optical

Optical disc device including a carrier for holding optical discs in a stacked state

An optical disc device according to the present invention performs, in parallel, a first control to convey a first tray in the first optical disc drive group from the disc replacing position to the recording and reproducing position, and a second control to convey a second tray in the second optical disc drive group 40R from the recording and reproducing position to the disc replacing position. The second tray is opposed to the first tray.




optical

Fixing structure of optical component, fixing method of optical component, optical pick-up device, and module device with light sources of RGB three primary colors

A fixing structure of an optical component is composed of a device chassis; a holder holding an optical component; first and second plate parts for joint to the device chassis and a connecting part of both the plate parts are formed in the holder; a plurality of joint holes are formed in the second plate part; a U-groove into which the connecting part of the holder is fitted and a plurality of through-holes are formed in the device chassis; and an adhesive that is extended in a circular columnar shape and is made by inserting the holder into the U-groove of the device chassis, and applying a UV-curing adhesive in such a manner that the UV-curing adhesive is bonded to the first plate part of the holder and is continuous to the inside of the joint hole via the inside of the through-hole, and radiating UV light along the through-hole.




optical

Optical disc drive having pickup integrated with disc insertion tray

A disc drive including a tray, a housing configured to receive the tray, a pickup device installed on the tray, and a main circuit board installed on the tray and connected to the pickup device.




optical

Object lens driving device and optical disc drive including the same

Provided is an object lens driving device that includes a wire holder coupled to a support portion and on which an end of a plurality of suspension wires are fixed. The wire holder includes a first area supported on the support portion and a second area extending from the first area and on which the end of each of the plurality of suspension wires is fixed. In this example, a thickness of the second area is thinner than a thickness of the first area.




optical

Wobble determining apparatus and method, optical disk device, and computer program

A wobble determining apparatus is provided with: a calculating device for calculating (i) a first time required until reaching a number of revolutions of a motor which allows a predetermined linear velocity, and (ii) a second time required to move an optical head to a position which allows the predetermined linear velocity, on the basis of the number of revolutions of the motor and the position of the optical head; a judging device for judging whether to keep the optical head in accordance with the calculated first time and the calculated second time; and a controlling device for controlling a moving device not to move the optical head if it is judged to keep the optical head, and for controlling the moving device to move the optical head to the position which allows the predetermined linear velocity if it is judged not to keep the optical head.




optical

Optical disk drive having a carrying roller that contacts a surface of an optical disk

Provided is an optical disk drive including a carrying roller for carrying an optical disk in a first direction. The carrying roller includes a first roller portion and a second roller portion which are aligned in a second direction along the optical disk and orthogonal to the first direction and which are so disposed as to make contact with a surface on one side of the optical disk. An axis of the first roller portion is so inclined that a distance between the axis of the first roller portion and the one-side surface of the optical disk gradually increases toward a central portion of the carrying roller. An axis of the second roller portion is so inclined that a distance between the axis of the second roller portion and the one-side surface of the optical disk gradually increases toward the central portion.




optical

Beam controlling method and optical pickup device for performing the method

Provided is an optical pickup device that compensates for an aberration caused by a beam splitter. When a beam of light is reflected from a disc and proceeds towards a beam splitter, the beam splitter is designed to allow the reflected beam to pass therethrough. However, the beam splitter can cause an astigmatism in the reflected beam due to diffraction. According to various aspects herein, an optical pickup device may include a compensation device that generates an inverse astigmatism to compensate for the astigmatism generated by the beam splitter.




optical

Optical disc drive

Provided is an optical disc drive including a tray disposed in a case of the optical disc drive. The tray includes a guide fixed to the case, and a rail connected with the tray. The guide guides the rail as the tray is moved in and out of the optical disc drive. The rail further includes a supporter that is configured to stably support the rail with respect to the guide to prevent derailment of the rail from the guide.




optical

Optical disc drive having a cable for connecting electric devices

An optical disc drive (ODD) including a tray having a spindle motor, an optical pickup unit, and a transfer motor, may have first and second flat cables. The first flat cable may be connected to the transfer motor, and the second flat cable may have a first terminal part connected to the first flat cable and a second terminal part connected to a circuit board. The circuit board may be arranged at the front of the tray. The second flat cable may include a plurality of signal lines covered by an insulator. One or more exposure parts may be formed in the second flat cable to expose at least one of the plurality of signal lines. An electric actuator of a locking unit may be connected to the one or more of the plurality of signal lines through the one or more exposure parts.




optical

Optical disc device

An optical disc device includes: a loader body having a guiding recess formed of a linear portion and a sloped portion; a traverse chassis mounted in the loader body and having a protrusion that is guided along the recess; a turntable mounted on the traverse chassis, for mounting the optical disc; and a clamper which clamps the optical disc between the clamper and the turntable when the traverse chassis ascends relative to the loader body to a clamp position, in which when the traverse chassis is at a position lower than the clamp position, the protrusion is guided along the recess, and when the traverse chassis is at the clamp position, the protrusion is positioned inside the sloped portion.




optical

Spindle structure and optical disc drive including the spindle structure

A spindle structure for an optical disc and an optical disc drive employing the spindle structure are provided. The spindle structure includes a spindle motor having a rotation axis, a spindle that is coupled to the rotation axis, and a sliding cone coupled to the spindle and inserted into a center hole of the optical disc. The sliding cone includes a plurality of hook-shaped guide rods extended toward the spindle, and the spindle includes guide holes, to which the plurality of hook-shaped guide rods are inserted into and coupled.




optical

Apparatus for protecting optical disc drives

Provided are apparatuses for grounding the objective lens driving unit of an optical pickup device. An optical pickup device includes an objective lens driving unit and a base that supports the objective lens driving unit, and wherein the objective lens driving unit includes a moving structure including an objective lens and a plurality of drive coils; a static structure comprising magnets corresponding to the plurality of drive coils, a yoke that supports the magnets, and a wire holder that has a plurality of wiring layers including a ground wiring layer; a plurality of suspension wires that connect the plurality of drive coils to the plurality of wiring layers; a supporting portion connected to the yoke and fixed to the wire holder; a projection extending from the supporting portion and disposed adjacent to the ground wiring layer; and conductive bonding material connects the ground wiring layer with the projection.




optical

Optical disc drive configured to discharge static electricity

Provided is an optical disc drive that may discharge static electricity externally. The optical disc drive may include a step motor that is configured to move an optical pickup back and forth and a cover disposed below the optical pickup. In one aspect, the cover includes an electrostatic discharge mechanism for moving static electricity generated on the step motor through the cover.




optical

Heat-assisted magnetic recording (HAMR) write head with recessed near-field transducer and optically transparent protective film

A heat-assisted magnetic recording (HAMR) air-bearing slider has an optically-transparent protective film over the near-field transducer (NFT) to protect the NFT from excessive heat caused by the accumulation of carbonaceous material on the slider's overcoat. The NFT is thus separated from the overcoat by the protective film. The protective film does not cover the write pole end, which is covered only by the overcoat, so there is no spacing loss between the write pole end and the recording layer on the disk. In one embodiment the protective film is coplanar with the recording-layer-facing surface of the slider and the overcoat covers both the protective film and the write pole end. In another embodiment the overcoat has a window that surrounds the protective film, with the protective film being substantially coplanar with the air-bearing surface (ABS) of the slider. In both embodiments the smooth topography of the slider's ABS is maintained.




optical

Polymerizable compound, polymerizable composition, polymer, and optically anisotropic body

The present invention provides a polymerizable compound represented by the following formula (I), a polymerizable composition that includes the polymerizable compound and an initiator, a polymer obtained by polymerizing the polymerizable compound or the polymerizable composition, and an optically anisotropic article that includes the polymer. The polymerizable compound, polymerizable composition, and polymer have a practical low melting point, exhibit an excellent solubility in a general-purpose solvent, can be produced at low cost, and may produce an optical film that achieves uniform conversion of polarized light over a wide wavelength band, and an optically anisotropic article.




optical

Optical unit for a vehicular lamp

An optical unit includes: a heat sink that radiates heat from a light source; and a base portion including a reflector mounting section, a lens mounting section and a connecting section connecting the reflector mounting section and the lens mounting section. The base portion is configured such that the light from the light source is reflected by a reflector mounted onto the reflector mounting section and is incident onto a projection lens mounted onto the lens mounting section. The heat sink is exposed to a space surrounded by the lens mounting section, the connecting section and the reflector mounting section.




optical

Optical film and process for producing the same

An optical film of high planarity that even in the use of an optical film material containing a non-resinous additive in an amount of 5 mass % or more, would exhibit inexpensive satisfactory roll cleaning effects, and that would find application in, especially, various functional films such as a retardation film and a protective film for polarization plate for use in a liquid crystal display apparatus, etc.; and a process for producing the optical film. There is disclosed a process for producing an optical film according to a melting casting film forming method, including extruding a melt of resin blend containing a resin and 5 mass % or more of non-resinous additive through a casting die into a film form, wherein a first roller (5) for cooling has a temperature of the melting point of the additive to the glass transition temperature (Tg) of the resin blend. Preferably, the first roller (5) for cooling has a peripheral speed (S1) exhibiting a ratio between the same and the peripheral speed (S3) of a third roller (7) for cooling, S3/S1, of 1.001 to 1.05. Preferably, a filmlike molten blend is pressed against the first roller (5) for cooling at a linear pressure of 0.5 to 50 N/mm by means of a second roller (6) for pressure application.




optical

Optical fiber fusion splicer

An optical fiber fusion splicer includes: a windshield cover having a rotating shaft and rotating around the rotating shaft so as to be openable and closable; a cable member wrapping unit coupled and fixed to the windshield cover on the same axis as the rotating shaft of the windshield cover or formed as a portion of the windshield cover, the cable member wrapping unit being rotatable in a normal direction or in a reverse direction around the rotating shaft; a first cable member winding unit that is a rotary pulley, a non-rotary pulley, or a rotary gear; and a closed-loop member including a deformable cable member wound around the cable member wrapping unit and the first cable member winding unit, the closed-loop member constituting a closed loop.




optical

Optical fiber fusion splicer

An optical fiber fusion splicer that heats and fusion-splices optical fibers to each other, the optical fiber fusion splicer includes: a coating clamp installation base; a coating clamp that is attached to the coating clamp installation base and has a coating clamp lid that is openable and closable; and a first power source for advancing the coating clamp installation base and opening the coating clamp lid. An operation of opening the coating clamp lid is performed using the first power source after the fusion splicing is completed.




optical

Optical writing controller, image forming apparatus, and optical writing control method

An optical writing controller that controls a light source to expose a photoconductor and forms an electrostatic latent image on the photoconductor calculates a correction value for correcting a superimposing position where the developed images for different colors developing each of the electrostatic latent images formed on each of the multiple photoconductors are superimposed based on the detection signal output by a pattern detection sensor that detects a pattern for correcting the superimposing position, controls the multiple light sources to draw a predetermined pattern repeatedly in the sub-scanning direction so that stepwise patterns whose width in the main scanning direction varies with repetition are formed, and determines the width in the main scanning direction of the patterns for correcting based on the strength of the detection signal output by the pattern detection sensor.




optical

Optical scanning device, optical scanning device control method, and image forming apparatus

An optical scanning device includes: a driving unit that drives a light source that outputs multiple light beams; a deflecting unit that scans a scanning surface in a main-scanning direction by deflecting the light beams, the scanning surface moving at a predetermined line speed in a sub-scanning direction; and a control unit that changes number of the light beams according to the line speed by controlling the driving unit, changes a scanning speed of the deflecting unit in the main-scanning direction according to a difference between an exposure amount per unit length in the main-scanning direction after a change in the number of the light beams and a predetermined exposure amount, and changes light intensity of each of the light beams output by the light source according to an amount of a change in the scanning speed.




optical

Optical print head and image forming apparatus

An optical print head, including: a light emitting substrate which includes a light emitting element on a base; a rod lens array which focuses light emitted from the light emitting element onto an image carrier, the rod lens array having a larger linear expansion coefficient than the base of the light emitting substrate; and expansion suppressing members which are attached to both lateral surfaces of the rod lens array in a direction that is perpendicular to an optical axis direction and is a shorter direction, each of the expansion suppressing members having a smaller linear expansion coefficient than the rod lens array.




optical

Method and apparatus for initializing an RFID tag via an optical display

A method and apparatus for initializing a radio frequency identification tag are disclosed. For example, the method receives an optical signal having a unique identifier and an encryption key from a display by a radio frequency identification repeater associated with the radio frequency identification tag, wherein the radio frequency identification repeater comprises an optical reader. The method then transmits a communication comprising radio frequency identification information associated with the radio frequency identification tag and the unique identifier via the radio frequency identification repeater to a wireless access point, wherein the communication is encrypted using the encryption key.




optical

Preparation of an optical PH sensor based on fluorescein and 1-heptanesulfonic acid sodium Co-intercalated layered double hydroxide

This invention relates to the field of preparation technology of optical pH sensor by co-intercalated fluorescein and 1-heptanesulfonic acid sodium into layered double hydroxide. The sensor is composed by conductive materials and the surface LDH films by co-interacted FLU and HES. The synthesis method is: first: synthesis of LDH colloid suspension, subsequently, the FLU and HES co-intercalated LDH colloid solution was prepared following the ion-exchange method, then the thin film of FLU-HES/LDH was spreaded on the surface of the conductive material by electrophoretic deposition, and the oriental pH sensor was synthesized. The advantages of the present invention is: first, the LDH matrix provides chromophore molecules with a confined and stable environment; the novel electrophoretic deposition strategy in this work provides a method for precise control of thickness (ranging from nanometers to micrometers), and the oriental pH sensor show good pH responsive.




optical

Image shake correcting apparatus and control method for same, lens barrel, optical apparatus, and imaging apparatus

The CPU acquires the output of an angular velocity sensor and performs image shake correction. An angle 1 calculating unit integrates a signal from which an offset component is removed to calculate an angle 1. An angular velocity subtraction amount calculating unit calculates an angular velocity subtraction amount based on a signal obtained by subtracting a first offset from the output of the angular velocity sensor and a signal obtained by subtracting a second offset from the output of the angle 2 calculating unit. An angle 2 calculating unit integrates a signal obtained by subtracting the angular velocity subtraction amount from the output of the angular velocity sensor to calculate an angle 2. The CPU performs image shake correction based on the angle 1 prior to operation of a release SW, whereas the CPU performs image shake correction based on the angle 2 after operation of the release SW.




optical

Focal plane shutter and optical device

A focal plane shutter includes: first, second, and third boards respectively including openings through which light enters an image pickup element from an object side, and arranged in this order from the object side toward the image pickup element side; a blade arranged between the first and second boards and capable of opening and closing the openings; and a holding member arranged between the second and third boards, not coupled to the blade, and holding the second board from the image pickup element side.




optical

Optical semiconductor device and method of manufacturing optical semiconductor device

A method of manufacturing an optical semiconductor device including: forming a mesa structure including a first conductivity type cladding layer, an active layer and a second conductivity type cladding layer in this order on a first conductivity type semiconductor substrate, an upper most surface of the mesa structure being constituted of an upper face of the second conductivity type cladding layer; growing a first burying layer burying both sides of the mesa structure at higher position than the active layer; forming an depressed face by etching both edges of the upper face of the second conductivity type cladding layer; and growing a second burying layer of the first conductivity type on the depressed face of the second conductivity type cladding layer and the first burying layer.




optical

Vibration resistant optically pumped semiconductor laser

An intra-cavity frequency doubled OPS-laser includes a laser-resonator terminated by a plane mirror and a mirror-structure of an OPS-chip. The resonator is folded by three fold-mirrors. The fold-mirrors are supported on a vibration-isolation plate supported by isolation posts above a base-plate. The plane mirror and the mirror-structure of the OPS-chip are mounted back to back on opposite parallel surfaces of a mounting block. The mounting-block is supported on the base-plate and extends through an aperture in the vibration-isolation plate. Movement of the vibration-isolation plate with respect to the base-plate does not change the resonator length.




optical

Method for optical frequency synthesis

A method for generation of electromagnetic radiation has the following method steps: generation of electromagnetic radiation at a useful frequency,division of the electromagnetic radiation into a useful beam and a secondary beam,frequency shift of the electromagnetic radiation of the secondary beam,control of the useful frequency as determined by a manipulated variable, wherein the manipulated variable is derived from the frequency-shifted radiation of the secondary beam.




optical

Surface emitting laser, surface emitting laser array, and optical apparatus having surface emitting laser array

There is provided a surface emitting laser allowing a direction of a far-field pattern (FFP) centroid to be inclined from a normal direction of a substrate providing the surface emitting laser, comprising: a substrate; a lower reflecting mirror, an active layer, an upper reflecting mirror stacked on the substrate; and a surface relief structure located in an upper portion of a light emitting surface of the upper reflecting mirror, the surface relief structure being made of a material allowing at least some beams emitted from the surface emitting laser to be transmitted therethrough, a plurality of regions having a predetermined optical thickness in a normal direction of the substrate being formed in contact with other region in an in-plane direction of the substrate, and a distribution of the optical thickness in the in-plane direction of the substrate is asymmetric to a central axis of the light emitting regions.




optical

Oscillator for generating a signal comprising a terahertz-order frequency using the beat of two optical waves

The invention concerns an oscillator generating a wave composed of a frequency of on the order of terahertz from a beat of two optical waves generated by a dual-frequency optical source. The oscillator includes a modulator the transfer function of which is non-linear for generating harmonics with a frequency of less than one terahertz for each of the optical waves generated by the dual-frequency optical source, an optical detector able to detect at least one harmonic for each of the optical waves generated by the dual-frequency optical source and transforming the harmonics detected into an electrical signal, a phase comparator for comparing the electrical signal with a reference electrical signal, and a module for controlling at least one element of the dual-frequency optical source with a signal obtained from the signal resulting from the comparison.




optical

Methods, devices, and mediums associated with optical lift mechanism

An apparatus includes a light foil device configured to move based on radiation pressure associated with light received by the light foil device. The apparatus includes a mechanism configured to transition between operational states in response to the movement of the light foil device, or includes a valve configured to control a flow of material through a conduit based, at least in part, on the movement of the light foil device.




optical

Projection image display device comprising a plurality of illumination optical systems

The purpose of the present invention is to provide a projection image display device in which all of the multiple light sources to be used are positioned optimally, regardless of the mode of installation of the device. This projection image display device has two illumination optical systems (1, 2) that are each provided with a light source (111, 211), a color separator for separating into three colors of light, a liquid crystal panel (150, 250) for forming an optical image, and a color synthesis prism (160, 260) for color-synthesizing. A polarization beam splitter (3) for synthesis synthesizes an optical image formed by the illumination optical system (1, 2), and projects the same from a projection lens (4). The optical axis (101, 201) of each light source (111, 211) is positioned within the same plane as the optical axis (401) of the projection lens (4), and so as to orthogonally intersect the optical axis (401) of the projection lens.




optical

Optical compensated bending mode liquid crystal display panel and method for manufacturing the same

The present invention provides an optical compensated bending (OCB) mode liquid crystal display (LCD) panel and a method for manufacturing the same. The method comprises the following steps: forming alignment layers on substrate, respectively; forming a liquid crystal layer between the alignment layers to form a liquid crystal cell; applying an electrical signal across the liquid crystal cell; and irradiating light rays to or heating the liquid crystal cell, so as to form a first polymer alignment layer and a second polymer alignment layer, respectively. The present invention can reduce a phase transition time of liquid crystal molecules from a splay state to a bent state.




optical

Optical laminate and liquid crystal display device

There is provided an optical laminate which comprises: a polarizing film wherein a thin polarizing layer is laminated on one main surface of a substrate; and an optical element (lens array). The thin polarizing layer has a thickness of 8 μm or less. The substrate has a thickness of 20 μm to 80 μm. The optical element is a pattern retardation plate including a plurality of regions having different slow axis directions.




optical

High extinction ratio liquid crystal optical switch

An optical switch for performing high extinction ratio switching of an optical signal includes a beam polarizing element and one or more optical elements. The optical elements are configured to direct an optical signal along a first or second optical path based on the polarization state of the optical signal as it passes through the optical elements. The optical switch performs high extinction ratio switching of the optical signal by preventing unwanted optical energy from entering an output port by using an absorptive or reflective optical element or by directing the unwanted optical energy along a different optical path.




optical

Optical beam scanning apparatus and digital writing apparatus

An optical beam scanning apparatus is disclosed, including: a laser source that emits an optical beam, a deflection part that deflects the optical beam, a light receiving part that receives a returning light of the optical beam which is deflected toward the laser source by the deflection part, a signal generation part that generates a synchronization detection signal, and an optical source drive part that conducts a lighting control of the laser source. The light receiving part is arranged in vicinity to the laser source. The signal generation part detects a timing at which the light receiving part receives the returning light, by an output signal from the light receiving part to generate the synchronization detection signal. The optical source drive part conducts the lighting control of the laser source in response to the synchronization detection signal as a reference.




optical

Vacuum-lifting device for assembling and testing optical connector

A vacuum-lifting device includes a holding block and a nozzle. The holding block defines a holding hole and a threaded hole communicating with the holding hole. The nozzle includes a first section that is slidably received in the holding hole and a second section. The second section extends from the first section and has an outer diameter smaller than an outer diameter of the first section.




optical

Optical device having windage measurement instruments

An optical device includes a housing containing a plurality of lenses. At least one of those lenses includes a reticle. An optical device and a processor are also located in the housing. A wind speed sensor is mounted to the housing and configured to send a wind speed signal corresponding to a wind speed to the processor. The processor calculates a wind speed based at least in part on the wind speed signal, and wherein the processor sends an output signal corresponding to the calculated wind speed to the output device.




optical

Porous silica material and optical microphone using the same

A porous silica material in which silica particles are connected to one another three-dimensionally, wherein: the porous silica material includes a through hole including first pores smaller than a mean free path of an air, and second pores larger than the first pores; the porous silica material has a density of 100 kg/m3 or more and 300 kg/m3 or less; and an isobutyl group is bound to silicon of silica of the silica particles.




optical

Method and device for optical focusing

A device for optically focusing a projection image projected by a projector includes a detector for controlled creation of at least one observation shot of the projection image over a time period, a processing unit for defining at least one image section within the projection image generated by the projector, where the image section is modulated over the time period with respect to the optical power and/or the optical spectrum thereof, and the at least one image section of the projection image is essentially synchronous compared with the corresponding respective image section of the observation shot, where the processing unit also calculates a variable derived from the comparison of the respective image sections and a control signal derived from the derived variable, and outputs the control signal to a focusing device of the projector.




optical

Optical object detection system

A method and apparatus for detecting an object. A first optical signal having a first frequency is transmitted to a location on a surface of a ground. A second optical signal having a second frequency is transmitted to the location on the surface of the ground such that the first optical signal and the second optical signal overlap each other at the location on the surface of the ground. The overlap of the first optical signal and the second optical signal at the location generates a third optical signal having a difference frequency that is a difference between the first frequency and the second frequency. The third optical signal is configured to travel into the ground. A response to the third optical signal is detected. A determination is made as to whether an object is present in the ground using the response to the third optical signal.




optical

Optical-interface patterning for radiation detector crystals

A radiation detector is disclosed that includes a scintillation crystal and a plurality of photodetectors positioned to detect low-energy scintillation photons generated within the scintillation crystal. The scintillation crystals are processed using subsurface laser engraving to generate point-like defects within the crystal to alter the path of the scintillation photons. In one embodiment, the defects define a plurality of boundaries within a monolithic crystal to delineate individual detector elements. In another embodiment, the defects define a depth-of-interaction boundary that varies longitudinally to vary the amount of light shared by neighboring portions of the crystal. In another embodiment the defects are evenly distributed to reduce the lateral spread of light from a scintillation event. Two or more of these different aspects may be combined in a single scintillation crystal. Additionally, or alternatively, similar SSLE defects may be produced in other light-guiding elements of the radiation detector.




optical

Monolithic optical coupling module based on total internal reflection surfaces

In one aspect, an optical device comprises a monolithic optical module which includes a first total internal reflection (TIR) surface, a second TIR surface adjacent the first TIR surface, and a first optical port aligned with the first internal optical beam dividing interface. An interface between the first TIR surface and the second TIR surface forms a first internal optical beam dividing interface. An exterior surface of the first TIR surface and an exterior surface of the second TIR surface form a generally V-shaped notch on the monolithic optical module. A first optical beam entering the monolithic optical module through the first optical port and incident on the first internal optical beam dividing interface is partially reflected by the first TIR surface to travel in a first direction as a second optical beam and partially reflected by the second TIR surface to travel in a second direction as a third optical beam. The second direction is generally opposite to the first direction.




optical

Thin web optical media guiding method

An optical data storage device includes an optical storage tape having one or more optical storage layers. A plurality of optical pickup units reads and/or writes data to the optical storage tape. A feed reel provides the optical storage tape to the optical pickup units. A guiding wheel that guides the optical storage tape when the optical storage tape is in the vicinity of the optical pickup units during read and/or write operations. Finally, a take-up reel receives the optical storage tape from the guiding wheel.




optical

Container having transparent optical element

A container (10) for consumer goods comprises a first panel (16) having a pattern (22) applied to an area (20) of the external surface thereof; and a second panel (26) comprising a transparent optical element. The first panel (16) and the second panel (26) are moveable relative to each other between a first position, in which the transparent optical element in the second panel (26) does not overlie the pattern (22) on the first panel (16), and a second position, in which the transparent optical element in the second panel (26) at least partially overlies the pattern (22) on the first panel (16), whereby an altered image of the pattern is visible through the transparent optical element.




optical

Variable length light shield for an electro-optical sensor within a nose cone

A variable length light shield is disclosed for an electro-optical sensor within a nose cone. The light shield includes a base, a telescopic shade supported by the base, and a ring rotatably supported about the base. The light shield also includes a guide tube disposed proximate the ring with an end extending away from the ring about a side of the telescopic shade. The light shield further includes an extension spring supported by the guide tube with an end coupled to the telescopic shade. Additionally, the light shield includes a cable extending through the guide tube and the extension spring, with one end of the cable coupled to the ring and another end of the cable coupled to the telescopic shade. The extension spring is configured to exert a force on the telescopic shade to extend the telescopic shade. Rotation of the ring causes retraction of the telescopic shade.




optical

Optical lens mold with built in cooling channel

An optical lens mold includes a mold body, a magnetic fluid, a plurality of thermocouples, a plurality of electromagnets, a controlling unit and a power source. The mold body defines a plurality of injection chambers and a cooling channel surrounding the plurality of injection chambers. The magnetic fluid contains magnetic particles and flows in the cooling channel. The thermocouples are capable of sensing temperatures of the plurality of injection chambers correspondingly. The electromagnets are positioned above the cooling channel corresponding to the plurality of thermocouples. The plurality of thermocouples and the plurality of electromagnets are connected to the controlling unit via the power source, the controlling unit is capable of the comparing the standard temperature value with temperature values sensed by the plurality of thermocouples, and maintaining the temperature of the plurality of injection chambers in a normal state.




optical

SYSTEM AND METHOD FOR CONSTRUCTING OPTICAL FLOW FIELDS

A system constructs an optical flow field that corresponds with a selected video frame. The optical flow field is constructed based on a first motion of a mobile platform having an imaging device and a status of the imaging device. The first motion and the status are determined with measurements of sensors installed on the mobile platform and/or the imaging device installed on the mobile platform. The first motion includes at least one of a first rotation, a horizontal movement, or a vertical movement of the mobile platform. The status includes a rotation of the imaging device and/or an orientation of the imaging device relative to the mobile platform.




optical

Dispersions made from treated inorganic particles for making decor paper having improved optical performance

The disclosure provides a dispersion for making décor paper having improved optical performance without negatively impacting mechanical strength comprising a TiO2 particle slurry comprising a treated TiO2 particle having a surface area of at least about 30 m2/g, and a cationic polymer; wherein the treatment comprises an oxide of silicon, aluminum, phosphorus or mixtures thereof; and the treatment is present in the amount of at least 15% based on the total weight of the treated titanium dioxide particle; paper pulp; and a cationic polymer; wherein the cationic polymer in the slurry and the cationic polymer in the dispersion are compatible; wherein for equal optical performance, the amount of treated TiO2 particle in the dispersion is reduced by about 10% when compared to a dispersion not comprising the treated TiO2 particle of (a). These dispersions are useful in making décor paper that may be used in paper laminates.