battery

Battery pack

In the present invention, there is provided a battery pack including first to fifth terminal portions sequentially arrayed at one side surface of a housing, wherein the first terminal portion formed on one end side of the one side surface is a positive electrode terminal, the fifth terminal portion formed on the other end side is a negative electrode terminal, the fourth terminal portion formed adjacently to the fifth terminal portion is an ID terminal, and the fourth terminal portion and the fifth terminal portion are proximate to each other; and a guide portion for guiding the loading and unloading of the battery pack into and from a battery mounting portion is formed substantially in the center of the one side surface in array with the terminal portions, and the third terminal portion arranged centrally is formed at a position deviated toward the one end side or the other end side.




battery

Alkaline primary battery

An alkaline primary battery includes: a positive electrode 2 containing manganese dioxide; an alkaline electrolyte containing zinc oxide; a gelled negative electrode 3 containing zinc alloy particles, the alkaline electrolyte, and a gelling agent; and a negative electrode current collector 6 inserted in the gelled negative electrode. The gelled negative electrode 3 has a predetermined malleability such that when 4.0 g of the gelled negative electrode 3 formed into a cylindrical shape with a diameter of 15 mm is extended with 200 g of a load through 10 g of a flat plate, and then an upper surface of the extended gelled negative electrode 3 is approximated to a circle, this circle has a diameter ranging from 24 mm to 36 mm, both inclusive.




battery

Energy storage composite particle, battery negative electrode material and battery

An energy storage composite particle is provided, which includes a carbon film, a conductive carbon component, an energy storage grain, and a conductive carbon fiber. The carbon film surrounds a space. The conductive carbon component and the energy storage grain are disposed in the space. The conductive carbon fiber is electrically connected to the conductive carbon component, the energy storage grain, and the carbon film, and the conductive carbon fiber extends from the inside of the space to the outside of the space. The energy storage composite particle has a high gravimetric capacity, a high coulomb efficiency, and a long cycle life. Furthermore, a battery negative electrode material and a battery using the energy storage composite particle are also provided.




battery

Positive electrode active material particles for lithium ion secondary batteries, positive electrode using the same, and lithium ion secondary battery

Positive electrode active material particles for lithium ion secondary batteries include: a core particle including a first olivine-structured, lithium-containing phosphate compound which includes Fe and/or Mn and Li; and a shell layer attached to the surface of the core particle. The shell layer includes a second olivine-structured, lithium-containing phosphate compound which includes Fe and/or Mn and Li. At least the core particle includes a phosphorous compound represented by the formula (1): MemPnOp, where Me is Fe and/or Mn, 0




battery

Composite material tape for lithium secondary battery and lithium secondary battery using the same

A composite material tape and a lithium secondary battery using the same are provided. The composite material tape includes an organic base and at least one inorganic element dispersed within the organic base. The composite material tapes of the present invention exhibit improved Insulative and heat-resistant characteristics.




battery

Lithium battery

A lithium battery including: a positive electrode including an overlithiated lithium transition metal oxide having a layered structure; a negative electrode including a silicon-based negative active material; and an electrolyte between the positive electrode and the negative electrode, the electrolyte including an electrolytic solution including a fluorinated ether solvent in an amount of 3 vol % or more based on the total volume of the electrolytic solution.




battery

Battery module

A battery module including: a plurality of rechargeable batteries including a first terminal and a second terminal; and a connecting member electrically connecting rechargeable batteries of the plurality of rechargeable batteries through the first and second terminals, the connecting member including an access protrusion protruded toward the first terminal, and the first terminal includes a pressurizer configured to press the access protrusion toward a part of the first terminal.




battery

Rechargeable battery

In a rechargeable battery, a case is combined with an upper surface of a bare cell by being fixed to a lead plate electrically coupling a protection circuit board of a protection circuit module to the bare cell. Alternatively, the case is combined with the bare cell by being fixed to the protection circuit board so as not to be separated from the bare cell, thereby improving the reliability of the products.




battery

Non-aqueous electrolyte and lithium secondary battery using the same

The present invention provides non-aqueous electrolyte solution for a lithium secondary battery, comprising an ester-based compound having a branched-chain alkyl group and an ester-based compound having a straight-chain alkyl group; and a lithium secondary battery using the same.




battery

Duct to influence air cooling distribution to battery module and DC/DC module

A vehicle is provided including a battery module, a DC/DC converter module portioned from the battery module, a duct, one blower, and a jumper duct. The battery module includes inlet and outlet ports. The DC/DC converter module includes inlet and outlet ports. A duct is arranged to direct cooling air into each of the inlet ports. The blower is arranged to draw cooling air from the duct, through the modules, and out the outlet ports. The jumper duct is arranged up stream of the blower with the converter outlet port, and configured to reduce an effective cross sectional area of the converter outlet port to define a flow rate of the cooling air into the battery inlet port.




battery

Ornament with enclosed water-proof battery capsule

A decorative ornament capable of being completely illuminated about its surface including a hollow shell comprising a water-proof battery capsule is described. When the ornament is on display, the battery capsule is stored in a hollow shell of the ornament, in a manner such that only the removable lid of the battery capsule is visibly exposed. A battery pack, comprising one or more batteries, provides the power to illuminate the ornament and is enclosed within the battery capsule. The ornament surface is made using a water-resistant material. The battery capsule is made of a similar water-proof material and is sealed so as to prevent the battery pack from malfunctioning during various weather conditions. The battery pack's configuration enables the ornament to comprise a plurality of lighting modes, including full-on, blinking-on, and timer. The ornament can be displayed indoors or outdoors, and may be used year after year.




battery

Connection terminal of shunt resistor, and battery state detection device

It is an object to provide a configuration with an enhanced sensing accuracy, in which a shunt resistance main body and a terminal member are formed as separate pieces. A shunt resistor includes a resistance main body and a terminal member (21) that is electrically connected to the resistance main body. The terminal member (21) includes a resistance connection portion (23) to be in contact with the resistance main body, and a circuit connection portion (24) provided so as to extend from the resistance connection portion (23). The circuit connection portion (24) is divided into two parts by a slit (27) being formed therein. The slit (27) is formed up to a part of the resistance connection portion (23).




battery

Rotary jig of battery cell and process of welding for battery cell using the same

Disclosed herein is a rotary jig for battery cells to successively manufacture battery cells having different sizes including a main body configured to have a hexahedral structure having a rotary rod mounted at a lower end thereof, the main body being provided at sides thereof with mounting frames having sizes corresponding to sizes of battery cells so that the battery cells can be uprightly mounted in the mounting frames in a state in which electrode terminals of the battery cells are exposed upward, a die disposed at a lower end of the main body, the die connected to the rotary rod so that the die can be rotated manually or by a rotary motor, and support members formed at the die to support the mounting frames of the main body and the battery cells mounted in the mounting frames, wherein the rotary rod is rotated so that resistance welding is performed with respect to a portion of one of battery cells to be welded using a welding rod located above the battery cell in a state in which the battery cells are mounted to the corresponding sides of the main body.




battery

Active drain plug for high voltage battery applications

A drain plug assembly that has particular application for sealing a drain hole in a high voltage battery compartment on a vehicle. The plug assembly includes a plug that inserted into the drain hole. The plug assembly further includes a return spring coupled to the plug and causing the plug to be biased into the drain hole. The plug assembly also includes at least one shape memory alloy device coupled to the plug and a support structure. The SMA device receives an electrical current that causes the device to contract and move the plug out of the drain hole against the bias of the return spring.




battery

Production process for composite oxide, positive-electrode active material for lithium-ion secondary battery and lithium-ion secondary battery

A production process for composite oxide expressed by a compositional formula: LiMn1-xAxO2, where “A” is one or more kinds of metallic elements other than Mn; and 0≦“x”




battery

Carbon catalyst, method of producing same, and electrode and battery each utilizing same

Provided is a method of producing a carbon catalyst having an improved activity. The method of producing carbon catalyst including a carbonization step of carbonizing raw materials containing an organic compound as a carbon source, a metal, and an electrically conductive carbon material to produce a carbonized material; a metal impregnation step of impregnating the carbonized material with a metal; and a heat treatment step of subjecting the carbonized material impregnated with the metal to a heat treatment.




battery

Battery-mounting structure

According to one embodiment, a battery-mounting structure includes a first housing, a second housing including a display device including a display screen, a hinge configured to attach the second housing to the first housing rotatably between a first position in which the display screen is covered with the first housing and a second position in which the display screen is exposed, and a battery configured to be attached to the first housing and including a recess configured to accommodate a part of the second housing in the second position.




battery

System and method for controlling output of a battery pack

Systems and methods for controlling the output of a battery pack are disclosed. In one example, a battery pack contactor is opened in response to battery pack current. The system and method may reduce battery pack degradation and increase system flexibility.




battery

Battery system for vehicle

A battery system for a vehicle is provided with discharge circuits (R1, 129A through 129D, 128A through 128D) that discharge battery cells (BC1 through BC4) via measurement lines of those battery cells (BC1 through BC4). A control circuit transmits to an integrated circuit (3A) a first discharge command that causes discharge of the odd numbered battery cells (BC1 and BC3) of a cell group (GB1), a first transmission command that causes transmission to the control circuit of the terminal voltages of only the odd numbered battery cells (BC1 and BC3) measured during execution of the first discharge command, a second discharge command that causes discharge of the even numbered battery cells (BC2 and BC4) of the cell group (GB1), and a second transmission command that causes transmission to the control circuit of the terminal voltages of only the even numbered battery cells (BC2 and BC4) measured during execution of the second discharge command; and, based on the these various terminal voltages transmitted from the integrated circuit (3A), the control circuit diagnoses abnormalities in the system that includes the battery cells, the measurement lines, and the discharge circuits.




battery

Assembled battery charging method, charging control circuit, and power supply system

A method for charging an assembled battery including series circuits connected in parallel, each of the series circuits including series-connected lead storage batteries, using a single charger is provided. The method includes: a first step of obtaining a first index value, corresponding to a resistance value of a first series circuit with a correlative relationship, the first series circuit having a lowest resistance value; a second step of obtaining a second index value corresponding to a resistance value of a second series circuit with a correlative relationship, the second series circuit having a highest resistance value; a third step of performing normal charging, in which the assembled battery is charged with a first amount of charge corresponding to the first index value; and a fourth step of performing refresh charging, in which the assembled battery is charged with a second amount of charge corresponding to the second index value.




battery

Control system for a flow cell battery

A controller for controlling a flow cell battery system is provided. The controller operates the flow cell battery system in a plurality of states including a plating state, a charging state and a discharge state.




battery

Battery pack and method of controlling the same

A battery pack, and a method of controlling the battery pack are disclosed. The battery pack detects consumption current when a load is not turned on, and shuts off power when a load is turned off or in stand-by mode, thereby preventing consumption current of the load from flowing.




battery

Battery cell temperature detection

Temperature characteristics of battery cells are detected. In accordance with one or more embodiments, an intercept frequency is detected for each battery cell, at which frequency an imaginary part of a plot of impedance values of the battery cell exhibits a zero crossing. The impedance values correspond to current injected into the cell. A temperature of the cell is determined based upon the detected intercept frequency for the cell and stored data that models operation of the cell. Various approaches are implemented with different types of circuits coupled to detect the impedance values of the respective cells.




battery

Battery protecting circuit, battery protecting device, and battery pack

A disclosed battery protecting circuit includes a battery protecting IC powered by a voltage of a secondary battery; another battery protecting IC powered by a voltage of another secondary battery connected to the secondary battery in series; and a constant voltage output unit which receives a maximum voltage obtained by adding voltages of the secondary battery and the other secondary battery in series and outputs a constant voltage upon receipt of a control signal from an output terminal of the battery protecting IC or the other battery protecting IC.




battery

Method and circuitry to calculate the state of charge of a battery/cell

The present inventions, in one aspect, are directed to techniques and/or circuitry to adapt the charging of a battery using data which is representative of an overpotential or relaxation time (full or partial) of the battery. In another aspect the present inventions are directed to techniques and/or circuitry to calculate data which is representative of an overpotential or relaxation time (full or partial) of the battery. In yet another aspect the present inventions are directed to techniques and/or circuitry to calculate data which is representative of a state of charge of the battery using an overpotential or relaxation time (full or partial) of the battery.




battery

Charging device with battery management system for rechargeable battery

A charging device with a battery management system which remains a rechargeable battery in full capacity during standby after being fully charged is disclosed. The charging device includes a charging module, electrically connected to a power source, for charging the rechargeable battery; a voltage detecting module, for detecting a voltage of the rechargeable battery; and a determination module, for instructing the charging module to charge the rechargeable battery with a supplementary current, when the voltage of the rechargeable battery detected by the voltage detecting module reduces to a first predetermined voltage, until the voltage of the rechargeable battery reaches a second predetermined voltage. A reduction of the voltage of the rechargeable battery is due to self-discharge of the rechargeable battery during standby after being fully charged.




battery

Monitor and control circuitry for charging a battery/cell, and methods of operating same

Circuitry and techniques to measure, at the battery's terminals, characteristic(s) of the charging signal applied to the battery/cell during the recharging operation and, in response to feedback data which indicates the charging signal is out-of-specification, control or instruct the charging circuitry to adjust characteristic(s) of the recharging signal (e.g., the amplitude of the voltage of and/or current applied to or removed from the battery during the charging operation). For example, a rechargeable battery pack comprising a battery, and controllable switch(es), a current meter and voltmeter, all of which are fixed to the battery. Control circuitry generates control signal(s) to adjust a current and/or voltage of the charging signal using the feedback data from the current meter and/or voltmeter, respectively.




battery

Systems and methods for determining cell capacity values in a multi-cell battery

Systems and methods to determine cell capacities of a vehicle battery pack. Cell capacities may be determined using state of charge (SOC) estimates for the cells and a charge count for the battery pack. The SOC estimates may be determined when the SOC of the battery pack is below a lower threshold and above an upper threshold. Error values may also be generated for the cell capacity values.




battery

Battery power delivery module

A system and method for digital management and control of power conversion from battery cells. The system utilizes a power management and conversion module that uses a CPU to maintain a high power conversion efficiency over a wide range of loads and to manage charge and discharge operation of the battery cells. The power management and conversion module includes the CPU, a current sense unit, a charge/discharge unit, a DC-to-DC conversion unit, a battery protection unit, a fuel gauge and an internal DC regulation unit. Through intelligent power conversion and charge/discharge operations, a given battery type is given the ability to emulate other battery types by conversion of the output voltage of the battery and adaptation of the charging scheme to suit the battery.




battery

More readily available traction battery

A battery includes a first terminal, a second terminal, a first battery module, a second battery module, and a third batter module. The first battery module and the second battery module includes a first pole, a second pole, a plurality of battery cells, a charge and disconnect device, a disconnect device, and a bridging device. The third battery module includes a first pole, a second pole, a plurality of battery cells, a first disconnect device, a second disconnect device, and a bridging device. The first and second poles of the first battery module are connected in series with the first terminal and the first pole of the third battery module. The first and second poles of the second battery module are connected in series with the second terminal and the second pole of the third batter module.




battery

Battery charging apparatus

An apparatus for charging an automobile battery is presented. The device provides a surface charge with a time limited window in which to start a vehicle. Use of used batteries provides for environmentally effective manner in which to deal with the tremendous amount of used batteries that are discarded worldwide each year. The apparatus may optionally include a charging circuit to allow for recharging the used batteries. An LED display may be included to provide indication when a target battery has sufficient surface charge to warrant an attempt to start an engine. The apparatus is a small portable device that can be stored anywhere in a vehicle.




battery

Standby battery box for electric cylinder

A standby battery box for an electric cylinder is electrically connected to a control box for driving the electric cylinder and includes a charge-discharge device and a rechargeable battery. The charge-discharge device includes a protection unit, a power conversion unit, a voltage detection unit, a control unit, a discharge unit, a display unit, and a switch unit. The rechargeable battery is electrically connected to the charge-discharge device. When a startup switch of the switch unit is pressed, the charge-discharge device delivers the electricity of the rechargeable battery into the control box. When a shutoff switch of the switch unit is pressed, the charge-discharge device does not supply power, thereby protecting the standby battery box from being exhausted.




battery

Battery system and energy storage system including same

A battery system is disclosed. The battery system includes a plurality of battery cells, and a battery cell balancing unit, configured to adjust voltages across each of the battery cells to reduce variation among the voltages across the battery cells. The battery cell balancing unit includes a controller configured to receive a DC reference current and to generate an AC current based on the DC reference current, a transformer, a rectifier circuit including a rectifier connected to the output coil, and a switching unit including a plurality of switches, each configured to selectively connect the rectifier to one of the battery cells.




battery

Battery pack having improved strength

Disclosed herein is a battery pack including a battery cell array including two or more battery cells, each of which has an electrode assembly of a cathode/separator/anode structure disposed in a battery case together with an electrolyte in a sealed state, arranged in a lateral direction, a protection circuit module (PCM) connected to an upper end of the battery cell array to control an operation of the battery pack, a pack case in which the battery cell array and the protection circuit module are disposed, and a plate-shaped reinforcing member mounted between the pack case and the battery cell array to increase mechanical strength of the pack case.




battery

Belt battery charger

A belt battery charger includes a belt having a first end, a second end and an elongated central portion extending between the first and second ends. A plurality of electrically connected rechargeable batteries are carried by the central portion of the belt. A belt buckle located at the first end of the belt includes a frame that is secured to the central portion of the belt. The buckle further includes a prong in the form of an electrical connector electrically connected to the batteries and pivotally secured to the frame. The second end of the belt includes a number of spaced apart eyelets passing therethrough. The prong is shaped so as to be able to enter one of the eyelets to secure the second end of the belt to the buckle in the conventional manner. A second electrical connector is located adjacent the second end of the belt and is also connected to the batteries. One of said connectors is adapted to be connected to a cell phone for charging the same.




battery

Battery fuel gauge apparatus

A battery fuel gauge apparatus comprises a current amplifier formed by a first transistor and a second transistor. Both transistors operate in the same operation conditions except that the second transistor has a smaller channel width in comparison with that of the first transistor. The first transistor is connected in series with a battery pack. The second transistor is connected in series with a sensing device. The sensing device comprises a first resistor and a second resistor connected in series. The first resistor has a positive temperature coefficient and the second resistor has a negative temperature coefficient.




battery

Battery controller, battery control method and program

There is provided a battery controller including a storing unit which stores an upper limit voltage and a lower limit voltage, each defining a first voltage range in which a battery is charged/discharged, and a second upper limit voltage and a second lower limit voltage, each defining a second voltage range which is wider than the first voltage range, and a charge/discharge regulation unit which temporarily changes, when charge/discharge is performed in the first voltage range and permission for charge/discharge in the second voltage is received, setting of the battery such that charge/discharge is performed in the second voltage range.




battery

Battery charge management using a scheduling application

According to some embodiments, battery charge management using a scheduling application is disclosed. A first parameter may be received from a scheduling application running on a mobile computing device having a battery pack. Based on at least the first parameter and battery pack data, a required charge percentage for the battery pack may be determined and the remaining capacity of the battery pack may be determined. If the remaining capacity of the battery pack is less than the required charge percentage, a charge termination voltage may be determined and the battery pack may be charged to the charge termination voltage.




battery

Apparatus for minimizing self-discharge of a smart battery pack

An apparatus for minimizing self-discharge of a smart battery pack is provided. During initial storage of the smart battery pack (100), prior to be being charged, a self-discharge protection circuit (110) disables smart battery circuitry (130). A minimal current drain is maintained while the smart battery circuitry (130) is disabled. Upon coupling of the smart battery pack (100) to a charger, the protections circuit (110) enables the smart battery circuitry (130). Battery packs having to be shipped with partially drained cells as part of shipping precaution requirements are no longer faced with the additional drainage problem previously caused by the smart battery circuitry (130) during storage.




battery

Semiconductor device for battery control and battery pack

A semiconductor device for battery control includes a CPU, a first bus coupled to the CPU, a second bus not coupled to the CPU, and a protective function circuit for protecting a battery from stress applied thereto. The semiconductor device also includes a non-volatile memory storing trimming data, a trimming circuit to perform trimming required to allow the protective function circuit to exert a protective function, and a bus control circuit capable of selectively coupling the first bus and the second bus to the non-volatile memory. The semiconductor device further includes a transfer logic circuit which causes, by making the bus control circuit select the second bus, a trimming data transfer path leading from the non-volatile memory to the trimming circuit to be formed and the trimming data stored in the non-volatile memory to be transferred to the trimming circuit without involving the CPU.




battery

Battery pack with integral non-contact discharging means and electronic device including the same

A battery pack and an electronic device are disclosed. The battery pack includes a battery for storing electric energy, and a non-contacting discharging unit for receiving the stored electric energy from the battery and for transferring the stored electric energy to a power receiving unit in a non-electrically contacting manner. The electronic device includes a main body and the battery pack. The main body includes a power receiving unit. The battery pack is for mounting to and supplying power to the main body.




battery

Battery module, electric vehicle, authentication apparatus, and discharging control method for battery module

There is provided a battery module including: a power storage unit storing power; a first authentication unit carrying out first authentication via a first authentication route; a second authentication unit carrying out second authentication via a second authentication route; and a discharging control unit controlling discharging from the power storage unit to an external appliance, wherein the first authentication unit is operable, when the first authentication has succeeded, to share key information to be used in the second authentication with an authentication party for the second authentication, the second authentication unit carries out the second authentication using the key information shared with the authentication party, and the discharging control unit is operable, when the second authentication has succeeded, to permit discharging from the power storage unit.




battery

Battery voltage detector having pull-up resistor

A battery voltage detector includes, but is not limited to: a voltage detection circuit; and a voltage processor. The voltage detection circuit includes, but is not limited to: a capacitor configured to be charged by a battery cell; a pair of output terminals; an output switch; and a voltage processor. While the capacitor is charged, the output switch is configured to be off-state and insulate the capacitor from the pair of the output terminals. After the capacitor is charged, the output switch is configured to be on-state and connect the capacitor to the pair of the output terminals. The voltage processor is configured to obtain, as a cell voltage, a voltage between the output terminals of the voltage detection circuit while the output switch is on-state. A high-potential output terminal of the pair of the output terminals is connected to a power line via a pull-up resistor.




battery

System adapted for one or more electrically propellable vehicles (battery charging arrangement)

A vehicle-related system adapted for electrically driving a vehicle along a road-way. The vehicle has three sources of power: a vehicle-related power generator, a set of batteries and vehicle-external electric stations. The vehicle is provided with a current collector which is displaceable up and down and sideways in relation to the direction of transportation, in order to be brought into mechanical and electrical contact with elongated tracks positioned below the roadway and comprising a conductor adapted to be connected with an electric station. A circuit, determining instantaneous power content of the set of batteries, is adapted to connect the vehicle-external power source via a switch belonging to the electric station, in order to charge the set of batteries and/or to supply power to the vehicle motor via a control circuit, when the power content of the set of batteries is at a predetermined level of power, lying below a maximum power content, and a supply of power or voltage from the vehicle-external power source is available.




battery

System and method for exchanging a battery of a hearing device

The present invention provides a system that allows an easy and quick exchange of small batteries of hearing devices as well as a method for exchanging a battery of a hearing device that combines the installation of a new battery into the hearing device with the deinstallation of the battery to be replaced from the hearing device in a single action using a single mechanism. The inventive battery exchange system comprises a carrier module 1, which features a hearing device receiving means shaped to receive a part of a hearing device 4 and a battery passage that traverses the carrier module 1, a battery dispensing module 2 adapted to accommodate at least one battery 7 and a battery ejection means 3 adapted to eject a battery 7 from the battery dispensing module 2 into the battery passage of the carrier module 1.




battery

Apparatus for correcting belt-meandering for secondary battery

An apparatus of correcting belt-meandering for a secondary battery is disclosed. In one embodiment, the apparatus includes i) upper and lower rollers configured to receive a base material therebetween, wherein the base material comprises positive and negative electrode materials and an insulating material interposed between the electrode materials and ii) a driver portion configured to rotate the upper and lower rollers such that the base material is transferred in a first direction during the rotation. The apparatus may also include i) a support portion configured to support shafts of the driver portion and the upper and lower rollers and ii) a transverse moving mechanism configured to move the support portion in a second direction substantially perpendicular to the first direction.




battery

Using synchronous converter in asynchronous mode to prevent current reversal during battery charging

Efficiency of a switch mode power supply (SMPS) is optimized by operating the SMPS in an asynchronous mode when current being supplied therefrom is less than a certain current value and operating the SMPS in a synchronous mode when the current being supplied therefrom is equal to or greater than the certain current value. When the SMPS is operating in the synchronous mode high-side and low-side power transistors alternately turn on and off. When the SMPS is operating in the asynchronous mode only the high-side power transistor turns on and off and the low-side power transistor remains off. When charging a battery with the SMPS discharge of the battery is eliminated when operating in the asynchronous mode at a low current output.




battery

Refractory oven doors and refractory oven door framing walls of a coke oven battery

A heat-resistant door device for closing a horizontal coke oven chamber is made of a refractory material, using a material containing silica or a material containing silica and aluminum oxides, in particular. The material has a low temperature expansion coefficient and it is thermally well insulating so that the door is not deformed and/or distorted during the coal carbonization process. The door device is built of a coke oven wall mainly located above the door and embracing the door as well as of a mobile door located underneath. Thereby less cold ambient air enters into the coke oven chamber and radiation losses are minimized. The door may be comprised of an ellipsoidal bulge by which the coke can be better pushed into the coking chamber. The oven wall embracing the oven door can also be made of a refractory material containing silica or of a material containing silica and aluminum oxides.




battery

Underground thermal battery storage system

‘Underground Thermal Battery Storage System’ using a battery structure of one or more underground thermally insulated cells, where each cell comprised of a waterproof thermal insulation shell, one or more fluid storage tanks and earth matrix. The thermal storage cell's fluid storage tanks are interconnected using a thermal fluid transport system with control valves, circulating pumps, and managed by a programmable controller. The programmable controller uses the cell sensors to determine cell status, control cell interconnections, and to manage the thermal charging and discharging by exterior heating or cooling devices. A moisture injection system is provided to control the thermal conductivity within the cell's earth matrix.




battery

Method for separating positive-pole active substance and method for recovering valuable metals from lithium ion battery

The present invention aims at improving a recovery rate of a positive-pole active substance and preventing a recovery loss of valuable metals when a positive-pole active substance is separated from a lithium ion battery. In the present invention, a material resulting from battery dismantling obtained by dismantling a lithium ion battery is stirred using a surfactant solution, whereby a positive-pole active substance is separated from a positive-electrode substrate. Also, it is preferable that an alkaline solution is added to a positive-electrode material of a material resulting from battery dismantling, thereby dissolving a positive-electrode substrate to which a positive-pole active substance adheres to obtain a slurry containing the positive-pole active substance, and a surfactant solution is added to the slurry to disperse the positive-pole active substance in the slurry, whereby the positive-pole active substance is separated from the alkaline solution.