mo

Crystal structures of two bis-carbamoyl­methyl­phosphine oxide (CMPO) compounds

Two bis-carbamoyl­methyl­phosphine oxide compounds, namely {[(3-{[2-(di­phen­yl­phosphino­yl)ethanamido]­meth­yl}benz­yl)carbamo­yl]meth­yl}di­phenyl­phos­phine oxide, C36H34N2O4P2, (I), and diethyl [({2-[2-(di­eth­oxy­phosphino­yl)ethanamido]­eth­yl}carbamo­yl)meth­yl]phospho­nate, C14H30N2O8P2, (II), were synthesized via nucleophilic acyl substitution reactions between an ester and a primary amine. Hydrogen-bonding inter­actions are present in both crystals, but these inter­actions are intra­molecular in the case of compound (I) and inter­molecular in compound (II). Intra­molecular π–π stacking inter­actions are also present in the crystal of compound (I) with a centroid–centroid distance of 3.9479 (12) Å and a dihedral angle of 9.56 (12)°. Inter­molecular C—H⋯π inter­actions [C⋯centroid distance of 3.622 (2) Å, C—H⋯centroid angle of 146°] give rise to supra­molecular sheets that lie in the ab plane. Key geometric features for compound (I) involve a nearly planar, trans-amide group with a C—N—C—C torsion angle of 169.12 (17)°, and a torsion angle of −108.39 (15)° between the phosphine oxide phospho­rus atom and the amide nitro­gen atom. For compound (II), the electron density corresponding to the phosphoryl group was disordered, and was modeled as two parts with a 0.7387 (19):0.2613 (19) occupancy ratio. Compound (II) also boasts a trans-amide group that approaches planarity with a C—N—C—C torsion angle of −176.50 (16)°. The hydrogen bonds in this structure are inter­molecular, with a D⋯A distance of 2.883 (2) Å and a D—H⋯A angle of 175.0 (18)° between the amide hydrogen atom and the P=O oxygen atom. These non-covalent inter­actions create ribbons that run along the b-axis direction.




mo

Inter­molecular hydrogen bonding in isostructural pincer complexes [OH-(t-BuPOCOPt-Bu)MCl] (M = Pd and Pt)

In the crystal structure of the isostructural title compounds, namely {2,6-bis­[(di-tert-butyl­phosphan­yl)­oxy]-4-hy­droxy­phen­yl}chlorido­palladium(II), [Pd(C22H39O3P2)Cl], 1, and {2,6-bis­[(di-tert-butyl­phosphan­yl)­oxy]-4-hy­droxy­phen­yl}chlorido­platinum(II), [Pt(C22H39O3P2)Cl], 2, the metal centres are coordinated in a distorted square-planar fashion by the POCOP pincer fragment and the chloride ligand. Both complexes form strong hydrogen-bonded chain structures through an inter­action of the OH group in the 4-position of the aromatic POCOP backbone with the halide ligand.




mo

Synthesis and crystal structure of a new hybrid organic–inorganic material containing neutral mol­ecules, cations and hepta­molybdate anions

The title compound, hexa­kis­(2-methyl-1H-imidazol-3-ium) hepta­molybdate 2-methyl-1H-imidazole disolvate dihydrate, (C4H7N2)6[Mo7O24]·2C4H6N2·2H2O, was prepared from 2-methyl­imidazole and ammonium hepta­molybdate tetra­hydrate in acid solution. The [Mo7O24]6− hepta­molybdate cluster anion is accompanied by six protonated (C4H7N2)+ 2-methyl­imidazolium cations, two neutral C4H6N2 2-methyl­imidazole mol­ecules and two water mol­ecules of crystallization. The cluster consists of seven distorted MoO6 octa­hedra sharing edges or vertices. In the crystal, the components are linked by N—H⋯N, N—H⋯O, O—H⋯O, N—H⋯(O,O) and O—H⋯(O,O) hydrogen bonds, generating a three-dimensional network. Weak C—H⋯O inter­actions consolidate the packing.




mo

Crystal structure and Hirshfeld surface analysis of N-(2-chloro­phenyl­carbamo­thio­yl)-4-fluoro­benzamide and N-(4-bromo­phenyl­carbamo­thio­yl)-4-fluoro­benzamide

The title compounds, C14H10ClFN2OS (1) and C14H10BrFN2OS (2), were synthesized by two-step reactions. The dihedral angles between the aromatic rings are 31.99 (3) and 9.17 (5)° for 1 and 2, respectively. Compound 1 features an intra­molecular bifurcated N—H⋯(O,Cl) link due to the presence of the ortho-Cl atom on the benzene ring, whereas 2 features an intra­molecular N—H⋯O hydrogen bond. In the crystal of 1, inversion dimers linked by pairs of N—H⋯S hydrogen bonds generate R22(8) loops. The extended structure of 2 features the same motif but an additional weak C—H⋯S inter­action links the inversion dimers into [100] double columns. Hirshfeld surface analyses indicate that the most important contributors towards the crystal packing are H⋯H (26.6%), S⋯H/H.·S (13.8%) and Cl⋯H/H⋯Cl (9.5%) contacts for 1 and H⋯H (19.7%), C⋯H/H⋯C (14.8%) and Br⋯H/H⋯Br (12.4%) contacts for 2.




mo

Mol­ecular and crystal structure of 5,9-dimethyl-5H-pyrano[3,2-c:5,6-c']bis­[2,1-benzo­thia­zin]-7(9H)-one 6,6,8,8-tetroxide di­methyl­formamide monosolvate

The title mol­ecule crystallizes as a di­methyl­formamide monosolvate, C19H14N2O6S2·C3H7NO. The mol­ecule was expected to adopt mirror symmetry but slightly different conformational characteristics of the condensed benzo­thia­zine ring lead to point group symmetry 1. In the crystal, mol­ecules form two types of stacking dimers with distances of 3.464 (2) Å and 3.528 (2) Å between π-systems. As a result, columns extending parallel to [100] are formed, which are connected to inter­mediate di­methyl­formamide solvent mol­ecules by C—H⋯O inter­actions.




mo

Crystal structure analysis of the biologically active drug mol­ecule riluzole and riluzolium chloride

This study is an investigation into the crystal structure of the biologically active drug mol­ecule riluzole [RZ, 6-(tri­fluoro­meth­oxy)-1,3-benzo­thia­zol-2-amine], C8H5F3N2OS, and its derivative, the riluzolium chloride salt [RZHCl, 2-amino-6-(tri­fluoro­meth­oxy)-1,3-benzo­thia­zol-3-ium chloride], C8H6F3N2OS+·Cl−. In spite of repeated efforts to crystallize the drug, its crystal structure has not been reported to date, hence the current study provides a method for obtaining crystals of both riluzole and its corresponding salt, riluzolium hydro­chloride. The salt was obtained by grinding HCl with the drug and crystallizing the obtained solid from di­chloro­methane. The crystals of riluzole were obtained in the presence of l-glutamic acid and d-glutamic acid in separate experiments. In the crystal structure of RZHCl, the –OCF3 moiety is perpendicular to the mol­ecular plane containing the riluzolium ion, as can be seen by the torsion angle of 107.4 (3)°. In the case of riluzole, the torsion angles of the four different mol­ecules in the asymmetric unit show that in three cases the tri­fluoro­meth­oxy group is perpendicular to the riluzole mol­ecular plane and only in one mol­ecule does the –OCF3 group lie in the same mol­ecular plane. The crystal structure of riluzole primarily consists of strong N—H⋯N hydrogen bonds along with weak C—H⋯F, C—H⋯S, F⋯F, C⋯C and C⋯S inter­actions, while that of its salt is stabilized by strong [N—H]+⋯Cl− and weak C—H⋯Cl−, N—H⋯S, C—H⋯F, C⋯C, S⋯N and S⋯Cl− inter­actions.




mo

Crystal structure and Hirshfeld surface analysis of 2-[(2-oxo-2H-chromen-4-yl)­oxy]acetic acid dimethyl sulfoxide monosolvate

The title compound, C11H8O5·(CH3)2SO, is a new coumarin derivative. The asymmetric unit contains two coumarin mol­ecules (A and B) and two di­methyl­sulfoxide solvent mol­ecules (A and B). The dihedral angle between the pyran and benzene rings in the chromene moiety is 3.56 (2)° for mol­ecule A and 1.83 (2)° for mol­ecule B. In mol­ecule A, the dimethyl sulfoxide sulfur atom is disordered over two positions with a refined occupancy ratio of 0.782 (5):0.218 (5). In the crystal, mol­ecules are linked by O—H⋯O hydrogen bonds, forming chains running along the c-axis direction. The chains are linked by C—H⋯O hydrogen bonds, forming layers parallel to the ac plane. In addition, there are also C—H⋯π and π–π inter­actions present within the layers. The inter­molecular contacts in the crystal have been analysed using Hirshfeld surface analysis and two-dimensional fingerprint plots, which indicate that the most important contributions to the packing are from H⋯H (33.9%) and O⋯H/H⋯O (41.2%) contacts.




mo

N,N'-Bis(pyridin-4-ylmeth­yl)oxalamide benzene monosolvate: crystal structure, Hirshfeld surface analysis and computational study

The asymmetric unit of the title 1:1 solvate, C14H14N4O2·C6H6 [systematic name of the oxalamide mol­ecule: N,N'-bis­(pyridin-4-ylmeth­yl)ethanedi­amide], comprises a half mol­ecule of each constituent as each is disposed about a centre of inversion. In the oxalamide mol­ecule, the central C2N2O2 atoms are planar (r.m.s. deviation = 0.0006 Å). An intra­molecular amide-N—H⋯O(amide) hydrogen bond is evident, which gives rise to an S(5) loop. Overall, the mol­ecule adopts an anti­periplanar disposition of the pyridyl rings, and an orthogonal relationship is evident between the central plane and each terminal pyridyl ring [dihedral angle = 86.89 (3)°]. In the crystal, supra­molecular layers parallel to (10overline{2}) are generated owing the formation of amide-N—H⋯N(pyrid­yl) hydrogen bonds. The layers stack encompassing benzene mol­ecules which provide the links between layers via methyl­ene-C—H⋯π(benzene) and benzene-C—H⋯π(pyrid­yl) inter­actions. The specified contacts are indicated in an analysis of the calculated Hirshfeld surfaces. The energy of stabilization provided by the conventional hydrogen bonding (approximately 40 kJ mol−1; electrostatic forces) is just over double that by the C—H⋯π contacts (dispersion forces).




mo

Bis(mefloquinium) butane­dioate ethanol monosolvate: crystal structure and Hirshfeld surface analysis

The asymmetric unit of the centrosymmetric title salt solvate, 2C17H17F6N2O+· C4H4O42−·CH3CH2OH, (systematic name: 2-{[2,8-bis­(tri­fluoro­meth­yl)quinolin-4-yl](hy­droxy)meth­yl}piperidin-1-ium butane­dioate ethanol monosolvate) comprises two independent cations, with almost superimposable conformations and each approximating the shape of the letter L, a butane­dioate dianion with an all-trans conformation and an ethanol solvent mol­ecule. In the crystal, supra­molecular chains along the a-axis direction are sustained by charge-assisted hy­droxy-O—H⋯O(carboxyl­ate) and ammonium-N—H⋯O(carboxyl­ate) hydrogen bonds. These are connected into a layer via C—F⋯π(pyrid­yl) contacts and π–π stacking inter­actions between quinolinyl-C6 and –NC5 rings of the independent cations of the asymmetric unit [inter-centroid separations = 3.6784 (17) and 3.6866 (17) Å]. Layers stack along the c-axis direction with no directional inter­actions between them. The analysis of the calculated Hirshfeld surface reveals the significance of the fluorine atoms in surface contacts. Thus, by far the greatest contribution to the surface contacts, i.e. 41.2%, are of the type F⋯H/H⋯F and many of these occur in the inter-layer region. However, these contacts occur at separations beyond the sum of the van der Waals radii for these atoms. It is noted that H⋯H contacts contribute 29.8% to the overall surface, with smaller contributions from O⋯H/H⋯O (14.0%) and F⋯F (5.7%) contacts.




mo

Crystal structure of 4,4'-bis­(4-bromo­phen­yl)-1,1',3,3'-tetra­thia­fulvalene

The mol­ecule of the title compound, C18H10Br2S4, has a C-shape, with Cs mol­ecular symmetry. The dihedral angle between the planes of the di­thiol and phenyl rings is 8.35 (9)°. In the crystal, mol­ecules form helical chains along [001], the shortest inter­actions being π⋯S contacts within the helices. The inter­molecular inter­actions were investigated by Hirshfeld surface analysis. Density functional theory (DFT) was used to calculate HOMO–LUMO energy levels of the title compound and its trans isomer.




mo

Crystal structures and Hirshfeld surface analyses of the two isotypic compounds (E)-1-(4-bromo­phen­yl)-2-[2,2-di­chloro-1-(4-nitro­phen­yl)ethen­yl]diazene and (E)-1-(4-chloro­phen­yl)-2-[2,2-di­chloro-1-(4-ni

In the two isotypic title compounds, C14H8BrCl2N3O2, (I), and C14H8Cl3N3O2, (II), the substitution of one of the phenyl rings is different [Br for (I) and Cl for (II)]. Aromatic rings form dihedral angles of 60.9 (2) and 64.1 (2)°, respectively. Mol­ecules are linked through weak X⋯Cl contacts [X = Br for (I) and Cl for (II)], C—H⋯Cl and C—Cl⋯π inter­actions into sheets parallel to the ab plane. Additional van der Waals inter­actions consolidate the three-dimensional packing. Hirshfeld surface analysis of the crystal structures indicates that the most important contributions for the crystal packing for (I) are from C⋯H/H⋯C (16.1%), O⋯H/H⋯O (13.1%), Cl⋯H/H⋯Cl (12.7%), H⋯H (11.4%), Br⋯H/H⋯Br (8.9%), N⋯H/H⋯N (6.9%) and Cl⋯C/C⋯Cl (6.6%) inter­actions, and for (II), from Cl⋯H / H⋯Cl (21.9%), C⋯H/H⋯C (15.3%), O⋯H/H⋯O (13.4%), H⋯H (11.5%), Cl⋯C/C⋯Cl (8.3%), N⋯H/H⋯N (7.0%) and Cl⋯Cl (5.9%) inter­actions. The crystal of (I) studied was refined as an inversion twin, the ratio of components being 0.9917 (12):0.0083 (12).




mo

(3,5-Di­methyl­adamantan-1-yl)ammonium methane­sulfonate (memanti­nium mesylate): synthesis, structure and solid-state properties

The asymmetric unit of the title compound, C12H22N+·CH3O3S−, consists of three (3,5-di­methyl­adamantan-1-yl)ammonium cations, C12H22N+, and three methane­sulfonate anions, CH3O3S−. In the crystal, the cations and anions associate via N—H⋯O hydrogen bonds into layers, parallel to the (001) plane, which include large supra­molecular hydrogen-bonded rings.




mo

Crystal structure and Hirshfeld surface analysis of 2,5-di­bromo­terephthalic acid ethyl­ene glycol monosolvate

The title compound, C8H4Br2O4·C2H6O2, crystallizes with one-half of a 2,5-di­bromo­terephthalic acid (H2Br2tp) mol­ecule and one-half of an ethyl­ene glycol (EG) mol­ecule in the the asymmetric unit. The whole mol­ecules are generated by application of inversion symmetry. The H2Br2tp mol­ecule is not planar, with the di­bromo­benzene ring system inclined by a dihedral angle of 18.62 (3)° to the carb­oxy­lic group. In the crystal, the H2Br2tp and EG mol­ecules are linked into sheets propagating parallel to (overline{1}01) through O—H⋯O hydrogen bonds, thereby forming R44 (12) and R44 (28) graph-set motifs. Br⋯O and weak π–π stacking inter­actions are also observed. Hirshfeld surface analysis was used to confirm the existence of these inter­actions.




mo

A molybdenum tris­(di­thiol­ene) complex coordinates to three bound cobalt centers in three different ways

The synthesis and structural characterization of the mol­ecular compound (μ3-benzene-1,2-di­thiol­ato)hexa­carbonyl­bis­(μ3-1,1,1,4,4,4-hexafluorobut-2-ene-2,3-dithiolato)tricobaltmolybdenum, [Co3Mo(C4F6S2)2(C6H4S2)(CO)6] or Mo(tfd)2(bdt)(Co(CO)2)3 (tfd is 1,1,1,4,4,4-hexafluorobut-2-ene-2,3-dithiolate and bdt is benzene-1,2-di­thiol­ate), are reported. The structure of the mol­ecule contains the molybdenum tris­(di­thiol­ene) complex Mo(tfd)2(bdt) coordinated as a multidentate ligand to three cobalt dicarbonyl units. Each of the three cobalt centers is relatively close to molybdenum, with Co⋯Mo distances of 2.7224 (7), 2.8058 (7), and 2.6320 (6) Å. Additionally, each of the cobalt centers is bound via main-group donor atoms, but each one in a different way: the first cobalt atom is coordinated by two sulfur atoms from different di­thiol­enes (bdt and tfd). The second cobalt atom is coordinated by one sulfur from one tfd and two olefinic carbons from another tfd. The third cobalt is coordinated by one sulfur from bdt and two sulfurs from tfd. This is, to the best of our knowledge, the first structurally characterized example of a molybdenum (tris­)di­thiol­ene complex that coordinates to cobalt. The F atoms of two of the –CF3 groups were refined as disordered over two sets of sites with ratios of refined occupancies of 0.703 (7):0.297 (7) and 0.72 (2):0.28 (2).




mo

Palladium(II) complexes of a bridging amine bis­(phenolate) ligand featuring κ2 and κ3 coordination modes

Bidentate and tridentate coordination of a 2,4-di-tert-butyl-substituted bridging amine bis­(phenolate) ligand to a palladium(II) center are observed within the same crystal structure, namely di­chlorido­({6,6'-[(ethane-1,2-diylbis(methyl­aza­nedi­yl)]bis­(methyl­ene)}bis­(2,4-di-tert-butyl­phenol))palladium(II) chlorido­(2,4-di-tert-butyl-6-{[(2-{[(3,5-di-tert-butyl-2-hy­droxy­phen­yl)meth­yl](meth­yl)amino}­eth­yl)(meth­yl)amino]­meth­yl}phenolato)palladium(II) methanol 1.685-solvate 0.315-hydrate, [PdCl2(C34H56N2O2)][PdCl(C34H55N2O2)]·1.685CH3OH·0.315H2O. Both complexes exhibit a square-planar geometry, with unbound phenol moieties participating in inter­molecular hydrogen bonding with co-crystallized water and methanol. The presence of both κ2 and κ3 coordination modes arising from the same solution suggest a dynamic process in which phenol donors may coordinate or dissociate from the metal center, and offers insight into catalyst speciation throughout Pd-mediated processes. The unit cell contains di­chlorido­({6,6'-[(ethane-1,2-diylbis(methyl­aza­nedi­yl)]bis­(methyl­ene)}bis­(2,4-di-tert-butyl­phenol))palladium(II), {(L2)PdCl2}, and chlorido­(2,4-di-tert-butyl-6-{[(2-{[(3,5-di-tert-butyl-2-hy­droxy­phen­yl)meth­yl](methyl)amino}eth­yl)(meth­yl)amino]­meth­yl}phenolato)palladium(II), {(L2X)PdCl}, mol­ecules as well as fractional water and methanol solvent mol­ecules.




mo

Six 1-aroyl-4-(4-meth­oxy­phen­yl)piperazines: similar mol­ecular structures but different patterns of supra­molecular assembly

Six new 1-aroyl-4-(4-meth­oxy­phen­yl)piperazines have been prepared, using coupling reactions between benzoic acids and N-(4-meth­oxy­phen­yl)piperazine. There are no significant hydrogen bonds in the structure of 1-benzoyl-4-(4-meth­oxy­phen­yl)piperazine, C18H20N2O2, (I). The mol­ecules of 1-(2-fluoro­benzo­yl)-4-(4-meth­oxy­phen­yl)piperazine, C18H19FN2O2, (II), are linked by two C—H⋯O hydrogen bonds to form chains of rings, which are linked into sheets by an aromatic π–π stacking inter­action. 1-(2-Chloro­benzo­yl)-4-(4-meth­oxy­phen­yl)piperazine, C18H19ClN2O2, (III), 1-(2-bromo­benzo­yl)-4-(4-meth­oxy­phen­yl)piperazine, C18H19BrN2O2, (IV), and 1-(2-iodo­benzo­yl)-4-(4-meth­oxyphen­yl)piperazine, C18H19IN2O2, (V), are isomorphous, but in (III) the aroyl ring is disordered over two sets of atomic sites having occupancies of 0.942 (2) and 0.058 (2). In each of (III)–(V), a combination of two C—H⋯π(arene) hydrogen bonds links the mol­ecules into sheets. A single O—H⋯O hydrogen bond links the mol­ecules of 1-(2-hy­droxy­benzo­yl)-4-(4-meth­oxy­phen­yl)piperazine, C18H20N2O3, (VI), into simple chains. Comparisons are made with the structures of some related compounds.




mo

Synthesis, characterization, crystal structure and supra­molecularity of ethyl (E)-2-cyano-3-(3-methyl­thio­phen-2-yl)acrylate and a new polymorph of ethyl (E)-2-cyano-3-(thio­phen-2-yl)acrylate

The synthesis, crystal structure and structural motif of two thio­phene-based cyano­acrylate derivatives, namely, ethyl (E)-2-cyano-3-(3-methyl­thio­phen-2-yl)acrylate (1), C11H11NO2S, and ethyl (E)-2-cyano-3-(thio­phen-2-yl)acrylate (2), C10H9NO2S, are reported. Derivative 1 crystallized with two independent molecules in the asymmetric unit, and derivative 2 represents a new monoclinic (C2/m) polymorph. The mol­ecular conformations of 1 and the two polymorphs of 2 are very similar, as all non-H atoms are planar except for the methyl of the ethyl groups. The inter­molecular inter­actions and crystal packing of 1 and 2 are described and compared with that of the reported monoclinic (C2/m) polymorph of derivative 2 [Castro Agudelo et al. (2017). Acta Cryst. E73, 1287–1289].




mo

Crystal structure of tetra­methyl­ammonium 1,1,7,7-tetra­cyano­hepta-2,4,6-trienide

The title compound, C4H12N+·C11H5N4−, contains one tetra­methyl­ammonium cation and one 1,1,7,7-tetra­cyano­hepta-2,4,6-trienide anion in the asymmetric unit. The anion is in an all-trans conjugated C=C bonds conformation. Two terminal C(CN)2 di­nitrile moieties are slightly twisted from the polymethine main chain to which they are attached [C(CN)2/C5 dihedral angles = 6.1 (2) and 7.1 (1)°]. The C—C bond distances along the hepta­dienyl chain vary in the narrow range 1.382 (2)–1.394 (2) Å, thus indicating the significant degree of conjugation. In the crystal, the anions are linked into zigzag chains along the [10overline{1}] direction by C—H⋯N(nitrile) short contacts. The anti­parallel chains stack along the [110] direction with alternating separations between the neighboring anions in stacks of 3.291 and 3.504 Å. The C—H⋯N short contacts and stacking inter­actions combine to link the anions into layers parallel to the (overline{1}01) plane and separated by columns of tetra­methyl­ammonium cations.




mo

Crystal structure, Hirshfeld surface analysis and DFT studies of 5-bromo-1-{2-[2-(2-chloro­eth­oxy)eth­oxy]eth­yl}indoline-2,3-dione

The title compound, C14H15BrClNO4, consists of a 5-bromo­indoline-2,3-dione unit linked to a 1-{2-[2-(2-chloro­eth­oxy)eth­oxy]eth­yl} moiety. In the crystal, a series of C—H⋯O hydrogen bonds link the molecules to form a supramolecular three-dimensional structure, enclosing R22(8), R22(12), R22(18) and R22(22) ring motifs. π–π contacts between the five-membered dione rings may further stabilize the structure, with a centroid–centroid distance of 3.899 (2) Å. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (28.1%), H⋯O/O⋯H (23.5%), H⋯Br/Br⋯H (13.8%), H⋯Cl/Cl⋯H (13.0%) and H⋯C/C⋯H (10.2%) inter­actions. Hydrogen bonding and van der Waals inter­actions are the dominant inter­actions in the crystal packing. Density functional theory (DFT) optimized structures at the B3LYP/6-311G(d,p) level are compared with the experimentally determined mol­ecular structure in the solid state. The HOMO—LUMO behaviour was elucidated to determine the energy gap. The chloro­eth­oxy­ethoxyethyl side chain atoms are disordered over two sets of sites with an occupancy ratio of 0.665 (8):0.335 (6).




mo

Synthesis and redetermination of the crystal structure of salicyl­aldehyde N(4)-morpholino­thio­semi­carbazone

The structure of the title compound (systematic name: N-{[(2-hy­droxy­phen­yl)methyl­idene]amino}­morpholine-4-carbo­thio­amide), C12H15N3O2S, was prev­iously determined (Koo et al., 1977) using multiple-film equi-inclination Weissenberg data, but has been redetermined with higher precision to explore its conformation and the hydrogen-bonding patterns and supra­molecular inter­actions. The mol­ecular structure shows intra­molecular O—H⋯N and C—H⋯S inter­actions. The configuration of the C=N bond is E. The mol­ecule is slightly twisted about the central N—N bond. The best planes through the phenyl ring and the morpholino ring make an angle of 43.44 (17)°. In the crystal, the mol­ecules are connected into chains by N—H⋯O and C—H⋯O hydrogen bonds, which combine to generate sheets lying parallel to (002). The most prominent contribution to the surface contacts are H⋯H contacts (51.6%), as concluded from a Hirshfeld surface analysis.




mo

Crystal structure of 4-bromo-N-[(3,6-di-tert-butyl-9H-carbazol-1-yl)methyl­idene]aniline

In the title compound, C27H29BrN2, the carbazole ring system is essentially planar, with an r.m.s. deviation of 0.0781 (16) Å. An intra­molecular N—H⋯N hydrogen bond forms an S(6) ring motif. One of the tert-butyl substituents shows rotational disorder over two sites with occupancies of 0.592 (3) and 0.408 (3). In the crystal, two mol­ecules are associated into an inversion dimer through a pair of C—H⋯π inter­actions. The dimers are further linked by another pair of C—H⋯π inter­actions, forming a ribbon along the c-axis direction. A C—H⋯π inter­action involving the minor disordered component and the carbazole ring system links the ribbons, generating a network sheet parallel to (100).




mo

Crystal structure of catena-poly[[[bis­(3-oxo-1,3-di­phenyl­prop-1-enolato-κ2O,O')zinc(II)]-μ2-tris­[4-(pyridin-3-yl)phen­yl]amine-κ2N:N'] tetra­hydro­furan monosolvate]

The reaction of bis­(3-oxo-1,3-di­phenyl­prop-1-enolato-κ2O,O')zinc(II), [Zn(dbm)2], with tris­[4-(pyridin-3-yl)phen­yl]amine (T3PyA) in tetra­hydro­furan (THF) afforded the title crystalline coordination polymer, {[Zn(C15H11O2)2(C33H24N4)]·C4H8O}n. The asymmetric unit contains two independent halves of Zn(dbm)2, one T3PyA and one THF. Each ZnII atom is located on an inversion centre and adopts an elongated octa­hedral coordination geometry, ligated by four O atoms of two dbm ligands in equatorial positions and by two N atoms of pyridine moieties from two different bridging T3PyA ligands in axial positions. The crystal packing shows a one-dimensional polymer chain in which the two pyridyl groups of the T3PyA ligand bridge two independent Zn atoms of Zn(dbm)2. In the crystal, the coordination polymer chains are linked via C—H⋯π inter­actions into a sheet structure parallel to (010). The sheets are cross-linked via further C—H⋯π inter­actions into a three-dimensional network. The solvate THF mol­ecule shows disorder over two sets of atomic sites having occupancies of 0.631 (7) and 0.369 (7).




mo

Crystal structure and mol­ecular Hirshfeld surface analysis of acenaphthene derivatives obeying the chlorine–methyl exchange rule

Instances of crystal structures that remain isomorphous in spite of some minor changes in their respective mol­ecules, such as change in a substituent atom/group, can provide insights into the factors that govern crystal packing. In this context, an accurate description of the crystal structures of an isomorphous pair that differ from each other only by a chlorine–methyl substituent, viz. 5''-(2-chloro­benzyl­idene)-4'-(2-chloro­phen­yl)-1'-methyl­dispiro­[acenaphthene-1,2'-pyrrolidine-3',3''-piperidine]-2,4''-dione, C34H28Cl2N2O2, (I), and its analogue 1'-methyl-5''-(2-methyl­benzyl­idene)-4'-(2-methyl­phen­yl)di­spiro­[acenaphthene-1,2'-pyrrolidine-3',3''-piperidine]-2,4''-dione, C36H34N2O2, (II), is presented. While there are two C—H⋯O weak inter­molecular inter­actions present in both (I) and (II), the change of substituent from chlorine to methyl has given rise to an additional weak C—H⋯O inter­molecular inter­action that is relatively stronger than the other two. However, the presence of the stronger C—H⋯O inter­action in (II) has not disrupted the validity of the chloro-methyl exchange rule. Details of the crystal structures and Hirshfeld analyses of the two compounds are presented.




mo

The crystal structure of ((cyclo­hexyl­amino){(Z)-2-[(E)-5-meth­oxy-3-nitro-2-oxido­benzyl­idene-κO]hydrazin-1-yl­idene-κN2}methane­thiol­ato-κS)(dimethyl sulfoxide-κS)platinum(II): a supra­molecular two-dimens

The PtII atom in the title complex, [Pt(C15H18N4O4S)(C2H6OS)], exists within a square-planar NS2O donor set provided by the N, S, O atoms of the di-anionic tridentate thio­semicarbazo ligand and a dimethyl sulfoxide S atom. The two chelate rings are coplanar, subtending a dihedral angle of 1.51 (7)°. The maximum deviation from an ideal square-planar geometry is seen in the five-membered chelate ring with an S—Pt—S bite angle of 96.45 (2)°. In the crystal, mol­ecules are linked via N—H⋯O, C—H⋯O, C—H⋯N and C—H⋯π inter­actions into two-dimensional networks lying parallel to the ab plane. The conformations of related cyclo­hexyl­hydrazine-1-carbo­thio­amide ligands are compared to that of the title compound.




mo

Twelve 4-(4-meth­oxy­phen­yl)piperazin-1-ium salts containing organic anions: supra­molecular assembly in one, two and three dimensions

Twelve 4-(4-meth­oxy­phen­yl)piperazin-1-ium salts containing organic anions have been prepared and structurally characterized. The monohydrated benzoate, 4-fluoro­benzoate, 4-chloro­benzoate and 4-bromo­benzoate salts, C11H17N2O+·C7H5O2−·H2O (I), C11H17N2O+·C7H4FO2−·H2O (II), C11H17N2O+·C7H4ClO2−·H2O (III), and C11H17N2O+·C7H4BrO2−·H2O (IV), respectively, are isomorphous and all exhibit disorder in the 4-meth­oxy­phenyl unit: the components are linked by N—H⋯O and O—H⋯O hydrogen bond to form chains of rings. The unsolvated 2-hy­droxy­benzoate, pyridine-3-carboxyl­ate and 2-hy­droxy-3,5-di­nitro­benzoate salts, C11H17N2O+·C7H5O3− (V), C11H17N2O+·C6H4NO2− (VI) and C11H17N2O+·C7H3N2O7− (VII), respectively, are all fully ordered: the components of (V) are linked by multiple N—H⋯O hydrogen bonds to form a chain of rings; those of (VI) are linked into a three-dimensional framework by a combination of N—H⋯O, C—H⋯O and C—H⋯N hydrogen bonds and those of (VII), where the anion has a structure reminiscent of the picrate anion, are linked into a three-dimensional array by N—H⋯O and C—H⋯O hydrogen bonds. The hydrogensuccinate and hydrogenfumarate salts, C11H17N2O+·C4H5O4− (VIII) and C11H17N2O+·C4H3O3− (IX), respectively, are isomorphous, and both exhibit disorder in the anionic component: N—H⋯O and O—H⋯O hydrogen bonds link the ions into sheets, which are further linked by C—H⋯π(arene) inter­actions. The anion of the hydrogenmaleate salt, C11H17N2O+·C4H3O3− (X), contains a very short and nearly symmetrical O⋯H⋯O hydrogen bond, and N—H⋯O hydrogen bonds link the anions into chains of rings. The ions in the tri­chloro­acetate salt, C11H17N2O+·C2Cl3O2− (XI), are linked into simple chains by N—H⋯O hydrogen bonds. In the hydrated chloranilate salt, 2C11H17N2O+·C6Cl2O42−·2H2O (XII), which crystallizes as a non-merohedral twin, the anion lies across a centre of inversion in space group P21/n, and a combination of N—H⋯O and O—H⋯O hydrogen bonds generates complex sheets. Comparisons are made with the structures of some related compounds.




mo

In situ deca­rbonylation of N,N-di­methyl­formamide to form di­methyl­ammonium cations in the hybrid framework compound {[(CH3)2NH2]2[Zn{O3PC6H2(OH)2PO3}]}n

The title phospho­nate-based organic–inorganic hybrid framework, poly[bis(dimethylammonium) [(μ4-2,5-dihydroxybenzene-1,4-diphosphonato)zinc(II)]], {(C2H8N)2[Zn(C6H4O8P2)]}n, was formed unexpectedly when di­methyl­ammonium cations were formed from the in situ deca­rbonylation of the N,N-di­methyl­formamide solvent. The framework is built up from ZnO4 tetra­hedra and bridging di­phospho­nate tetra-anions to generate a three-dimensional network comprising [100] channels occupied by the (CH3)2NH2+ cations. Within the channels, an array of N—H⋯O hydrogen bonds help to establish the structure. In addition, intra­molecular O—H⋯O hydrogen bonds between the appended –OH groups of the phenyl ring and adjacent PO32− groups are observed.




mo

Crystal structures of two 4H-chromene derivatives: 2-amino-3-cyano-4-(3,4-di­chloro­phen­yl)-7-hy­droxy-4H-benzo[1,2-b]pyran 1,4-dioxane monosolvate and 2-amino-3-cyano-4-(2,6-di­chloro­phen­yl)-7-hy­droxy-4H-benzo[

In the title compounds, C16H9Cl2N2O2·C4H8O2 and C16H9Cl2N2O2, the bicyclic 4H-chromene cores are nearly planar with maximum deviations of 0.081 (2) and 0.087 (2) Å. In both structures, the chromene derivative mol­ecules are linked into centrosymmetric dimers by pairs of N—H⋯O hydrogen bonds, forming R22(16) motifs. These dimers are further linked in the 3,4-di­chloro­phenyl derivative by N—H⋯N hydrogen bonds into double layers parallel to (100) and in the 2,6-di­chloro­phenyl derivative by O—H⋯N hydrogen bonds into ribbons along the [1overline{1}0] direction. In the 3,4-di­chloro­phenyl derivative, the 1,4-dioxane solvent mol­ecules are connected to the chromene mol­ecules via O—H⋯O hydrogen bonds.




mo

Crystal structures, syntheses, and spectroscopic and electrochemical measurements of two push–pull chromophores: 2-[4-(di­methyl­amino)­benzyl­idene]-1H-indene-1,3(2H)-dione and (E)-2-{3-[4-(di­meth­ylamino)­phen­yl

The title pull–push chromophores, 2-[4-(di­methyl­amino)­benzyl­idene]-1H-indene-1,3(2H)-dione, C18H15NO2 (ID[1]) and (E)-2-{3-[4-(di­methyl­amino)­phen­yl]allyl­idene}-1H-indene-1,3(2H)-dione, C20H17NO2 (ID[2]), have donor–π-bridge–acceptor structures. The mol­ecule with the short π-bridge, ID[1], is almost planar while for the mol­ecule with a longer bridge, ID[2], is less planar. The benzene ring is inclined to the mean plane of the 2,3-di­hydro-1H-indene unit by 3.19 (4)° in ID[1] and 13.06 (8)° in ID[2]. The structures of three polymorphs of compound ID[1] have been reported: the α-polymorph [space group P21/c; Magomedova & Zvonkova (1978). Kristallografiya, 23, 281–288], the β-polymorph [space group P21/c; Magomedova & Zvonkova (1980). Kristallografiya, 25 1183–1187] and the γ-polymorph [space group Pna21; Magomedova, Neigauz, Zvonkova & Novakovskaya (1980). Kristallografiya, 25, 400–402]. The mol­ecular packing in ID[1] studied here is centrosymmetric (space group P21/c) and corresponds to the β-polymorph structure. The mol­ecular packing in ID[2] is non-centrosymmetric (space group P21), which suggests potential NLO properties for this crystalline material. In both compounds, there is short intra­molecular C—H⋯O contact present, enclosing an S(7) ring motif. In the crystal of ID[1], mol­ecules are linked by C—H⋯O hydrogen bonds and C—H⋯π inter­actions, forming layers parallel to the bc plane. In the crystal of ID[2], mol­ecules are liked by C—H⋯O hydrogen bonds to form 21 helices propagating along the b-axis direction. The mol­ecules in the helix are linked by offset π–π inter­actions with, for example, a centroid–centroid distance of 3.9664 (13) Å (= b axis) separating the indene rings, and an offset of 1.869 Å. Spectroscopic and electrochemical measurements show the ability of these compounds to easily transfer electrons through the π-conjugated chain.




mo

Crystal structure, DFT calculation, Hirshfeld surface analysis and energy framework study of 6-bromo-2-(4-bromo­phen­yl)imidazo[1,2-a]pyridine

The title imidazo[1,2-a] pyridine derivative, C13H8Br2N2, was synthesized via a single-step reaction method. The title mol­ecule is planar, showing a dihedral angle of 0.62 (17)° between the phenyl and the imidazo[1,2-a] pyridine rings. An intra­molecular C—H⋯N hydrogen bond with an S(5) ring motif is present. In the crystal, a short H⋯H contact links adjacent mol­ecules into inversion-related dimers. The dimers are linked in turn by weak C—H⋯π and slipped π–π stacking inter­actions, forming layers parallel to (110). The layers are connected into a three-dimensional network by short Br⋯H contacts. Two-dimensional fingerprint plots and three-dimensional Hirshfeld surface analysis of the inter­molecular contacts reveal that the most important contributions for the crystal packing are from H⋯Br/Br⋯H (26.1%), H⋯H (21.7%), H⋯C/C⋯H (21.3%) and C⋯C (6.5%) inter­actions. Energy framework calculations suggest that the contacts formed between mol­ecules are largely dispersive in nature. Analysis of HOMO–LUMO energies from a DFT calculation reveals the pure π character of the aromatic rings with the highest electron density on the phenyl ring, and σ character of the electron density on the Br atoms. The HOMO–LUMO gap was found to be 4.343 eV.




mo

Synthesis, crystal structure and Hirshfeld surface analysis of 4-[3-(4-hy­droxy­phen­yl)-4,5-di­hydro-1H-pyrazol-5-yl]-2-meth­oxy­phenol monohydrate

In the title pyrazoline derivative, C16H16N2O3·H2O, the pyrazoline ring has an envelope conformation with the substituted sp2 C atom on the flap. The pyrazoline ring makes angles of 86.73 (12) and 13.44 (12)° with the tris­ubstituted and disubstituted benzene rings, respectively. In the crystal structure, the mol­ecules are connected into chains running in the b-axis direction by O—H⋯N hydrogen bonding. Parallel chains inter­act through N—H⋯O hydrogen bonds and π–π stacking of the tris­ubstituted phenyl rings. The major contribution to the surface contacts are H⋯H contacts (44.3%) as concluded from a Hirshfeld surface analysis.




mo

The crystal structures of two novel polymorphs of bis­(oxonium) ethane-1,2-di­sulfonate

Two novel crystal forms of bis­(oxonium) ethane-1,2-di­sulfonate, 2H3O−·C2H4O6S22−, are reported. Polymorph II has monoclinic (P21/n) symmetry, while the symmetry of form III is triclinic (Poverline{1}). Both structures display extensive networks of O—H⋯O hydrogen bonds. While this network in Form II is similar to that observed for the previously reported Form I [Mootz & Wunderlich (1970). Acta Cryst. B26, 1820–1825; Sartori et al. (1994). Z. Naturforsch. 49, 1467–1472] and extends in all directions, in Form III it differs significantly, forming layers parallel to the ab plane. The sulfonate mol­ecule in all three forms adopts a nearly identical geometry. The other observed differences between the forms, apart from the hydrogen-bonding network, are observed in the crystal density and packing index.




mo

Tetra-n-butyl­ammonium orotate monohydrate: knowledge-based comparison of the results of accurate and lower-resolution analyses and a non-routine disorder refinement

The title hydrated mol­ecular salt (systematic name: tetra-n-butyl­ammonium 2,6-dioxo-1,2,3,6-tetra­hydro­pyrimidine-4-carboxyl­ate monohydrate), C16H36N+·C5H3N2O4−·H2O, crystallizes with N—H⋯O and O—H⋯O hydrogen-bonded double-stranded anti­parallel ribbons consisting of the hydro­philic orotate monoanions and water mol­ecules, separated by the bulky hydro­phobic cations. The hydro­phobic and hydro­philic regions of the structure are joined by weaker non-classical C—H⋯O hydrogen bonds. An accurate structure analysis conducted at T = 100 K is compared to a lower-resolution less accurate determination using data measured at T = 295 K. The results of both analyses are evaluated using a knowledge-based approach, and it is found that the less accurate room-temperature structure analysis provides geometric data that are similar to those derived from the accurate low-temperature analysis, with both sets of results consistent with previously analyzed structures. A minor disorder of one methyl group in the cation at low temperature was found to be slightly more complex at room temperature; while still involving a minor fraction of the structure, the disorder at room temperature was found to require a non-routine treatment, which is described in detail.




mo

Crystal structures and hydrogen-bonding analysis of a series of solvated ammonium salts of molybdenum(II) chloride clusters

Charge-assisted hydrogen bonding plays a significant role in the crystal structures of solvates of ionic com­pounds, especially when the cation or cations are primary ammonium salts. We report the crystal structures of four ammonium salts of molybdenum halide cluster solvates where we observe significant hydrogen bonding between the solvent molecules and cations. The crystal structures of bis­(anilinium) octa-μ3-chlorido-hexa­chlorido-octa­hedro-hexa­molybdate N,N-di­­methyl­formamide tetra­solvate, (C6H8N)2[Mo6Cl8Cl6]·4C3H7NO, (I), p-phenyl­enedi­ammonium octa-μ3-chlorido-hexa­chlorido-octa­hedro-hexa­mol­yb­date N,N-di­methyl­formamide hexa­solvate, (C6H10N2)[Mo6Cl8Cl6]·6C3H7NO, (II), N,N'-(1,4-phenyl­ene)bis­(propan-2-iminium) octa-μ3-chlorido-hexa­chlo­rido-octa­hedro-hexa­molybdate acetone tris­olvate, (C12H18N2)[Mo6Cl8Cl6]·3C3H6O, (III), and 1,1'-dimethyl-4,4'-bipyridinium octa-μ3-chlo­rido-hexa­chlorido-octa­hedro-hexa­molybdate N,N-di­methyl­formamide tetra­solvate, (C12H14N2)[Mo6Cl8Cl6]·4C3H7NO, (IV), are reported and described. In (I), the anilinium cations and N,N-di­methyl­formamide (DMF) solvent mol­ecules form a cyclic R42(8) hydrogen-bonded motif centered on a crystallographic inversion center with an additional DMF mol­ecule forming a D(2) inter­action. The p-phenyl­enedi­ammonium cation in (II) forms three D(2) inter­actions between the three N—H bonds and three independent N,N-di­methyl­formamide mol­ecules. The dication in (III) is a protonated Schiff base solvated by acetone mol­ecules. Compound (IV) contains a methyl viologen dication with N,N-di­methyl­formamide mol­ecules forming close contacts with both aromatic and methyl H atoms.




mo

Crystal structures of 2-(2-bromo-5-fluoro­phen­yl)-8-eth­oxy-3-nitro-2H-thio­chromene and 2-(2-bromo-5-fluoro­phen­yl)-7-meth­oxy-3-nitro-2H-thio­chromene

Two thio­chromene com­pounds containing Br and F atoms, namely 2-(2-bromo-5-fluoro­phen­yl)-8-eth­oxy-3-nitro-2H-thio­chromene (C17H13BrFNO3S, A) and 2-(2-bromo-5-fluoro­phen­yl)-7-meth­oxy-3-nitro-2H-thio­chromene (C16H11BrFNO3S, B), were prepared via the condensation reaction between 2-mer­capto­benzaldehyde and nitro­styrene derivatives. In both com­pounds, the thio­chromene plane is almost perpendicular to the phenyl ring. In the structure of A, mol­ecules are assembled via π–π stacking and C—H⋯O and C—F⋯π inter­actions. In the crystal packing of B, mol­ecules are linked by C—H⋯F, C—H⋯O, C—H⋯π and π–π inter­actions.




mo

Crystal structure, Hirshfeld surface analysis and DFT studies of ethyl 2-{4-[(2-eth­oxy-2-oxoeth­yl)(phen­yl)carbamo­yl]-2-oxo-1,2-di­hydro­quinolin-1-yl}acetate

The title com­pound, C24H24N2O6, consists of ethyl 2-(1,2,3,4-tetra­hydro-2-oxo­quinolin-1-yl)acetate and 4-[(2-eth­oxy-2-oxoeth­yl)(phen­yl)carbomoyl] units, where the oxo­quinoline unit is almost planar and the acetate substituent is nearly perpendicular to its mean plane. In the crystal, C—HOxqn⋯OEthx and C—HPh­yl⋯OCarbx (Oxqn = oxoquinolin, Ethx = eth­oxy, Phyl = phenyl and Carbx = carboxyl­ate) weak hydrogen bonds link the mol­ecules into a three-dimensional network sturucture. A π–π inter­action between the constituent rings of the oxo­quinoline unit, with a centroid–centroid distance of 3.675 (1) Å may further stabilize the structure. Both terminal ethyl groups are disordered over two sets of sites. The ratios of the refined occupanies are 0.821 (8):0.179 (8) and 0.651 (18):0.349 (18). The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (53.9%), H⋯O/O⋯H (28.5%) and H⋯C/C⋯H (11.8%) inter­actions. Weak inter­molecular hydrogen-bond inter­actions and van der Waals inter­actions are the dominant inter­actions in the crystal packing. Density functional theory (DFT) geometric optimized structures at the B3LYP/6-311G(d,p) level are com­pared with the experimentally determined mol­ecular structure in the solid state. The HOMO–LUMO mol­ecular orbital behaviour was elucidated to determine the energy gap.




mo

Different packing motifs mediated by weak inter­actions and polymorphism in the crystal structures of five 2-(benzyl­idene)benzosuberone derivatives

The syntheses and crystal structures of five 2-benzyl­idene-1-benzosuberone [1-benzosuberone is 6,7,8,9-tetra­hydro-5H-benzo[7]annulen-5-one] derivatives, viz. 2-(4-meth­oxy­benzyl­idene)-1-benzosuberone, C19H18O2, (I), 2-(4-eth­oxy­benzyl­idene)-1-benzosuberone, C20H20O2, (II), 2-(4-benzyl­benzyl­idene)-1-benzosuberone, C25H22O2, (III), 2-(4-chloro­benzyl­idene)-1-benzosuberone, C18H15ClO, (IV) and 2-(4-cyano­benzyl­idene)-1-benzosuberone, C19H15NO, (V), are described. The conformations of the benzosuberone fused six- plus seven-membered ring fragments are very similar in each case, but the dihedral angles between the fused benzene ring and the pendant benzene ring differ somewhat, with values of 23.79 (3) for (I), 24.60 (4) for (II), 33.72 (4) for (III), 29.93 (8) for (IV) and 21.81 (7)° for (V). Key features of the packing include pairwise C—H⋯O hydrogen bonds for (II) and (IV), and pairwise C—H⋯N hydrogen bonds for (V), which generate inversion dimers in each case. The packing for (I) and (III) feature C—H⋯O hydrogen bonds, which lead to [010] and [100] chains, respectively. Weak C—H⋯π inter­actions consolidate the structures and weak aromatic π–π stacking is seen in (II) [centroid–centroid separation = 3.8414 (7) Å] and (III) [3.9475 (7) Å]. A polymorph of (I) crystallized from a different solvent has been reported previously [Dimmock et al. (1999) J. Med. Chem. 42, 1358–1366] in the same space group but with a packing motif based on inversion dimers resembling that seen in (IV) in the present study. The Hirshfeld surfaces and fingerprint plots for (I) and its polymorph are com­pared and structural features of the 2-benzyl­idene-1-benzosuberone family of phases are surveyed.




mo

Crystal structure of pyridinium tetra­iso­thio­cyanato­dipyridine­chromium(III) pyridine monosolvate

In the crystal structure of the title compound, (C5H6N)[Cr(NCS)4(C5H5N)2]·C5H5N, the CrIII ions are octa­hedrally coordinated by four N-bonding thio­cyanate anions and two pyridine ligands into discrete negatively charged complexes, with the CrIII ion, as well as the two pyridine ligands, located on crystallographic mirror planes. The mean planes of the two pyridine ligands are rotated with respect to each other by 90°. Charge balance is achieved by one protonated pyridine mol­ecule that is hydrogen bonded to one additional pyridine solvent mol­ecule, with both located on crystallographic mirror planes and again rotated by exactly 90°. The pyridinium H atom was refined as disordered between both pyridine N atoms in a 70:30 ratio, leading to a linear N—H⋯N hydrogen bond. In the crystal, discrete complexes are linked by weak C—H⋯S hydrogen bonds into chains that are connected by additional C—H⋯S hydrogen bonding via the pyridinium cations and solvent mol­ecules into layers and finally into a three-dimensional network.




mo

Crystal structure of a new polymorph of 3-acetyl-8-meth­oxy-2H-chromen-2-one

A new polymorphic form of the title compound, C12H10O4, is described in the ortho­rhom­bic space group Pbca and Z = 8, as compared to polymorph I, which crystallizes in the monoclinic space group C2/c and Z = 8 [Li et al. (2012). Chin. J. Struct. Chem. 31, 1003–1007.]. In polymorph II, the coumarin ring system is almost planar (r.m.s. deviation = 0.00129 Å). In the crystal, mol­ecules are connected by Csp3—H⋯O and Car—H⋯O hydrogen bonds, forming mol­ecular sheets linked into zigzag shaped layers along the b-axis direction. The three-dimensional lattice is assembled through stacking of the zigzag layers by π–π inter­actions with a centroid-to-centroid distance of 3.600 (9) Å and anti­parallel C=O⋯C=O inter­actions with a distance of 3.1986 (17) Å, which give rise to a helical supra­molecular architecture.




mo

Crystal structure of tris­[bis­(2,6-diiso­propyl­phen­yl) phosphato-κO]penta­kis­(methanol-κO)europium methanol monosolvate

The mononuclear title complex, [Eu(C24H34O4P)3(CH4O)5]·CH4O, (1), has been obtained as a minor product in the reaction between EuCl3(H2O)6 and lithium bis­(2,6-diiso­propyl­phen­yl) phosphate in a 1:3 molar ratio in a methanol medium. Its structure exhibits monoclinic (P21/c) symmetry at 120 K and is isostructural with the La, Ce and Nd analogs reported previously [Minyaev et al. (2018a). Acta Cryst. C74, 590–598]. In (1), all three bis­(2,6-diiso­propyl­phen­yl) phosphate ligands display the terminal κ1O-coordination mode. All of the hy­droxy H atoms are involved in O—H⋯O hydrogen bonding, exhibiting four intra­molecular and two inter­molecular hydrogen bonds. Photophysical studies have demonstrated luminescence of (1) with a low quantum yield.




mo

Crystal and mol­ecular structure of jatrophane diterpenoid (2R,3R,4S,5R,7S,8S,9S,13S,14S,15R)-2,3,8,9-tetra­acet­oxy-5,14-bis­(benzo­yloxy)-15-hydroxy-7-(iso­butano­yloxy)jatropha-6(17),11(E)-diene

The structure of the jatrophane diterpenoid (ES2), C46H56O15, has ortho­rhom­bic (P212121) symmetry. The absolute configuration in the crystal has been determined as 2R,3R,4S,5R,7S,8S,9S,13S,14S,15R [the Flack parameter is −0.06 (11)]. The mol­ecular structure features intra­molecular O—H⋯O and C—H⋯O hydrogen bonding. In the crystal, C—H⋯O hydrogen bonds link the mol­ecules into supra­molecular columns parallel to the a axis. One of the acet­oxy substituents is disordered over two orientations in a 0.826 (8):0.174 (8) ratio.




mo

(E)-3-{[(2-Bromo-3-methyl­phen­yl)imino]­meth­yl}benzene-1,2-diol: crystal structure and Hirshfeld surface analysis

The title compound, C14H12BrNO2, was synthesized by the condensation reaction of 2,3-di­hydroxy­benzaldehyde and 2-bromo-3-methyl­aniline. It crystallizes in the centrosymmetric triclinic space group Poverline{1}. The configuration about the C=N bond is E. The dihedral angle between the planes of the 5-(2-bromo-3-methyl­phenyl ring and the catechol ring is 2.80 (17)°. In the crystal, O—H⋯O hydrogen-bond inter­actions consolidate the crystal packing.




mo

Crystal structure, Hirshfeld surface analysis and contact enrichment ratios of 1-(2,7-di­methyl­imidazo[1,2-a]pyridin-3-yl)-2-(1,3-di­thio­lan-2-yl­idene)ethanone monohydrate

In the title hydrated hybrid compound C14H14N2OS2·H2O, the planar imidazo[1,2-a]pyridine ring system is linked to the 1,3-di­thiol­ane moiety by an enone bridge. The atoms of the C—C bond in the 1,3-di­thiol­ane ring are disordered over two positions with occupancies of 0.579 (14) and 0.421 (14) and both disordered rings adopt a half-chair conformation. The oxygen atom of the enone bridge is involved in a weak intra­molecular C—H⋯O hydrogen bond, which generates an S(6) graph-set motif. In the crystal, the hybrid mol­ecules are associated in R22(14) dimeric units by weak C—H⋯O inter­actions. O—H⋯O hydrogen bonds link the water mol­ecules, forming infinite self-assembled chains along the b-axis direction to which the dimers are connected via O—H⋯N hydrogen bonding. Analysis of inter­molecular contacts using Hirshfeld surface analysis and contact enrichment ratio descriptors indicate that hydrogen bonds induced by water mol­ecules are the main driving force in the crystal packing formation.




mo

The crystal structure of the triclinic polymorph of 1,4-bis­([2,2':6',2''-terpyridin]-4'-yl)benzene

The title triclinic polymorph (Form I) of 1,4-bis­([2,2':6',2''-terpyridin]-4'-yl)benzene, C36H24N6, was formed in the presence of the Lewis acid yttrium trichloride in an attempt to obtain a coordination compound. The crystal structure of the ortho­rhom­bic polymorph (Form II), has been described previously [Fernandes et al. (2010). Acta Cryst. E66, o3241–o3242]. The asymmetric unit of Form I consists of half a mol­ecule, the whole mol­ecule being generated by inversion symmetry with the central benzene ring being located about a crystallographic centre of symmetry. The side pyridine rings of the 2,2':6',2''-terpyridine (terpy) unit are rotated slightly with respect to the central pyridine ring, with dihedral angles of 8.91 (8) and 10.41 (8)°. Opposite central pyridine rings are coplanar by symmetry, and the angle between them and the central benzene ring is 49.98 (8)°. The N atoms of the pyridine rings inside the terpy entities, N⋯N⋯N, lie in trans–trans positions. In the crystal, mol­ecules are linked by C—H⋯π and offset π–π inter­actions [inter­centroid distances are 3.6421 (16) and 3.7813 (16) Å], forming a three-dimensional structure.




mo

Crystal structure, Hirshfeld analysis and a mol­ecular docking study of a new inhibitor of the Hepatitis B virus (HBV): ethyl 5-methyl-1,1-dioxo-2-{[5-(pentan-3-yl)-1,2,4-oxa­diazol-3-yl]meth­yl}-2H-1,2,6-thia­diazine-4-carboxyl­a

The title compound, C15H22N4O5S, was prepared via alkyl­ation of 3-(chloro­meth­yl)-5-(pentan-3-yl)-1,2,4-oxa­diazole in anhydrous dioxane in the presence of tri­ethyl­amine. The thia­diazine ring has an envelope conformation with the S atom displaced by 0.4883 (6) Å from the mean plane through the other five atoms. The planar 1,2,4-oxa­diazole ring is inclined to the mean plane of the thia­diazine ring by 77.45 (11)°. In the crystal, mol­ecules are linked by C—H⋯N hydrogen bonds, forming chains propagating along the b-axis direction. Hirshfeld surface analysis and two-dimensional fingerprint plots have been used to analyse the inter­molecular contacts present in the crystal. Mol­ecular docking studies were use to evaluate the title compound as a potential system that inter­acts effectively with the capsid of the Hepatitis B virus (HBV), supported by an experimental in vitro HBV replication model.




mo

N,N'-Bis(pyridin-3-ylmeth­yl)ethanedi­amide monohydrate: crystal structure, Hirshfeld surface analysis and computational study

The mol­ecular structure of the title bis-pyridyl substituted di­amide hydrate, C14H14N4O2·H2O, features a central C2N2O2 residue (r.m.s. deviation = 0.0205 Å) linked at each end to 3-pyridyl rings through methyl­ene groups. The pyridyl rings lie to the same side of the plane, i.e. have a syn-periplanar relationship, and form dihedral angles of 59.71 (6) and 68.42 (6)° with the central plane. An almost orthogonal relationship between the pyridyl rings is indicated by the dihedral angle between them [87.86 (5)°]. Owing to an anti disposition between the carbonyl-O atoms in the core, two intra­molecular amide-N—H⋯O(carbon­yl) hydrogen bonds are formed, each closing an S(5) loop. Supra­molecular tapes are formed in the crystal via amide-N—H⋯O(carbon­yl) hydrogen bonds and ten-membered {⋯HNC2O}2 synthons. Two symmetry-related tapes are linked by a helical chain of hydrogen-bonded water mol­ecules via water-O—H⋯N(pyrid­yl) hydrogen bonds. The resulting aggregate is parallel to the b-axis direction. Links between these, via methyl­ene-C—H⋯O(water) and methyl­ene-C—H⋯π(pyrid­yl) inter­actions, give rise to a layer parallel to (10overline{1}); the layers stack without directional inter­actions between them. The analysis of the Hirshfeld surfaces point to the importance of the specified hydrogen-bonding inter­actions, and to the significant influence of the water mol­ecule of crystallization upon the mol­ecular packing. The analysis also indicates the contribution of methyl­ene-C—H⋯O(carbon­yl) and pyridyl-C—H⋯C(carbon­yl) contacts to the stability of the inter-layer region. The calculated inter­action energies are consistent with importance of significant electrostatic attractions in the crystal.




mo

Synthesis and crystal structure of catena-poly[[bis[(2,2';6',2''-terpyridine)­manganese(II)]-μ4-penta­thio­dianti­monato] tetra­hydrate] showing a 1D MnSbS network

The asymmetric unit of the title compound, {[Mn2Sb2S5(C15H11N3)2]·4H2O}n, consists of two crystallographically independent MnII ions, two unique terpyridine ligands, one [Sb2S5]4− anion and four solvent water mol­ecules, all of which are located in general positions. The [Sb2S5]4− anion consists of two SbS3 units that share common corners. Each of the MnII ions is fivefold coordinated by two symmetry-related S atoms of [Sb2S5]4− anions and three N atoms of a terpyridine ligand within an irregular coordination. Each two anions are linked by two [Mn(terpyridine)]2+ cations into chains along the c-axis direction that consist of eight-membered Mn2Sb2S4 rings. These chains are further connected into a three-dimensional network by inter­molecular O—H⋯O and O—H⋯S hydrogen bonds. The crystal investigated was twinned and therefore, a twin refinement using data in HKLF-5 [Sheldrick (2015). Acta Cryst. C71, 3–8] format was performed.




mo

Crystal and mol­ecular structures of a binuclear mixed ligand complex of silver(I) with thio­cyanate and 1H-1,2,4-triazole-5(4H)-thione

The complete mol­ecule of the binuclear title complex, bis­[μ-1H-1,2,4-triazole-5(4H)-thione-κ2S:S]bis­{(thio­cyanato-κS)[1H-1,2,4-triazole-5(4H)-thione-κS]silver(I)}, [Ag2(SCN)2(C2H3N3S)4], is generated by crystallographic inversion symmetry. The independent triazole-3-thione ligands employ the exocyclic-S atoms exclusively in coordination. One acts as a terminal S-ligand and the other in a bidentate (μ2) bridging mode to provide a link between two AgI centres. Each AgI atom is also coordinated by a terminal S-bound thio­cyanate ligand, resulting in a distorted AgS4 tetra­hedral coordination geometry. An intra­molecular N—H⋯S(thio­cyanate) hydrogen bond is noted. In the crystal, amine-N—H⋯S(thione), N—H⋯N(triazol­yl) and N—H⋯N(thio­cyanate) hydrogen bonds give rise to a three-dimensional architecture. The packing is consolidated by triazolyl-C—H⋯S(thio­cyanate), triazolyl-C—H⋯N(thiocyanate) and S⋯S [3.2463 (9) Å] inter­actions as well as face-to-face π–π stacking between the independent triazolyl rings [inter-centroid separation = 3.4444 (15) Å]. An analysis of the calculated Hirshfeld surfaces shows the three major contributors are due to N⋯H/H⋯N, S⋯H/H⋯S and C⋯H/H⋯C contacts, at 35.8, 19.4 and 12.7%, respectively; H⋯H contacts contribute only 7.6% to the overall surface.




mo

Crystal structures of chlorido­[dihy­droxybis­(1-imino­eth­oxy)]arsanido-κ3N,As,N']platinum(II) and of a polymorph of chlorido­[dihy­droxybis­(1-imino­prop­oxy)arsanido-κ3N,As,N']platinum(II)

Each central platinum(II) atom in the crystal structures of chlorido­[dihy­droxybis­(1-imino­eth­oxy)arsanido-κ3N,As,N']platinum(II), [Pt(C4H10AsN2O4)Cl] (1), and of chlorido­[dihy­droxybis­(1-imino­prop­oxy)arsanido-κ3N,As,N']platinum(II), [Pt(C6H14AsN2O4)Cl] (2), is coordinated by two nitro­gen donor atoms, a chlorido ligand and to arsenic, which, in turn, is coordinated by two oxygen donor ligands, two hydroxyl ligands and the platinum(II) atom. The square-planar and trigonal–bipyramidal coordination environments around platinum and arsenic, respectively, are significantly distorted with the largest outliers being 173.90 (13) and 106.98 (14)° for platinum and arsenic in (1), and 173.20 (14)° and 94.20 (9)° for (2), respectively. One intra­molecular and four classical inter­molecular hydrogen-bonding inter­actions are observed in the crystal structure of (1), which give rise to an infinite three-dimensional network. A similar situation (one intra­molecular and four classical inter­molecular hydrogen-bonding inter­actions) is observed in the crystal structure of (2). Various π-inter­actions are present in (1) between the platinum(II) atom and the centroid of one of the five-membered rings formed by Pt, As, C, N, O with a distance of 3.7225 (7) Å, and between the centroids of five-membered (Pt, As, C, N, O) rings of neighbouring mol­ecules with distances of 3.7456 (4) and 3.7960 (6) Å. Likewise, weak π-inter­actions are observed in (2) between the platinum(II) atom and the centroid of one of the five-membered rings formed by Pt, As, C, N, O with a distance of 3.8213 (2) Å, as well as between the Cl atom and the centroid of a symmetry-related five-membered ring with a distance of 3.8252 (12) Å. Differences between (2) and the reported polymorph [Miodragović et al. (2013). Angew. Chem. Int. Ed. 52, 10749–10752] are discussed.




mo

An unusually short inter­molecular N—H⋯N hydrogen bond in crystals of the hemi-hydro­chloride salt of 1-exo-acetamido­pyrrolizidine

The title compound [systematic name: (1R*, 8S)-2-acetamidoocta­hydro­pyrrol­izin-4-ium chloride–N-[(1R, 8S)-hexa­hydro-1H-pyrrolizin-2-yl)acetamide (1/1)], 2(C9H16N2O)·HCl or C9H17N2O+·Cl−·C9H16N2O, arose as an unexpected product when 1-exo-acetamido­pyrrolizidine (AcAP; C9H16N2O) was dissolved in CHCl3. Within the AcAP pyrrolizidine group, the unsubstituted five-membered ring is disordered over two orientations in a 0.897 (5):0.103 (5) ratio. Two AcAP mol­ecules related by a crystallographic twofold axis link to H+ and Cl− ions lying on the rotation axis, thereby forming N—H⋯N and N—H⋯Cl⋯H—N hydrogen bonds. The first of these has an unusually short N⋯N separation of 2.616 (2) Å: refinement of different models against the present data set could not distinguish between a symmetrical hydrogen bond (H atom lying on the twofold axis and equidistant from the N atoms) or static or dynamic disorder models (i.e. N—H⋯N + N⋯H—N). Computational studies suggest that the disorder model is slightly more stable, but the energy difference is very small.




mo

Two isostructural 3-(5-ar­yloxy-3-methyl-1-phenyl-1H-pyrazol-4-yl)-1-(thio­phen-2-yl)prop-2-en-1-ones: disorder and supra­molecular assembly

Two new chalcones containing both pyrazole and thio­phene substituents have been prepared and structurally characterized. 3-(3-Methyl-5-phen­oxy-1-phenyl-1H-pyrazol-4-yl)-1-(thio­phen-2-yl)prop-2-en-1-one, C23H18N2O2S (I), and 3-[3-methyl-5-(2-methyl­phen­oxy)-1-phenyl-1H-pyrazol-4-yl]-1-(thio­phen-2-yl)prop-2-en-1-one, C24H20N2O2S (II), are isomorphous as well as isostructural, and in each the thio­phene substituent is disordered over two sets of atomic sites having occupancies 0.844 (3) and 0.156 (3) in (I), and 0.883 (2) and 0.117 (2) in (II). In each structure, the mol­ecules are linked into sheets by a combination of C—H⋯N and C—H⋯O hydrogen bonds. Comparisons are made with some related compounds.