mo Comprehensive characterization of TSV etching performance with phase-contrast X-ray microtomography By journals.iucr.org Published On :: A complete method of comprehensive and quantitative evaluation of through-silicon via reliability using a highly sensitive phase-contrast X-ray microtomography was established. Quantitative characterizations include 3D local morphology and overall consistency of statistics. Full Article text
mo 3D grain reconstruction from laboratory diffraction contrast tomography By scripts.iucr.org Published On :: 2019-05-31 A method for reconstructing the three-dimensional grain structure from data collected with a recently introduced laboratory-based X-ray diffraction contrast tomography system is presented. Diffraction contrast patterns are recorded in Laue-focusing geometry. The diffraction geometry exposes shape information within recorded diffraction spots. In order to yield the three-dimensional crystallographic microstructure, diffraction spots are extracted and fed into a reconstruction scheme. The scheme successively traverses and refines solution space until a reasonable reconstruction is reached. This unique reconstruction approach produces results efficiently and fast for well suited samples. Full Article text
mo PDB2INS: bridging the gap between small-molecule and macromolecular refinement By scripts.iucr.org Published On :: 2019-05-14 The open-source Python program PDB2INS is designed to prepare a .ins file for refinement with SHELXL [Sheldrick (2015). Acta Cryst. C71, 3–8], taking atom coordinates and other information from a Protein Data Bank (PDB)-format file. If PDB2INS is provided with a four-character PDB code, both the PDB file and the accompanying mmCIF-format reflection data file (if available) are accessed via the internet from the PDB public archive [Read et al. (2011). Structure, 19, 1395–1412] or optionally from the PDB_REDO server [Joosten, Long, Murshudov & Perrakis (2014). IUCrJ, 1, 213–220]. The SHELX-format .ins (refinement instructions and atomic coordinates) and .hkl (reflection data) files can then be generated without further user intervention, appropriate restraints etc. being added automatically. PDB2INS was tested on the 23 974 X-ray structures deposited in the PDB between 2008 and 2018 that included reflection data to 1.7 Å or better resolution in a recognizable format. After creating the two input files for SHELXL without user intervention, ten cycles of conjugate-gradient least-squares refinement were performed. For 96% of these structures PDB2INS and SHELXL completed successfully without error messages. Full Article text
mo A comparison of gas stream cooling and plunge cooling of macromolecular crystals By scripts.iucr.org Published On :: 2019-08-23 Cryocooling for macromolecular crystallography is usually performed via plunging the crystal into a liquid cryogen or placing the crystal in a cold gas stream. These two approaches are compared here for the case of nitrogen cooling. The results show that gas stream cooling, which typically cools the crystal more slowly, yields lower mosaicity and, in some cases, a stronger anomalous signal relative to rapid plunge cooling. During plunging, moving the crystal slowly through the cold gas layer above the liquid surface can produce mosaicity similar to gas stream cooling. Annealing plunge cooled crystals by warming and recooling in the gas stream allows the mosaicity and anomalous signal to recover. For tetragonal thermolysin, the observed effects are less pronounced when the cryosolvent has smaller thermal contraction, under which conditions the protein structures from plunge cooled and gas stream cooled crystals are very similar. Finally, this work also demonstrates that the resolution dependence of the reflecting range is correlated with the cooling method, suggesting it may be a useful tool for discerning whether crystals are cooled too rapidly. The results support previous studies suggesting that slower cooling methods are less deleterious to crystal order, as long as ice formation is prevented and dehydration is limited. Full Article text
mo High-viscosity sample-injection device for serial femtosecond crystallography at atmospheric pressure By scripts.iucr.org Published On :: 2019-10-17 A sample-injection device has been developed at SPring-8 Angstrom Compact Free-Electron Laser (SACLA) for serial femtosecond crystallography (SFX) at atmospheric pressure. Microcrystals embedded in a highly viscous carrier are stably delivered from a capillary nozzle with the aid of a coaxial gas flow and a suction device. The cartridge-type sample reservoir is easily replaceable and facilitates sample reloading or exchange. The reservoir is positioned in a cooling jacket with a temperature-regulated water flow, which is useful to prevent drastic changes in the sample temperature during data collection. This work demonstrates that the injector successfully worked in SFX of the human A2A adenosine receptor complexed with an antagonist, ZM241385, in lipidic cubic phase and for hen egg-white lysozyme microcrystals in a grease carrier. The injection device has also been applied to many kinds of proteins, not only for static structural analyses but also for dynamics studies using pump–probe techniques. Full Article text
mo Combined X-ray and neutron single-crystal diffraction in diamond anvil cells By scripts.iucr.org Published On :: 2020-02-01 It is shown that it is possible to perform combined X-ray and neutron single-crystal studies in the same diamond anvil cell (DAC). A modified Merrill–Bassett DAC equipped with an inflatable membrane filled with He gas has been developed. It can be used on laboratory X-ray and synchrotron diffractometers as well as on neutron instruments. The data processing procedures and a joint structural refinement of the high-pressure synchrotron and neutron single-crystal data are presented and discussed for the first time. Full Article text
mo Real- and Q-space travelling: multi-dimensional distribution maps of crystal-lattice strain (∊044) and tilt of suspended monolithic silicon nanowire structures By scripts.iucr.org Published On :: 2020-02-01 Silicon nanowire-based sensors find many applications in micro- and nano-electromechanical systems, thanks to their unique characteristics of flexibility and strength that emerge at the nanoscale. This work is the first study of this class of micro- and nano-fabricated silicon-based structures adopting the scanning X-ray diffraction microscopy technique for mapping the in-plane crystalline strain (∊044) and tilt of a device which includes pillars with suspended nanowires on a substrate. It is shown how the micro- and nanostructures of this new type of nanowire system are influenced by critical steps of the fabrication process, such as electron-beam lithography and deep reactive ion etching. X-ray analysis performed on the 044 reflection shows a very low level of lattice strain (<0.00025 Δd/d) but a significant degree of lattice tilt (up to 0.214°). This work imparts new insights into the crystal structure of micro- and nanomaterial-based sensors, and their relationship with critical steps of the fabrication process. Full Article text
mo Neutron Larmor diffraction on powder samples By scripts.iucr.org Published On :: 2020-02-01 A hitherto unrecognized resolution effect in neutron Larmor diffraction (LD) is reported, resulting from small-angle neutron scattering (SANS) in the sample. Small distortions of the neutron trajectories by SANS give rise to a blurring of the Bragg angles of the order of a few hundredths of a degree, leading to a degradation of the momentum resolution. This effect is negligible for single crystals but may be significant for polycrystalline or powder samples. A procedure is presented to correct the LD data for the parasitic SANS. The latter is accurately determined by the SESANS technique (spin–echo small-angle neutron scattering), which is readily available on Larmor diffractometers. The analysis technique is demonstrated on LD and SESANS data from α-Fe2O3 powder samples. The resulting d-spacing range agrees with experimental data from high-resolution synchrotron radiation powder diffraction on the same sample. Full Article text
mo Improving grazing-incidence small-angle X-ray scattering–computed tomography images by total variation minimization By scripts.iucr.org Published On :: 2020-02-01 Grazing-incidence small-angle X-ray scattering (GISAXS) coupled with computed tomography (CT) has enabled the visualization of the spatial distribution of nanostructures in thin films. 2D GISAXS images are obtained by scanning along the direction perpendicular to the X-ray beam at each rotation angle. Because the intensities at the q positions contain nanostructural information, the reconstructed CT images individually represent the spatial distributions of this information (e.g. size, shape, surface, characteristic length). These images are reconstructed from the intensities acquired at angular intervals over 180°, but the total measurement time is prolonged. This increase in the radiation dosage can cause damage to the sample. One way to reduce the overall measurement time is to perform a scanning GISAXS measurement along the direction perpendicular to the X-ray beam with a limited interval angle. Using filtered back-projection (FBP), CT images are reconstructed from sinograms with limited interval angles from 3 to 48° (FBP-CT images). However, these images are blurred and have a low image quality. In this study, to optimize the CT image quality, total variation (TV) regularization is introduced to minimize sinogram image noise and artifacts. It is proposed that the TV method can be applied to downsampling of sinograms in order to improve the CT images in comparison with the FBP-CT images. Full Article text
mo Structure analysis of supported disordered molybdenum oxides using pair distribution function analysis and automated cluster modelling By scripts.iucr.org Published On :: 2020-02-01 Molybdenum oxides and sulfides on various low-cost high-surface-area supports are excellent catalysts for several industrially relevant reactions. The surface layer structure of these materials is, however, difficult to characterize due to small and disordered MoOx domains. Here, it is shown how X-ray total scattering can be applied to gain insights into the structure through differential pair distribution function (d-PDF) analysis, where the scattering signal from the support material is subtracted to obtain structural information on the supported structure. MoOx catalysts supported on alumina nanoparticles and on zeolites are investigated, and it is shown that the structure of the hydrated molybdenum oxide layer is closely related to that of disordered and polydisperse polyoxometalates. By analysing the PDFs with a large number of automatically generated cluster structures, which are constructed in an iterative manner from known polyoxometalate clusters, information is derived on the structural motifs in supported MoOx. Full Article text
mo Simulation of small-angle X-ray scattering data of biological macromolecules in solution By scripts.iucr.org Published On :: 2020-02-18 This article presents IMSIM, an application to simulate two-dimensional small-angle X-ray scattering patterns and, further, one-dimensional profiles from biological macromolecules in solution. IMSIM implements a statistical approach yielding two-dimensional images in TIFF, CBF or EDF format, which may be readily processed by existing data-analysis pipelines. Intensities and error estimates of one-dimensional patterns obtained from the radial average of the two-dimensional images exhibit the same statistical properties as observed with actual experimental data. With initial input on an absolute scale, [cm−1]/c[mg ml−1], the simulated data frames may also be scaled to absolute scale such that the forward scattering after subtraction of the background is proportional to the molecular weight of the solute. The effects of changes of concentration, exposure time, flux, wavelength, sample–detector distance, detector dimensions, pixel size, and the mask as well as incident beam position can be considered for the simulation. The simulated data may be used in method development, for educational purposes, and also to determine the most suitable beamline setup for a project prior to the application and use of the actual beamtime. IMSIM is available as part of the ATSAS software package (3.0.0) and is freely available for academic use (http://www.embl-hamburg.de/biosaxs/download.html). Full Article text
mo Monte Carlo simulation of neutron scattering by a textured polycrystal By scripts.iucr.org Published On :: 2020-03-30 A method of simulating the neutron scattering by a textured polycrystal is presented. It is based on an expansion of the scattering cross sections in terms of the spherical harmonics of the incident and scattering directions, which is derived from the generalized Fourier expansion of the polycrystal orientation distribution function. The method has been implemented in a Monte Carlo code as a component of the McStas software package, and it has been validated by computing some pole figures of a Zircaloy-4 plate and a Zr–2.5Nb pressure tube, and by simulating an ideal transmission experiment. The code can be used to estimate the background generated by components of neutron instruments such as pressure cells, whose walls are made of alloys with significant crystallographic texture. As a first application, the effect of texture on the signal-to-noise ratio was studied in a simple model of a diffraction experiment, in which a sample is placed inside a pressure cell made of a zirconium alloy. With this setting, the results of two simulations were compared: one in which the pressure-cell wall has a uniform distribution of grain orientations, and another in which the pressure cell has the texture of a Zr–2.5Nb pressure tube. The results showed that the effect of the texture of the pressure cell on the noise of a diffractogram is very important. Thus, the signal-to-noise ratio can be controlled by appropriate choice of the texture of the pressure-cell walls. Full Article text
mo Enhancing the homogeneity of YBa2(Cu1−xFex)3O7−δ single crystals by using an Fe-added Y2O3 crucible via top-seeded solution growth By journals.iucr.org Published On :: This paper reports an Fe-added Y2O3 crucible which is capable of balancing the solution spontaneously and is employed to effectively enhance the homogeneity of YBa2(Cu1−xFex)3O7−δ single crystals. Full Article text
mo Disorder in La1−xBa1+xGaO4−x/2 ionic conductor: resolving the pair distribution function through insight from first-principles modeling By journals.iucr.org Published On :: Ba excess in LaBaGaO4 triggers ionic conductivity together with structural disorder. A direct correlation is found between the density functional theory model energy and the pair distribution function fit residual. Full Article text
mo A study of the strain distribution by scanning X-ray diffraction on GaP/Si for III–V monolithic integration on silicon By journals.iucr.org Published On :: The distribution of plastic relaxation defects is studied using a nondestructive sub-micrometre X-ray diffraction scanning technique. Full Article text
mo Calculation of total scattering from a crystalline structural model based on experimental optics parameters By journals.iucr.org Published On :: A calculation procedure for X-ray total scattering and the pair distribution function from a crystalline structural model is presented. It allows one to easily and precisely deal with diffraction-angle-dependent parameters such as the atomic form factor and the resolution of the optics. Full Article text
mo Optimization of crystallization of biological macromolecules using dialysis combined with temperature control By journals.iucr.org Published On :: This article describes rational strategies for the optimization of crystal growth using precise in situ control of the temperature and chemical composition of the crystallization solution through dialysis, to generate crystals of the specific sizes required for different downstream structure determination approaches. Full Article text
mo CrystalCMP: automatic comparison of molecular structures By journals.iucr.org Published On :: New developments in the program CrystalCMP are presented, and the program is tested on a large number of crystal structures extracted from the Cambridge Structural Database. Full Article text
mo Full reciprocal-space mapping up to 2000 K under controlled atmosphere: the multipurpose QMAX furnace By journals.iucr.org Published On :: This article presents the capability of the QMAX furnace, devoted to reciprocal space mapping through X-ray scattering at high temperature up to 2000 K. Full Article text
mo Measurement of single crystal piezo modulus by the method of diffraction of synchrotron radiation at angles near π By journals.iucr.org Published On :: The diffraction response of a single crystal to electric field measured by X-ray diffraction by angles close to π. Such schemes allow one to determine with high (~ 10–5–10–6) accuracy the relative changes in the lattice constant. Full Article text
mo Pattern matching indexing of Laue and monochromatic serial crystallography data for applications in Materials Science By journals.iucr.org Published On :: An algorithm, based on the matching of q-vectors pairs, is combined with three-dimensional pattern matching using a nearest-neighbors approach to index Laue and monochromatic serial crystallography data recorded on small unit cell samples. Full Article text
mo Dual-energy crystal-analyzer scheme for spectral tomography By journals.iucr.org Published On :: The principles of using the Laue-analyzer as an X-ray optical element for separating two characteristic lines of an X-ray tube are presented. Full Article text
mo Dark-field electron holography as a recording of crystal diffraction in real space: a comparative study with high-resolution X-ray diffraction for strain analysis of MOSFETs By journals.iucr.org Published On :: A detailed theoretical and experimental comparison of dark-field electron holography (DFEH) and high-resolution X-ray diffraction (HRXRD) is performed. Both techniques are being applied to measure elastic strain in an array of transistors and the role of the geometric phase is emphasized. Full Article text
mo Orientational disorder of monomethyl-quinacridone investigated by Rietveld refinement, structure refinement to the pair distribution function and lattice-energy minimizations By scripts.iucr.org Published On :: 2020-05-08 The crystal structure of the organic pigment 2-monomethyl-quinacridone (Pigment Red 192, C21H14N2O2) was solved from X-ray powder diffraction data. The resulting average structure is described in space group Poverline 1, Z = 1 with the molecule on the inversion centre. The molecules are arranged in chains. The molecules, which have no inversion symmetry, show orientational head-to-tail disorder. In the average structure, the methyl group is disordered and found on both ends of the molecule with an occupancy of 0.5 each. The disorder and the local structure were investigated using various ordered structural models. All models were analysed by three approaches: Rietveld refinement, structure refinement to the pair distribution function (PDF) and lattice-energy minimization. All refinements converged well. The Rietveld refinement provided the average structure and gave no indication of a long-range ordering. The refinement to the PDF turned out to be very sensitive to small structural details, giving insight into the local structure. The lattice-energy minimizations revealed a significantly preferred local ordering of neighbouring molecules along the [0ar 11] direction. In conclusion, all methods indicate a statistical orientational disorder with a preferred parallel orientation of molecules in one direction. Additionally, electron diffraction revealed twinning and faint diffuse scattering. Full Article text
mo Crystal structures of two furazidin polymorphs revealed by a joint effort of crystal structure prediction and NMR crystallography By scripts.iucr.org Published On :: 2020-04-16 This work presents the crystal structure determination of two elusive polymorphs of furazidin, an antibacterial agent, employing a combination of crystal structure prediction (CSP) calculations and an NMR crystallography approach. Two previously uncharacterized neat crystal forms, one of which has two symmetry-independent molecules (form I), whereas the other one is a Z' = 1 polymorph (form II), crystallize in P21/c and P1 space groups, respectively, and both are built by different conformers, displaying different intermolecular interactions. It is demonstrated that the usage of either CSP or NMR crystallography alone is insufficient to successfully elucidate the above-mentioned crystal structures, especially in the case of the Z' = 2 polymorph. In addition, cases of serendipitous agreement in terms of 1H or 13C NMR data obtained for the CSP-generated crystal structures different from the ones observed in the laboratory (false-positive matches) are analyzed and described. While for the majority of analyzed crystal structures the obtained agreement with the NMR experiment is indicative of some structural features in common with the experimental structure, the mentioned serendipity observed in exceptional cases points to the necessity of caution when using an NMR crystallography approach in crystal structure determination. Full Article text
mo The modulated low-temperature structure of malayaite, CaSnOSiO4 By scripts.iucr.org Published On :: 2020-04-16 The crystal structure of the mineral malayaite has been studied by single-crystal X-ray diffraction at a temperature of 20 K and by calculation of its phonon dispersion using density functional perturbation theory. The X-ray diffraction data show first-order satellite diffraction maxima at positions q = 0.2606 (8)b*, that are absent at room temperature. The computed phonon dispersion indicates unstable modes associated with dynamic displacements of the Ca atoms. The largest-frequency modulus of these phonon instabilities is located close to a wavevector of q = 0.3b*. These results indicate that the malayaite crystal structure is incommensurately modulated by static displacement of the Ca atoms at low temperatures, caused by the softening of an optic phonon with Bg symmetry. Full Article text
mo Crystallization of chiral molecular compounds: what can be learned from the Cambridge Structural Database? By scripts.iucr.org Published On :: 2020-04-10 A detailed study on chiral compound structures found in the Cambridge Structural Database (CSD) is presented. Solvates, salts and co-crystals have intentionally been excluded, in order to focus on the most basic structures of single enantiomers, scalemates and racemates. Similarity between the latter and structures of achiral monomolecular compounds has been established and utilized to arrive at important conclusions about crystallization of chiral compounds. For example, the fundamental phenomenon of conglomerate formation and, in particular, their frequency of occurrence is addressed. In addition, rarely occurring kryptoracemates and scalemic compounds (anomalous racemates) are discussed. Finally, an extended search of enantiomer solid solutions in the CSD is performed to show that there are up to 1800 instances most probably hiding among the deposited crystal structures, while only a couple of dozen have been previously known and studied. Full Article text
mo Crystallization of chiral molecular compounds: what can be learned from the Cambridge Structural Database? By journals.iucr.org Published On :: A study on chiral monomolecular compound structures found in the Cambridge Structural Database is presented. Full Article text
mo The modulated low-temperature structure of malayaite, CaSnOSiO4 By journals.iucr.org Published On :: The crystal structure of malayaite, CaSnOSiO4, at T = 20 K has been refined, based on the presence of satellite reflections with a modulation vector of 0.26b*. The structural modulation is attributed to a soft optic phonon, dominated by motion of the Ca atoms. Full Article text
mo Orientational disorder of monomethyl-quinacridone investigated by Rietveld refinement, structure refinement to the pair-distribution function and lattice-energy minimizations By journals.iucr.org Published On :: The crystal structure of the nanocrystalline pigment monomethyl-quinacridone was solved from X-ray powder data. The orientational disorder was investigated using Rietveld refinements, structure refinement to the pair-distribution function, and lattice-energy minimizations of various ordered structural models. Full Article text
mo Synthesis, crystal structure, polymorphism and microscopic luminescence properties of anthracene derivative compounds By journals.iucr.org Published On :: Crystal structure and microscopic optical properties of anthracene derivative compounds have been investigated by single-crystal synchrotron X-ray diffraction, laser confocal microscopy and fluorescence lifetime imaging microscopy. Full Article text
mo Structure of the 4-hydroxy-tetrahydrodipicolinate synthase from the thermoacidophilic methanotroph Methylacidiphilum fumariolicum SolV and the phylogeny of the aminotransferase pathway By journals.iucr.org Published On :: Insights were obtained into the structure of the 4-hydroxy-tetrahydrodipicolinate synthase from the thermoacidophilic methanotroph Methylacidiphilum fumariolicum SolV and the phylogeny of the aminotransferase pathway for the biosynthesis of lysine. Full Article text
mo Crystal structure of the nucleoid-associated protein Fis (PA4853) from Pseudomonas aeruginosa By journals.iucr.org Published On :: The crystal structure of Pseudomonas aeruginosa Fis is composed of an N-terminal flexible loop and a C-terminal helix–turn–helix motif. Full Article text
mo Characterization of the Pseudomonas aeruginosa T6SS PldB immunity proteins PA5086, PA5087 and PA5088 explains a novel stockpiling mechanism By journals.iucr.org Published On :: The structure of the Pseudomonas aeruginosa T6SS PldB immunity protein PA5086 is reported at 1.9 Å resolution. Comparison of PA5086 with its homologs PA5087 and PA5088 showed great similarities in sequence and structure, but vast divergences in electrostatic potential surfaces. Full Article text
mo The crystal structure of haemoglobin from Atlantic cod By scripts.iucr.org Published On :: 2019-07-16 The crystal structure of haemoglobin from Atlantic cod has been solved to 2.54 Å resolution. The structure consists of two tetramers in the crystallographic asymmetric unit. The structure of haemoglobin obtained from one individual cod suggests polymorphism in the tetrameric assembly. Full Article text
mo Structure of GTP cyclohydrolase I from Listeria monocytogenes, a potential anti-infective drug target By scripts.iucr.org Published On :: 2019-08-30 A putative open reading frame encoding GTP cyclohydrolase I from Listeria monocytogenes was expressed in a recombinant Escherichia coli strain. The recombinant protein was purified and was confirmed to convert GTP to dihydroneopterin triphosphate (Km = 53 µM; vmax = 180 nmol mg−1 min−1). The protein was crystallized from 1.3 M sodium citrate pH 7.3 and the crystal structure was solved at a resolution of 2.4 Å (Rfree = 0.226) by molecular replacement using human GTP cyclohydrolase I as a template. The protein is a D5-symmetric decamer with ten topologically equivalent active sites. Screening a small library of about 9000 compounds afforded several inhibitors with IC50 values in the low-micromolar range. Several inhibitors had significant selectivity with regard to human GTP cyclohydrolase I. Hence, GTP cyclohydrolase I may be a potential target for novel drugs directed at microbial infections, including listeriosis, a rare disease with high mortality. Full Article text
mo Structure of the archaeal chemotaxis protein CheY in a domain-swapped dimeric conformation By scripts.iucr.org Published On :: 2019-08-30 Archaea are motile by the rotation of the archaellum. The archaellum switches between clockwise and counterclockwise rotation, and movement along a chemical gradient is possible by modulation of the switching frequency. This modulation involves the response regulator CheY and the archaellum adaptor protein CheF. In this study, two new crystal forms and protein structures of CheY are reported. In both crystal forms, CheY is arranged in a domain-swapped conformation. CheF, the protein bridging the chemotaxis signal transduction system and the motility apparatus, was recombinantly expressed, purified and subjected to X-ray data collection. Full Article text
mo Structure of the dihydrolipoamide succinyltransferase catalytic domain from Escherichia coli in a novel crystal form: a tale of a common protein crystallization contaminant By scripts.iucr.org Published On :: 2019-08-29 The crystallization of amidase, the ultimate enzyme in the Trp-dependent auxin-biosynthesis pathway, from Arabidopsis thaliana was attempted using protein samples with at least 95% purity. Cube-shaped crystals that were assumed to be amidase crystals that belonged to space group I4 (unit-cell parameters a = b = 128.6, c = 249.7 Å) were obtained and diffracted to 3.0 Å resolution. Molecular replacement using structures from the PDB containing the amidase signature fold as search models was unsuccessful in yielding a convincing solution. Using the Sequence-Independent Molecular replacement Based on Available Databases (SIMBAD) program, it was discovered that the structure corresponded to dihydrolipoamide succinyltransferase from Escherichia coli (PDB entry 1c4t), which is considered to be a common crystallization contaminant protein. The structure was refined to an Rwork of 23.0% and an Rfree of 27.2% at 3.0 Å resolution. The structure was compared with others of the same protein deposited in the PDB. This is the first report of the structure of dihydrolipoamide succinyltransferase isolated without an expression tag and in this novel crystal form. Full Article text
mo The thermodynamic profile and molecular interactions of a C(9)-cytisine derivative-binding acetylcholine-binding protein from Aplysia californica By scripts.iucr.org Published On :: 2020-02-03 Cytisine, a natural product with high affinity for clinically relevant nicotinic acetylcholine receptors (nAChRs), is used as a smoking-cessation agent. The compound displays an excellent clinical profile and hence there is an interest in derivatives that may be further improved or find use in the treatment of other conditions. Here, the binding of a cytisine derivative modified by the addition of a 3-(hydroxypropyl) moiety (ligand 4) to Aplysia californica acetylcholine-binding protein (AcAChBP), a surrogate for nAChR orthosteric binding sites, was investigated. Isothermal titration calorimetry revealed that the favorable binding of cytisine and its derivative to AcAChBP is driven by the enthalpic contribution, which dominates an unfavorable entropic component. Although ligand 4 had a less unfavorable entropic contribution compared with cytisine, the affinity for AcAChBP was significantly diminished owing to the magnitude of the reduction in the enthalpic component. The high-resolution crystal structure of the AcAChBP–4 complex indicated close similarities in the protein–ligand interactions involving the parts of 4 common to cytisine. The point of difference, the 3-(hydroxypropyl) substituent, appears to influence the conformation of the Met133 side chain and helps to form an ordered solvent structure at the edge of the orthosteric binding site. Full Article text
mo A new monoclinic structure type for ternary gallide MgCoGa2 By scripts.iucr.org Published On :: 2020-05-06 The crystal structure of MgCoGa2 (magnesium cobalt digallide) was solved by direct methods and refined in two space groups as P21/c (standard choice) and P21/n (non-standard choice). The refined lattice parameters for the standard choice are a = 5.1505 (2), b = 7.2571 (2), c = 8.0264 (3) Å and β = 125.571 (3)°, and for the non-standard choice are a = 5.1505 (2), b = 7.2571 (2), c = 6.5464 (2) Å and β = 94.217 (3)°. All parameters for MgCoGa2 refined to R1 = 0.027 and wR2 = 0.042 using 594 reflections. The crystal structure peculiarities of this compound are discussed. Particular attention has been given to relationships with other similar structures, such as YPd2Si and Fe3C. Crystallographic analysis, together with linear muffin-tin orbital electronic structure calculations, reveals the presence of three-dimensional polyatomic nets with partial covalent bonding between the Ga atoms. Full Article text
mo How to move up out of the help desk and other questions By www.bleepingcomputer.com Published On :: 2020-05-06T11:55:58-05:00 Full Article
mo Astrophysical Observatory scientists are monitoring the mysterious movements of glaciers By insider.si.edu Published On :: Mon, 20 Jul 2009 08:00:56 +0000 In southeastern Greenland, two rivers of ice named Helheim and Kangerdlugssuaq flow in spurts and starts toward the coast. They are much like any other […] The post Astrophysical Observatory scientists are monitoring the mysterious movements of glaciers appeared first on Smithsonian Insider. Full Article Research News Science & Nature Space astrophysics geology Smithsonian Astrophysical Observatory
mo Smithsonian Scientist Discovers Two New Bat Species Hiding in Museum Collections for More Than 150 Years By insider.si.edu Published On :: Wed, 29 Jul 2009 14:15:17 +0000 While studying bats recently at the Academy of Natural Sciences in Philadelphia, Smithsonian mammalogist Kristofer Helgen discovered a new species of flying fox bat from […] The post Smithsonian Scientist Discovers Two New Bat Species Hiding in Museum Collections for More Than 150 Years appeared first on Smithsonian Insider. Full Article Animals Research News Science & Nature bats collections extinction National Museum of Natural History new species
mo Fossils of tiny cupuladriid colonies reveal extinction can lag more than one million years after its cause By insider.si.edu Published On :: Wed, 05 Aug 2009 19:14:30 +0000 A new Smithsonian study that examines 10 million years of the evolution of tiny coral-like organisms called cupuladriid bryzoans has revealed that some species of this organism lingered on earth for more than one million years after the event that ultimately caused their extinction: the rising of the Isthmus of Panama. The post Fossils of tiny cupuladriid colonies reveal extinction can lag more than one million years after its cause appeared first on Smithsonian Insider. Full Article Dinosaurs & Fossils Marine Science Research News Science & Nature Caribbean conservation biology extinction fossils
mo Bottom-dwelling creatures in the Chesapeake Bay need more oxygen, study finds. By insider.si.edu Published On :: Fri, 28 Aug 2009 13:51:49 +0000 A recent survey of the bottom-dwelling animals of the Chesapeake has revealed that communities of even these relatively hardy organisms are under stress. Many regions of the bay are becoming inhospitable to bottom-dwelling animals because of a lack of oxygen—a condition known as “hypoxia.” The post Bottom-dwelling creatures in the Chesapeake Bay need more oxygen, study finds. appeared first on Smithsonian Insider. Full Article Animals Marine Science Research News Science & Nature biodiversity Chesapeake Bay conservation conservation biology Smithsonian Environmental Research Center
mo A dry spring in Panama means more sulfur butterflies, study reveals By insider.si.edu Published On :: Fri, 02 Oct 2009 13:38:10 +0000 A new census of tropical sulfur butterflies (Aphrissa statira) migrating across the Panama Canal has revealed the central role that weather plays in determining why populations of these lemon-yellow insects vary from year to year. The post A dry spring in Panama means more sulfur butterflies, study reveals appeared first on Smithsonian Insider. Full Article Research News Science & Nature biodiversity conservation conservation biology Tropical Research Institute
mo Video: Common birds in Washington, D.C. are helping Smithsonian scientists track intensity of the West Nile Virus By insider.si.edu Published On :: Wed, 07 Oct 2009 13:46:11 +0000 Scientists from the Smithsonian Migratory Bird Center at the National Zoo have taken blood samples from thousands of birds and mosquitoes in an effort to track the progress of the West Nile Virus in the eastern United States. Come along in this video as Smithsonian scientists net birds living in downtown Washington, D.C., extract small amounts of blood, and then release them back into the "wild." The post Video: Common birds in Washington, D.C. are helping Smithsonian scientists track intensity of the West Nile Virus appeared first on Smithsonian Insider. Full Article Research News Science & Nature birds Migratory Bird Center Smithsonian's National Zoo
mo New study sees mother’s milk as a communications link that shapes infant temperament By insider.si.edu Published On :: Tue, 02 Mar 2010 17:39:48 +0000 The study found that infants whose mothers had higher levels of available milk energy soon after their birth, coped more effectively (moved around more, explored more, ate and drank) and showed greater confidence (were more playful, exploratory, curious and active) with this novel situation. The post New study sees mother’s milk as a communications link that shapes infant temperament appeared first on Smithsonian Insider. Full Article Animals Anthropology Research News Science & Nature mammals primates Smithsonian's National Zoo
mo For sweat bees, being social builds a more developed brain By insider.si.edu Published On :: Thu, 25 Mar 2010 12:52:41 +0000 Recently, scientists at the Smithsonian Tropical Research Institute in Panama discovered that the brain region responsible for learning and memory is larger in the social queens than in the solitary queens of this species. Their study is the first comparison of the brain sizes of social and non-social individuals of the same species. The post For sweat bees, being social builds a more developed brain appeared first on Smithsonian Insider. Full Article Animals Research News Science & Nature bees conservation biology insects Tropical Research Institute
mo Census reveals 1,200 howler monkeys living on Barro Colorado Island By insider.si.edu Published On :: Tue, 04 May 2010 18:27:55 +0000 Long before dawn on a recent morning, Katie Milton and a group of stalwart volunteers, each armed with flashlight and compass, spread out into the jungle to take up positions at 35 listening stations marked on maps of the island. The post Census reveals 1,200 howler monkeys living on Barro Colorado Island appeared first on Smithsonian Insider. Full Article Animals Research News Science & Nature conservation mammals primates Tropical Research Institute