a

Methods, apparatus, and systems for providing an enhanced positive response for underground facility locate and marking operations based on an electronic manifest documenting physical locate marks on ground, pavement or other surface

A positive response notification to provide information regarding locate and/or marking operations for underground facilities may include time-stamp information to provide proof of a time at which the locate and/or marking operation was completed by a locate technician, and/or place-stamp information to provide proof of a presence of the locate technician at or near a work site. An electronic manifest image and/or a virtual white line image similarly may be included in a positive response notification. In one example, such images may be bundled together based on respective descriptor files (or descriptor metadata) that associates the corresponding images with a locate request ticket for the operation. In another example, a positive response notification may include environmental information regarding one or more environmental conditions present at or near the work site during the locate and/or marking operation.




a

Module for powerline communication transmission

A powerline communication (PLC) transmission module transmits a signal over a three-line electrical mains supply. The PLC transmission module includes at least two coupling transformers, each transformer coupling the signal to first and second line-pairs of a three-line electrical mains supply, the first and second line-pairs different from one another. Driving circuitry drives a first version of the signal over the first line-pair and a second version of the signal over the second line-pair. Inversion circuitry selectively inverts one version of the signal relative to the other version of the signal, dependent upon an enacted transmission mode. The inversion circuitry may invert neither/both of the versions of the signal so that the signal is transmitted as a differential-mode signal on the line-pairs or invert one of the first and second versions of the signal relative to the other so that the signal is a common-mode signal.




a

System adapted for one or more electrically propellable vehicles (detector arrangement)

A detector arrangement related to a contact device in a system for driving an electrically propellable vehicle along a roadway. The system comprises a plurality of road sections subdividing the roadway, each one connected to one or more electric stations for charging a set of batteries of the vehicle and/or supplying the necessary power and energy for driving the vehicle forward. The contact device comprises displaceable current collectors disposed underneath the vehicle, which are moveable up and down and sideways. The current collectors are coordinated with control equipment to bring the current collector into mechanical and electrical contact with conducting rails arranged in a track in the roadway. The detector arrangement comprises one or more coils and is adapted to sense the variation of a magnetic field generated by additional electrical conductors disposed in the track.




a

Control apparatus and control method for vehicle

An ECU is mounted on a vehicle equipped with a converter that can boost a voltage of a power storage device storing electric power for obtaining driving force to output the boosted voltage to a drive load device. The ECU starts boosting at the converter upon satisfaction of at least any of a first condition that a boost request signal Req is received (that is, an output voltage request value of the converter exceeds a voltage Vb of the power storage device) and a second condition that output electric power P of the power storage device is higher than a value obtained by subtracting charge electric power ΔP transiently occurring at the start of boosting from rated electric power Wout (that is, it is predicted that output electric power P will exceed rated electric power Wout in response to the start of boosting).




a

Method of dynamically managing electrical power between an electrical power source and an electrical load

Electrical power is dynamically managed among one or more power sources and one or more loads. A plurality of monitor nodes is connected to an input terminal connected to each source, and to an output terminal connected to each load. A plurality of electrical power storage cells is connected among the input and output terminals, each cell being capable of storing power from at least one of the sources and being capable of discharging stored power to at least one of the loads. A plurality of controllable switches is connected to the cells. A programmed controller dynamically monitors operating conditions at the monitor nodes during operation of each source and each load, and selectively dynamically controls the switches to interconnect the cells in different circuit topologies in response to the monitored operating conditions.




a

Voltage setting device, photovoltaic power generation system, and control method of voltage setting device

An output converter includes a DCDC conversion section, a secondary side voltage/current monitoring section detecting a power from the DCDC conversion section, a maximum operation point control section determining what voltage is to be set by the DCDC conversion section so that the power detected by the secondary side voltage/current monitoring section is maximum, a DCDC short-circuit switch via which a current from a module bypasses the DCDC conversion section to outside, a primary side voltage/current monitoring section measuring the current from the module, a module short-circuit switch switching between a state where a secondary side cathode and a secondary side anode are short-circuited and a state where they are not short-circuited, the maximum operation point control section causing the DCDC short-circuit switch and the module short-circuit switch to switch.




a

System and method for management of a DC and AC bus microgrid

Systems and methods are described herein for managing the operations of a microgrid module. The microgrid module includes transformers and/or power converters necessary for modifying the input AC or DC power sources to meet the required characteristics of the output power. The microgrid module further comprises a power management software module and a control software module installed on a microgrid computer. The power management software module uses received business parameters to create rules for applying to the operation of the microgrid module. The rules are stored locally at the microgrid computer so that they can be quickly accessed by a control software module. The control software module uses the rules in combination with data collected from sensors installed in the physical circuitry layer of the microgrid module to control the operations of the microgrid module.




a

Power-fluctuation reducing apparatus for power generation system

According to one embodiment, there is provided a power-fluctuation reducing apparatus in a power generation system to control a converter connected to the power generation system and connected to secondary batteries. The power-fluctuation reducing apparatus includes adjusting direct current voltages output from the secondary batteries, respectively, detecting the directing current voltages output from the secondary batteries, respectively, controlling to adjust the direct current voltages output from the secondary batteries to make the direct current voltages uniform, based on the detected direct current voltages, and controlling the converter to reduce power fluctuations in the power generation system.




a

Elevator interior illumination

An elevator interior illumination assembly comprising a primary LED driver that provides conditioned DC power to primary and backup LEDs when AC power is available from a primary electric power source. The backup LEDs receive DC power from a backup electric power source when AC power is not available to the primary LED driver from the primary electric power source.




a

Power control system and controlling method thereof

A power control system includes a rechargeable battery, the rechargeable battery including a first battery unit and including a second battery unit connected to a first terminal of the first battery unit at a first node, a switching unit, the switching unit including a first switch connected to a second terminal of the first battery unit and including a second switch connected to the first node, and a control unit, the control unit being configured to generate and transmit switch control signals respectively corresponding to the first switch and the second switch, and being configured to control a voltage of the rechargeable battery such that the voltage is maintained in a threshold range of a predetermined rated voltage.




a

Method and apparatus for providing an electrical energy system

Embodiments of the subject invention relate to a method and apparatus for providing an electrical energy system. A specific embodiment can incorporate at least one energy harvesting module (H-module), at least one energy storage module (S-module), and at least one power electronic circuit module (C-module). The various modules can be integrated into a standard battery configuration. Specific embodiments pertain to a reconfigurable energy system with modules that can be disconnected and reconnected into different shapes and configurations.




a

Electric power control system and electric power facility comprising the electric power control system

An electric power control system is provided. The power control system includes a first node to which a plurality of power production entities are connectable for combining their power output signals as a first power signal, a transformer adapted to transformer the first power signal at the first node to a second power signal at a second node connectable to a load, the second power signal having a higher voltage than the first power signal, at least one capacitor connectable to the first node and/or to the second node, a control unit adapted to control the connection of the at least one capacitor to the first node and/or to the second node such that a power loss caused by transmission loss of the power output signals from the power production entities to the load is minimized.




a

Wireless energy transfer for photovoltaic panels

Described herein are improved configurations for a wireless power transfer involving photovoltaic panels. Described are methods and designs that use electric energy from a photovoltaic module to energize at least one wireless energy source to produce an oscillating magnetic field for wireless energy transfer. The source may be configured and tuned to present an impedance to a photovoltaic module wherein said impedance enables substantial extraction of energy from said photovoltaic module.




a

Wireless power feeder, wireless power receiver, and wireless power transmission system, and coil

A wireless power feeder feeds power from a feeding coil L2 to a receiving coil L3 by wireless using a magnetic field coupling between the feeding coil L2 and the receiving coil L3. The feeding coil L2 is formed so as to be rotated. A power transmission control circuit supplies AC power to the feeding coil L2 to make the feeding coil L2 feed the AC power to the receiving coil L3. The power transmission control circuit rotates the feeding coil L2 to change the opposing area between the feeding coil L2 and the receiving coil L3 as viewed in the axis direction of the feeding coil L2 to thereby adjust the AC power to be supplied from the feeding coil L2 to the receiving coil L3.




a

System and method for providing simple feedback signals indicating if more or less power is required during inductive power transmission

An inductive power outlet for providing power to an electric load via an inductive power receiver includes at least one primary inductive coil wired to a power supply via a driver configured to provide a driving voltage across the primary inductive coil such that a secondary voltage is induced in a secondary inductive coil associated with the inductive power receiver. The driver may include a controller configured to receive feedback control signals from the inductive power receiver indicating if more or less power is required. The controller may be further configured to adjust the driving voltage according to the control signals.




a

Mobile terminal

A mobile terminal is provided that includes a body to be mountable to a first charging apparatus, a current generator to generate an induction current by using a current of the first charging apparatus, and a wireless charger between the current generator and the battery to charge the battery by converting the induction current into a direct current. The mobile terminal may also include a connection port to be electrically connected to the battery and being connectable to a power supply terminal of a second charging apparatus, and a power charging controller to disconnect an electrically connected status between the wireless charger and the battery when the power supply terminal is electrically connected to the connection port.




a

Current sensing circuit disconnect device and method

A device and method are provided for saving power and electricity in a charging device such for external power supplies and battery chargers having a primary circuit and a secondary circuit where a switch is located in the primary circuit and a current sensing device in the secondary circuit to sense when there is a drop in current in the secondary circuit or no current in the secondary circuit because the load or a cell phone is charged and when this occurs the switch in the primary circuit is opened and the primary circuit no longer draws power from the source of power until the switch in the primary circuit is closed by activation of a user of the charging device.




a

Electric motor assembly rechargeable from an electrical mains system, and dedicated connection housing

An electric motor assembly includes a multi-phase electric motor, a battery of accumulators, an inverter configured to convert the direct current of the battery into multi-phase alternating current adapted to supply the motor, and a connection housing. The connection housing includes plugs allowing connection of motor phases, the battery terminals, and at least five connections to the inverter. The housing further includes a group of contacts allowing it to be connected to a single phase mains system, and a group of contacts allowing it to be connected a multi-phase mains system. The housing includes switches according to the position of which the system including the housing, the battery, the inverter, and the motor connected solely by its phases, alternatively allows the motor to be supplied from the battery, the battery to be recharged directly from a single-phase mains system, and the battery to be recharged from multi-phase mains system.




a

Communication system and communication device

A communication system has a first communication device, and a second communication device that conducts wireless communication the first communication device. The first communication device has a first transmitter that transmits a signal to the second communication device while modulating the signal, and a first transmission controller that controls the first transmitter. The second communication device has a first receiver that receives the signal from the first communication device and demodulates the received signal. The first transmission controller performs control so as to change a modulation method in midstream when a predetermined first signal is modulated and transmitted. The first receiver changes a demodulation method according to the change of the modulation method of the first signal in midstream when the first signal is received and demodulated.




a

Transfer switch with ground current indication

A transfer switch configured to detect a ground current is configured to selectively connect a first power source or a second power source to a load. Each of the power sources includes at least one “hot” lead and one neutral lead, and the transfer switch is configured to switch both the “hot” and the neutral leads. If the neutral switching portion of the transfer switch fails, current may be supplied to the load via the “hot” lead of one of the power sources and return from the load via a ground conductor and the neutral lead of the other power source. The transfer switch includes a current sensor, detecting current on the ground conductor, in order to detect such a condition. The signal from the current sensor is provided to a control circuit, which, in turn, activates an indicator if the current on the ground conductor exceeds a predefined level.




a

Wireless power transfer electric vehicle supply equipment installation and validation tool

A transmit pad inspection device includes a magnetic coupling device, which includes an inductive circuit that is configured to magnetically couple to a primary circuit of a charging device in a transmit pad through an alternating current (AC) magnetic field. The inductive circuit functions as a secondary circuit for a set of magnetically coupled coils. The magnetic coupling device further includes a rectification circuit, and includes a controllable load bank or is configured to be connected to an external controllable load back. The transmit pad inspection device is configured to determine the efficiency of power transfer under various coupling conditions. In addition, the transmit pad inspection device can be configured to measure residual magnetic field and the frequency of the input current, and to determine whether the charging device has been installed properly.




a

Systems and methods for powering a charging circuit of a communications interface

Embodiments include systems and methods of powering a mobile device using a sink device. The method may include detecting a coupling of the mobile device to the sink device and transmitting an acknowledgement in response to a query, the acknowledgement confirming that the sink device has charging capability. Power may be selectively provided in response to the power request. According to some embodiments, the method includes transmitting a query by a communications transmitter to determine if a sink device has charging capability, and deactivating a driver for a power line and transmitting a power request using the communications transmitter in response to receiving an acknowledgement signal from the sink device. The method may further include selectively providing power received from the sink device to a charging circuit of the mobile device. The mobile device may include an HDMI transmitter for communicating through a transmission line to an HDMI sink device.




a

Power control apparatus

A power control apparatus is mounted on an electrically driven vehicle which includes an electrical storage device configured by connecting a plurality of batteries in parallel, a voltage detection unit which detects a voltage of each battery, and a load, and the power control apparatus includes, a voltage deviation calculation unit which is connected to the electrical storage device, and calculates voltage deviation between the plurality of batteries based on the voltage detected by each voltage detection unit at the time of driving the load which is driven by power supply from the electrical storage device, a comparator which compares the voltage deviation calculated by the voltage deviation calculation unit and a first predetermined threshold, and a cutoff detection unit which detects a presence or absence of the battery, which comes into a cutoff state in the electrical storage device, when the voltage deviation is equal to or more than the first threshold in a comparison result by the comparator.




a

On-board power supply protection

The system includes a first and a second power supply terminal configured to have at least one of a battery and a generator connected thereto, a first external terminal coupled to the first power supply terminal, and a second external terminal coupled to the second power supply terminal, and a protection unit connected between the first external terminal and the first power supply terminal. The protection unit includes a semiconductor switching unit having a load path and a control terminal, the load path connected between the first external terminal and the first power supply terminal, and a control circuit coupled to the control terminal of the semiconductor switching unit and configured to switch the switching unit on and off dependent on at least one electrical parameter in the on-board power supply system.




a

System and method for phase balancing in a power distribution system

A phase balancing system includes a load forecasting module, a phase unbalance identification module and a demand response module. The load forecasting module determines a load forecast for the distribution system for the period of interest and the phase unbalance identification module determines voltage unbalance on the distribution system for the period of interest. The demand response module estimates an available demand response on the distribution system for the period of interest and allocates an optimized demand response from the available demand response to minimize the voltage unbalance on the distribution system for the period of interest.




a

Method and apparatus for controlling distribution of power

Aspects of the invention are directed to apparatus and methods for controlling power distribution to a plurality of devices including a primary device and at least one secondary device, the primary device having at least a first mode of operation and a second mode of operation, with the second mode of operation being a lower power mode of operation than the first mode of operation.




a

Control of the distribution of electric power generated by a wind farm between an AC power transmission link and a DC power transmission link

A power distribution system for distributing electric power generated by a wind farm between an AC power transmission link and a DC power transmission link is provided. Both power transmission links connect the wind farm to a substation of a power grid. The power distribution system includes a central wind farm controller and a distribution device. In response to a control signal from the central wind farm controller, the distribution device distributes the generated electrical power between the two power transmission links. It is further described a power transmission system with the above described power distribution system and a method for distributing electric power between an AC power transmission link and a DC power transmission link.




a

Asymmetric series power packs with efficient dc-dc conversion

Systems and methods to operate a power supply. A power supply has an inductor and a capacitor coupled in a substantially series connection. The power supply has a first selectably conductive path that selectably couples a first power pack to the series reactive circuit and a second selectably conductive path that selectably couples the series reactive circuit to a substantially series combination of the first power pack and a second power pack. When the first power pack output voltage is above the threshold, the first selectably conductive path couples electrical current between the first power pack to the series reactive circuit. Otherwise, the second selectably conductive path couples electrical current between the series combination and the series reactive circuit. The controller further transfers charge from the second power pack to the first power pack.




a

System and method for maintaining power to electrical systems

A back-up feed system includes a feed input, a feed output, and a feed switching device. The feed input is coupled with an electrical power source. The feed output can couple with power lines in a power distribution unit at a location downstream from circuit protection devices the power distribution unit. The feed switching device can supply back-up electrical power from the power source to electrical systems in the event of a fault condition in the power distribution unit.




a

Boost converter with multiple inputs and inverter circuit

A boost converter with a multiple input and with improved efficiency has two or more inputs. A DC voltage source can be connected to each input. A common output carries a DC voltage whose value is greater than or equal to that of the input voltages. The common output is in each case connected to each of the plurality of inputs via a positive lead branch and a negative lead branch. At least one inductor is arranged in the positive lead branch and/or the negative lead branch from each input, and at least one rectification element is arranged in the positive lead branch and/or the negative lead branch from each input. Furthermore, the inputs can be connected in series by means of two or more switching elements via the inductors, wherein at least two of the inductors can in each case be connected in parallel.




a

Advanced renewable energy harvesting

The power of DC electrical sources is combined onto a DC buss, such that each source behaves independently from any other source attached to the buss. In one embodiment, a converter module is attached to each of a plurality of solar photovoltaic panels and its output is attached in a parallel manner to a common buss that forms the input to a DC AC inverter. The converter module includes a Maximum Power Point Tracking component that matches the output impedance of the panels to the input impedance of the converter module. The converter also includes a communication component that provides parametric data and identification to a central inverter. Data generated by each converter module is transmitted over the power line or by wireless means and is collected at the inverter and forwarded to a data collection and reporting system.




a

Primary unit control of resonant inductive power transfer system for optimum efficiency

A circuit and method for wirelessly coupling an electrical energy between an electrical energy source and at least one load is provided. The circuit comprises a primary unit and at least one secondary unit. The primary unit includes an input node for receiving an input voltage produced by the energy source; a transmitter circuit including a transmitter coil configured to generate an electromagnetic field; and a regulator. The regulator is configured to sense a current consumption of the primary unit, determine a gradient of the current consumption with respect to different input voltages, and determine an optimal input voltage based on the gradient. The at least one secondary unit comprises a receiver circuit and a load. The receiver unit includes a coil that wirelessly and inductively couples with the electromagnetic field of the primary unit to receive power therefrom. The receiver unit further includes a regulator circuit configured to provide a constant power to an output node.




a

High capacity electronic switch

Embodiments of the present invention provide an electronic switch for commodity use. Specifically, embodiments of this invention provide a high capacity intelligent electronic switch for commodity use. A flexible film substrate is used along with a field-effect transistor (FET) to produce a commodity switch. Multiple printed flexible electronics PFE substrates are stacked to and integrated into an electronic switch system. Various methods are used to measure power consumption within the switch. The modular cell design allows for horizontal and vertical scaling.




a

Power control device using status latch module and electronic device using the same

A power control device for an electronic device includes a power switching unit for switching to output a dc power source to a load of the electronic device according to a power switching signal, a switching detection unit for responding a power switching status to generate a switching detection signal, a status latch module for generating the power switching signal according to the switching detection signal, a first status signal and a second status signal, and a logic unit for generating the first status signal and the second status signal for the status latch module according to the power switching signal, such that the status latch module latches the first status signal and the second status signal.




a

System for distributing electric power to an electrical grid

A system for distributing electric power to an electrical grid. The system includes a DC/AC inverter arranged to convert a DC voltage output from an electric power generator to an AC voltage, a transformer arranged to receive the AC voltage, transform the AC voltage and deliver the transformed AC voltage to the grid, and a connector arranged to selectively connect and disconnect the transformer from the grid. The DC/AC inverter is arranged to control primary winding magnetizing current delivered to the transformer. Further, the connector is arranged to selectively connect and disconnect the grid to and from the transformer on the basis of the controlled magnetizing current.




a

Machine tool

The present invention provides a machine tool making it possible that an operator needs to remove a key member from a predetermined position after an unlock condition of a door is established when a door lock mechanism brings the door into an unlocked state, meanwhile the operator can recognize the necessity of reattaching the key member to the predetermined position when the door lock mechanism brings the door into a locked state. In the machine tool, an interlock mechanism 5a allows a door lock mechanism 8 to bring a door 3 into the unlocked state in a state that the unlock condition of the door 3 is established and when the key member 9 is removed from the predetermined position and, after the door 3 is unlocked, allows the door lock mechanism 8 to bring the door 3 into the locked state only when the key member 9 is attached to the predetermined position in a state that the door closed state detection mechanism 7 detects that the door is located at the predetermined closed position.




a

Lighting apparatus

Provided is a lighting apparatus that may form and control a multi-zone of a plurality of lighting devices connected to a wireless network. The lighting apparatus may include a plurality of devices including a plurality of lighting devices included in a network set in advance, a coordinator to manage the network, a remote controller to control a multi-zone that is included in the network and that performs grouping of the plurality of lighting devices into a plurality of groups.




a

Circuit configuration with a step-up converter, and inverter circuit having such a circuit configuration

An inverter circuit contains a first and second DC sources for providing a DC voltage, a common step-up converter for boosting the DC voltage, an intermediate circuit capacitor connected between the outputs of the common step-up converter, and an inverter for converting the DC voltage provided by the capacitor into an AC voltage. The common step-up converter contains a series circuit having a first inductance and a first rectifier element and is connected between an output of the first DC source and one side of the intermediate circuit capacitor as well as a series circuit which includes a second inductance and a second rectifier element and is connected between an output of the second DC source and another side of the intermediate circuit capacitor. The common step-up converter further contains a common switching element which is connected between the first and second DC sources.




a

Method of adjusting the electrical supply voltage for the operation of at least one electrically powered vehicle

A vehicle is supplied by a first electrical energy storage unit on board the vehicle, and a ground electrical network providing an energy supply by application of a supply voltage through electrical distribution. The first energy storage unit is controllable under a generator regime or a receiver regime. The supply voltage is adjusted, in the generator regime, by applying an algebraically additive supply voltage originating from the first electrical storage unit to the distribution, to maintain a supply voltage above a minimum threshold. In the receiver regime, if a surplus of supply voltage originating at least partially from a second storage unit in the generator regime is detected above the minimum threshold, this surplus is channeled energetically to the first energy storage unit of the vehicle if it is required for operating the vehicle and enables maintaining the supply voltage below a maximum threshold and above the minimum threshold.




a

Power generation and control system

A power generation and control system is easily installed in a consumer household, a business, or an end-user establishment for generating power and preventing power from flowing to a power grid from a consumer circuit during a power outage. A communications transceiver is adapted to transmit a permission signal for allowing power generation only after the control system has been installed. The control system can be adapted to replace an existing circuit breaker in a household circuit breaker box and prevents power from traveling from consumer power generators to the grid during a power outage. In the same manner that end-users can add appliances to existing circuits, end-users can easily add additional power generation devices without hiring a professional electrician and without worrying about causing harm to utility workman during power outages.




a

Distributed power harvesting systems using DC power sources

A system and method for combining power from DC power sources. Each power source is coupled to a converter. Each converter converts input power to output power by monitoring and maintaining the input power at a maximum power point. Substantially all input power is converted to the output power, and the controlling is performed by allowing output voltage of the converter to vary. The converters are coupled in series. An inverter is connected in parallel with the series connection of the converters and inverts a DC input to the inverter from the converters into an AC output. The inverter maintains the voltage at the inverter input at a desirable voltage by varying the amount of the series current drawn from the converters. The series current and the output power of the converters, determine the output voltage at each converter.




a

Switch device and power supply control system

The switch device includes a control switch that turns on/off an electrical connection between an apparatus and the power supply, a condition judging circuit that judges conditions of driving the control switch, an electric wave reception circuit that receives an electric wave, and a power supply circuit that generates power from the electric wave received by the electric wave reception circuit. An electric wave transmission device that transmits an electric wave for making the switch device operate is arranged in a space, whereby the electric wave can be received by the electric wave reception device in the specific space. The switch device controls the control switch to be turned off/on when the electric wave is received. Alternatively, when the electric wave is not received, the switch device turns on/off the control switch.




a

Computer hinge with hollow and partially annular clutch

A hinge assembly having a hollow and partially annular clutch is arranged to pivotally couple a portable computer base portion to a portable computer lid portion. The hinge assembly includes at least an elongated, hollow and partially open cylindrical portion that includes a partially annular outer region and a central bore region, the central bore region suitably arranged to provide support for electrical conductors between the base and lid portions. The hinge assembly also includes a plurality of fastening components that couple the hollow clutch to the base portion and the lid portion of the portable computer, with at least one of the fastening regions being integrally formed with the hollow and partially open cylindrical portion such that space, size and part count are minimized.




a

Mounting apparatus for display device

A mounting apparatus includes a supporting board, a first adjusting member including a rotating board and a fixing plate, a second adjusting member to install a display device. The rotating board includes a tab, is mounted on the supporting board, and is rotatable about an axis perpendicular to the supporting board. The second adjusting member is mounted to the fixing plate and is rotatable about an axis perpendicular to the fixing plate. A first sliding block is slidably mounted to the supporting board. A second sliding block is slidably mounted to the rotating plate. The first and second sliding blocks each define a slanted groove. A pin protrudes from each of the tab and the second adjusting member to be slidably received in the slanted grooves. The first sliding block is slid to rotate the first adjusting member, the second sliding blocks is slid to rotate the second adjusting members.




a

Monitor fixing mechanism for fixing a monitor and display device therewith

A monitor fixing mechanism for fixing a monitor is disclosed. The monitor fixing structure includes a pivot plate and a support member. The pivot plate is detachably connected to the support plate so as to pivot the monitor relative to a stand. The support member includes a plate, at least one lateral guiding structure disposed on the plate for laterally constraining movement of the pivot plate as the pivot plate is sliding into the plate in a first direction, and at least one stopping structure disposed on the plate for stopping an end of the pivot plate as the pivot plate has slid into the plate in the first direction completely. The monitor fixing mechanism further includes a fastening module for fastening the pivot plate on the support member as the pivot plate has slid into the plate in the first direction completely.




a

Electronic device with mounting apparatus for solid state disk

A mounting apparatus for a solid state disk includes a bracket and a latching module. The bracket includes a connecting pole and a supporting member mounted to the connecting pole. The latching module is installed to the supporting member, and comprises a latching member. The supporting member includes a position pole mounted to the connecting pole and a supporting bar perpendicularly extending out from the position pole. The position pole defines a latching slot facing the supporting bar for positioning an end of the solid state disk. The supporting bar defines a guiding slot facing the latching slot for receiving a side of the solid state disk. The latching member is to latch onto the solid state disk.




a

Insertion and removal assembly for installing and removing data storage drives in an enclosure

An insertion and removal assembly for installing and removing hard drives from an enclosure, such as a computer chassis, is provided. The insertion and removal assembly includes a sliding member configured to receive a hard drive, a lever handle rotatably connected to the sliding member and an attachment wall having a plurality of protrusions defining a plurality of slots, each slot configured to receive one sliding member. A user reveals a slot for accepting the installation of the hard drive in the enclosure by pushing a tab on the attachment wall near a distal portion of the lever handle to release the lever handle and then pulling the lever handle outward exposing the sliding member. A hard drive is inserted into the sliding member and pushed inwardly into the chassis. Conversely, the sliding member can contain a hard drive which is partially ejected by unlatching and subsequently pulling the lever.




a

Mobile terminal with waterproof sheet and manufacturing method

A mobile terminal has a waterproof sheet interposed between a first body portion and a second body portion. The waterproof sheet is formed with a curved shaped or step-like cross-section in consideration of characteristic of internal component or a battery arranged on the first body portion of the mobile terminal, the curved shaped or step-like cross-section is configured to encase, in part or in whole, the internal component or the battery.




a

Two-phase electronic component cooling arrangement

An electronic component assembly includes a housing that provides a cavity filled with a cooling fluid that has a liquid phase and a vapor phase. An electronic element is arranged in the cavity and is configured to generate heat. A wicking material is arranged in the cavity between the housing and the electronic device. The cavity provides a gap adjacent to the wicking material. The wicking material is configured to absorb the liquid phase, and the vapor phase is provided in the gap.




a

Electric power conversion apparatus

An electric power conversion apparatus includes a channel case in which a cooling water channel is formed; a double side cooling semiconductor module that has an upper and lower arms series circuit of an inverter circuit; a capacitor module; a direct current connector; and an alternate current connector. The semiconductor module includes first and second heat dissipation metals whose outer surfaces are heat dissipation surfaces, the upper and lower arms series circuit is disposed tightly between the first heat dissipation metal and the second heat dissipation metal, and the semiconductor module further includes a direct current positive terminal, a direct current negative terminal, and an alternate current terminal which protrude to outside. The channel case is provided with the cooling water channel which extends from a cooling water inlet to a cooling water outlet, and a first opening which opens into the cooling water channel.