost hitherto weak cooperation with its Central Asian neighbours. While this is first and foremost owing to the liberalization of Uzbekistan’s large market, there are other factors at work that get less airplay.

One such factor is a perceptible disentangling from the Kremlin’s policy directions as Kazakhstan has come to view Russia’s foreign policy as increasingly neo-colonial. The example of the Russia-led Eurasian Economic Union is in many respects more off-putting than inspiring, and Nur-Sultan does not want to be locked tightly into the union’s economic orbit. And in distancing itself slightly from Moscow in order to limit Russian leverage in its affairs, Nur-Sultan has shown itself to be more open to Central Asian regional initiatives.

As part of the leadership’s plan to offset oil dependence, Kazakhstan aspires to become the transport, telecommunications and investment hub for Eurasian integration. The intense focus on connectivity and the development of logistical arteries and infrastructure could have the knock-on effect of boosting trade within the Central Asian region and reducing transit times, which are currently greater than in most other parts of the globe.

In addition, demographic trends and educational shifts that favour ethnic Kazakhs, together with a growing ethno-nationalist narrative, have allowed the state’s leadership to identify more closely with Kazakhstan’s common Central Asian heritage and, by extension, a common Central Asian region—although Kazakhstan’s leadership still remains eager to demonstrate that the country is not just another ‘stan’. The coming to power of President Mirziyoyev in Uzbekistan appears to have made Kazakhstan more aware of the interconnectedness of the two countries in terms of geographical location and potential economic complementarities, as well as culture and history.

Not least, there is a growing recognition among the Central Asian states themselves—including isolationist Turkmenistan to a degree—that deepening regional trade is mutually beneficial, especially given the constraints associated with Russia’s economic problems. The strengthening of Kazakhstan’s ties with Uzbekistan has slowly kick-started regional cooperation as a whole: trade turnover between the Central Asian states in 2018 grew by 35 per cent on the previous year.

But both Kazakhstan and Uzbekistan are keen to stress that there is no discussion of integration or institutionalization, not least because previous attempts at integration have been overtaken by Russia, leaving Central Asia without its own coordinating body.

The official consensus in Kazakhstan is that Uzbekistan’s economic reforms after years of isolation will spur ‘a healthy rivalry’ and ultimately boost Kazakhstan’s own economy, in so far as the competition for foreign investment will require both countries to work harder to improve their respective business and regulatory environments.

At the unofficial level, however, some Kazakhstani analysts view Uzbekistan’s rise as potentially unprofitable, given the possible diversion of some investments and market activity from Kazakhstan to Uzbekistan. Moreover, Uzbekistan has the advantage of having undergone a clear change of executive, while it remains unclear which developments await Kazakhstan once First President Nazarbayev leaves the scene for good.

It can certainly be argued that Uzbekistan does pose a potential threat in the long-term to Kazakhstan’s entrenched position as Central Asia’s economic powerhouse: Uzbekistan’s population is one-and-a-half times bigger, even if its nominal GDP is three times smaller. Uzbekistan has a bigger market and a well-developed industrial sector, and is already the regional leader in terms of security. But it is not as though the world’s interest is moving from Kazakhstan to Uzbekistan; rather, Uzbekistan is in the process of trying to catch up.

Despite this relatively upbeat picture, Kazakhstan’s combined trade with the other Central Asian states accounts for less than 5 per cent of its total volume of foreign trade—a figure that cannot begin to equal its trade with Russia, China, and Europe. As a result, Kazakhstan will continue to give greater importance to positioning itself as a global player than as a regional leader.

This article was originally published in The Diplomat.




ntra

Intramyocellular triglyceride content is a determinant of in vivo insulin resistance in humans: a 1H-13C nuclear magnetic resonance spectroscopy assessment in offspring of type 2 diabetic parents

G Perseghin
Aug 1, 1999; 48:1600-1606
Articles




ntra

The Effect of Insulin on the Disposal of Intravenous Glucose: Results from Indirect Calorimetry and Hepatic and Femoral Venous Catheterization

R A DeFronzo
Dec 1, 1981; 30:1000-1007
Original Contribution




ntra

Intrauterine exposure to diabetes conveys risks for type 2 diabetes and obesity: a study of discordant sibships

D Dabelea
Dec 1, 2000; 49:2208-2211
Articles




ntra

Evidence for 5'AMP-Activated Protein Kinase Mediation of the Effect of Muscle Contraction on Glucose Transport

Tatsuya Hayashi
Aug 1, 1998; 47:1369-1373
Rapid Publications