a

Liquid ejecting head and liquid ejecting apparatus

A liquid ejecting head comprises a pressure generation chamber communicating with a nozzle opening, a vibrating wall provided as one surface of the pressure generation chamber and vibrates so that ejects the liquid from the nozzle opening, and a resin portion having a recessed arc-shape and formed in a corner of the pressure generation chamber and formed of a resin material having a Young's modulus of less than or equal to 10 GPa. A ratio r/w of a radius r of the surface of the resin portion to a width w of the pressure generation chamber defined by the vibrating wall is greater than or equal to 0.017 and less than or equal to 0.087.




a

Substrate for inkjet head and inkjet head having protection layer including individual sections corresponding to heating resistors

There are provided a substrate for an inkjet head and an inkjet head wherein in a case where a protection layer of heating resistors is energized, an electrical connection with portions around the protection layer is more reliably cut. A first protection layer provided for the substrate for an inkjet head includes individual sections provided at positions corresponding to the plurality of heating resistors and a common section which commonly connects the plurality of individual sections. The individual sections and the common section are connected via connect sections which are eluted and connect in a case where an electrochemical reaction occurs between the connect sections and ink when electricity flow therethrough, so that an electrical connection between the individual sections and the common section is cut.




a

Cover and liquid container

A cover for a liquid container which exposes at least a portion of a detecting member, having a liquid supply portion to a liquid ejecting apparatus through communicating with the liquid containing unit, and a first surface provided with a first container side engagement portion arranged between the liquid supply portion and the detecting member. The cover includes a first cover side engagement portion engaging with the first container side engagement portion.




a

Tray unit and image recording device

A tray unit includes a first tray, a second tray, and a cover. The first tray includes a first holding surface for holding thereon a first sheet. The second tray includes a second holding surface for holding thereon a second sheet. The second tray is configured to slide above and along the first holding surface between a first second-tray position and a second second-tray position, and is configured to pivot between the second second-tray position and a third second-tray position in which the second tray stands upward with respect to the first holding surface. The cover is configured to cover from above at least a part of the second tray when the second tray is in the second second-tray position, and is configured to pivot between a first cover position in which the cover extends along the first holding surface and a second cover position in which the cover stands upward with respect to the first holding surface.




a

Disposable digital camera with printing assembly

A digital camera includes an image capture assembly; a print media transport assembly; a pagewidth ink jet printhead; a roll of print media; an internal chassis serving as a frame on which the image capture assembly, the print media transport assembly, and the printhead are directly supported; and an external casing completely encasing therewithin the internal chassis. The external casing is openable, and the internal chassis together with the assemblies and printhead supported thereon are removable from the external casing. The internal chassis is provided as an integral frame configured with pre-molded fittings adapted to receive and support the assemblies and printhead.




a

Piezoelectric element, liquid ejecting head, and liquid ejecting apparatus

A piezoelectric element comprises a piezoelectric layer made of a perovskite compound containing sodium, potassium, lithium, niobium and tantalum and bismuth manganate and electrodes for applying a voltage to the piezoelectric layer.




a

Method and system for locating signal emitters using cross-correlation of received signal strengths

A method and system for determining a location of a first device that emits a signal: provide at least three sensors separated and spaced apart from each other; at each of the sensors, receive the signal emitted by the first device; determine the received signals for each of the sensors; determine cross-correlations of the received signals for pairs of the sensors; and determine the location of the first device from the magnitudes of the cross-correlations of the received signals.




a

Interrogator and system employing the same

An interrogator and system employing the same. In one embodiment, the interrogator includes a receiver configured to receive a return signal from a tag and a sensing module configured to provide a time associated with the return signal. The interrogator also includes a processor configured to employ synthetic aperture radar processing on the return signal in accordance with the time to locate a position of the tag.




a

Electromagnetic wave reverberation chamber

An electromagnetic wave reverberation chamber includes: an electromagnetic wave absorbing apparatus installed in an intended space of the electromagnetic wave reverberation chamber for adjusting a reflection characteristic of an inside of the electromagnetic wave reverberation chamber, wherein the electromagnetic wave absorbing apparatus have an electromagnetic bandgap structure including a plurality of unit cells arranged periodically.




a

Air defense system architecture combining passive radars and active radars

The architecture includes a passive radar using opportunistic transmitters and a plurality of active radars that cooperate in the form of a coalition to assure the surveillance of an area of space. The passive radar and the active radars that form the architecture include means for exchanging information and the passive radar is configured to adopt two alternate operating modes: (i) a “watching” mode in which the passive radar carries out surveillance of the area of space concerned and generates detection information, and (ii) an “on-demand data feed” mode in which the passive radar executes at the request of one or more active radars an object search in a given sector of the area under surveillance or an analysis of certain characteristics of the signal received in a given sector.




a

Measurement device, measurement system, measurement method, and program

Provided is a technique capable of suppressing the deterioration in azimuth resolution and distance resolution in even a modulated and transmitted or received signal or a signal reflected by an object and varied in intensity when acquiring waveform information. A measurement device comprise: a plurality of sensors which receive waves propagating through a space; and a sampling timing calculation means which obtains, on the basis of the relative positions of the sensors and the velocities of the waves, the difference between the arrival times of the waves received by the respective sensors and calculates, for each sensor, sampling timing for acquiring the waveform information relating to the waves, on the basis of the difference between the arrival times.




a

Optimizing switching sequence in the case of switched antenna arrays

An antenna array for a radar sensor, wherein the antenna array has a number of antenna elements linearly arranged next to one another. The antenna elements are designed for transmitting or receiving a radar signal, and the antenna array has a switching unit, which is designed to connect the antenna elements according to a predetermined switching sequence individually, one after the other in time, with a transmitting or receiving unit of the radar sensor. The switching sequence, according to which the antenna elements are connected one after the other with the transmitting or receiving unit, deviates from the spatial sequence of the antenna elements in the antenna array.




a

Intermittent filling level determination with dynamically determined number of measurements

A method of determining a filling level of a product contained in a tank using a level gauge system, comprising the steps of: transmitting a first signal towards a surface of the product; receiving a first echo signal; determining a present echo characteristic value based on the first echo signal; and comparing the present echo characteristic value and a stored echo characteristic value. If a difference between the present echo characteristic value and the stored echo characteristic value is greater than a predefined value, the method further comprises transmitting at least a second transmit signal towards the surface; receiving at least a second echo signal; and determining the filling level based on the at least second electromagnetic echo signal.




a

Method for monitoring the state of a fill level measuring device operating according to the radar principle

A method for monitoring the state of a fill level measuring device (1) operating according to the radar principle and such a fill level measuring device, wherein the fill level measuring device (1) has at least one transceiver unit (2) for transmitting and receiving electromagnetic signals, and at least one antenna (3) for guiding, radiating and receiving electromagnetic signals. The antenna (3) has at least one interior space (4), and wherein the antenna (3) has a transmission characteristic with regard to the transmission of electromagnetic signals. Electromagnetic signals are emitted or directed at least partially in the direction of a wall section (5) of the interior space (4) of the antenna (3), the received electromagnetic signals are evaluated with respect to the transmission characteristic of the antenna (3), and the result of the evaluation is compared to at least one stored reference value.




a

System and method of radar location

A system and method of radar location comprises radar signal emission means, an emitted pulse of duration T1 and index i starting at instant T2(i); means receiving reflected radar signals; means determining correlation between reconstruction of an emitted pulse and signal received during the time interval between T2(i)+2*T1 and T2(i+1). The means determining a correlation can reconstruct a set, of at least one truncated pulse j of duration T3(j), less than T1, corresponding to the final part of said emitted pulse, said truncated pulses having increasing respective durations, determining at least one first correlated signal j by correlation of said truncated pulse j and signal received during time interval between T2(i)+T1 and T2(i)+T1+T3(j) and determining a second signal, based on first correlated signals j, by copying the time interval, of said correlated signal j, between T2(i)+T1+T3(j) and T2(i)+T1+T3(j+1), onto the time interval, of said second signal, between T2(i)+T1+T3(j) and T2(i)+T1+T3(j+1).




a

Portable biometric monitoring devices having location sensors

Assisted-GPS for a portable biometric monitoring device is provided. The portable biometric monitoring device may obtain updated ephemeris data from an associated secondary device via a short-range, low-power communication protocol. The secondary device may be a computing device such as a smartphone, tablet, or laptop. Various rules may control when the ephemeris data is updated. The ephemeris data may be used in the calculation of the global position of the portable biometric monitoring device. Additionally, the portable biometric monitoring device may communicate downloaded position fixing data to the associated secondary device. The associated secondary device may then calculate the global position from the position fixing data.




a

Satellite differential positioning receiver using multiple base-rover antennas

A rover processor determines position of a rover based upon the interaction between multiple antennas located at the rover and multiple antennas located at a base. The rover antennas may include a rover master antenna having a phase center located at the centroid of the antennas patterns of at least two auxiliary rover antennas. The rover processor may determine the position of the rover master antenna based upon the relative positions of at least two rover antennas (e.g., the rover master antenna and at least one rover auxiliary antenna, or at least two rover auxiliary antennas) with respect to at least two antennas of a base transceiver.




a

Positioning using a local wave-propagation model

A method and apparatus for assisting the calculation of the position of a receiver device (1200), by observing a transmitted signal having a known structure. The method comprises: comparing (S220) the time of arrival, at a reference position (X1), of a first portion of the signal with the time of arrival at the receiver, at an unknown position (Y1), of a second portion of the signal; obtaining (S230) a local wave propagation model of the signal, the model comprising an estimate of the direction of propagation of the signal in the neighborhood of the reference position and unknown position; and using (S240) the direction of propagation and the result of the comparison to assist in the calculation of the unknown position relative to the reference position.




a

Communication system, apparatus and methods for calibrating an antenna array

A method for calibrating (700) an antenna array comprises a plurality of antenna elements coupled to a plurality of respective receive paths in a wireless communication system. The method comprises, in receive mode, applying a test signal to an individual single receive path (715) of the plurality of receive paths; and feeding back the test signal via a switched coupler network. The method further comprises running a receive calibration measurement routine to determine at least one measurement value used to calibrate the individual signal receive path and waiting for at least one converged measurement value; and extracting (720) the converged measurement value for at least one individual receive path. The steps of applying, running, extracting for a next individual single receive path are repeated until the calibration routine has completed (725). The method further comprises selecting a converged measurement value of at least one individual receive path from a plurality of receive paths (730) to form a reference receiver calibration result (730); normalizing a plurality of at least one measurement values of the plurality of receive paths using the reference receiver calibration result (730); and applying a normalized value to at least one of the plurality of receive paths.




a

Wide area positioning systems and methods

Devices, systems, and methods for sending positional information from transmitters/beacons are disclosed. In one implementation a transmitter generates a range block including a ranging signal and a hybrid block including positioning data, and sends the range block and hybrid block in predefined slots in a transmit frame. A receiver in a user device receives signals from a plurality of transmitters and generates position/location information using trilateration and measured altitude information in comparison with transmitter altitude information.




a

Wireless communication terminal

A wireless communication terminal includes a communication status measurement element for measuring communication status data representing a communication status of the self terminal at the time of wireless communications; a reference data storage element for storing respective pieces of preset reference data representing communication statuses of a terminal which can be measured at respective locations at the time of wireless communications, in association with respective pieces of location data identifying the respective locations, and a location specifying element for comparing the communication status data measured by the communication status measurement element with the respective pieces of reference data stored in the reference data storage element, and based on the comparison result, specifying a location corresponding to the location data associated with a particular piece of reference data as a location of the self terminal.




a

Time of arrival (TOA) estimation for positioning in a wireless communication network

Techniques for determining time of arrivals (TOAs) of signals in a wireless communication network are described. Each cell may transmit (i) synchronization signals on a set of contiguous subcarriers in the center portion of the system bandwidth and (ii) reference signals on different sets of non-contiguous subcarriers distributed across the system bandwidth. A UE may determine TOA for a cell based on multiple signals transmitted on different sets of subcarriers. The UE may perform correlation for a first signal (e.g., a synchronization signal) from the cell to obtain first correlation results for different time offsets. The UE may perform correlation for a second signal (e.g., a reference signal) from the cell to obtain second correlation results for different time offsets. The UE may combine the first and second correlation results and may determine the TOA for the cell based on the combined correlation results.




a

System and method for processing and displaying wake turbulence

A system and method to display, when within an envelope of an ownship's flight path, a symbol representing wake turbulence from another aircraft based on aircraft type and flight parameters received from the other aircraft, the symbol being formatted to indicate the severity of portions of the wake turbulence. The format is modified periodically in accordance with the aircraft's flight path and a decay rate of the wake turbulence.




a

System and method for modifying adaptive cruise control set points

A driver performance mapping system for a vehicle system is disclosed. The system may include a GPS receiver generating GPS data indicative of a current location of the vehicle. In addition, the system may also have a radar device generating current gap data indicative of a current gap distance from the vehicle to a lead vehicle. Further, the system may include an electronic controller configured to generate learned gap data based on the current gap data and stored gap data, and then assign the learned gap data with the GPS data.




a

Unmanned aircraft with built-in collision warning system

An unmanned aircraft, unmanned aviation system and method for collision avoidance during the flight operation of an unmanned aircraft are provided. The unmanned aircraft includes a lift and propulsion system and a flight control system having a flight control unit, a navigation system and an actuator system. The flight control unit has an autopilot unit. The flight control unit calculates control commands using data from the navigation system and/or the autopilot unit, which can be conveyed to the actuator system for actuating the lift and propulsion system. A collision warning system is connected with the flight control system, the collision warning system detects a collision situation and makes collision avoidance data available. A connection between the collision warning system and the autopilot unit is provided, in order to initiate an obstacle avoidance maneuver by the autopilot unit with the help of the collision avoidance data.




a

Route re-planning using enemy force lethality projection

A method, system and computer readable media for route re-planning including generating enemy force movement predictions to be used during mission planning. During a mission, enemy force movements can be compared to the predictions. By using enemy force movement predictions for an initial comparison, the enemy force movements may only need to be compared to the own force mission plan if the enemy forces deviate from the predictions. When enemy force movement deviates from the predictions, new enemy force movement predictions can be generated. The new enemy force movement predictions can then be compared to the own force mission plan to determine if a route re-plan is needed. The route can be re-planned to determine a route that reduces or eliminates the chance of a lethal encounter with an enemy or threat.




a

Methods and apparatus for electromagnetic signal polarimetry sensing

A system and method of identifying changes utilizing radio frequency polarization includes receiving a reflected and/or transmitted polarized radio frequency signal at a receiver, filtering, amplifying and conditioning the received signal, converting the received signal from an analog format to a digital format, processing the digital signal to elicit a polarization mode dispersion feature of the received signal, and comparing the polarization mode dispersion features to a known calibration to detect a change in a characteristic of the target object.




a

Device and method for determining a sample rate difference

In embodiments, a device is illustrated for determining a sample rate difference between a first information signal and a second information signal including an offset determiner for determining for each of a plurality of segments of the first information signal, associated offset values which temporally align the plurality of segments with respect to the second information signal and a calculator for calculating the sample rate difference on the basis of the offset values.




a

SAR autofocus for ground penetration radar

A method of synthetic aperture radar autofocus for ground penetration radar. The method includes transmitting a signal via an antenna; receiving a reflected signal comprising a plurality of image blocks via the antenna; reading each image block from the reflected signal via a processor; locating prominent targets in each image block via the processor; estimating ground penetration phase error via the processor in each image block via phase error inputs including pulling range and quantization level by generating a 1D phase error and converting the 1D phase error into a 2D phase error of an image spectra; refocusing each image block according to estimated ground penetration phase error for that image block via the processor; and forming an image mosaic comprising each refocused image block via the processor.




a

Vectorization approach to isolating local maxima in an N-dimensional dataset

Identification of maximum power scatters in an N-dimensional dataset generally requires two basic steps. The first step is to identify the max power scatters of the dataset and the second step removes neighboring power scatters (e.g., “hits”) of lower power. Current naïve approaches utilize an inefficient and computationally intensive brute force implementation which requires multiple comparisons of each initial “hit” power to all “hits” of lesser power. Such brute force implementations require 2×N×(M−1)! comparisons, where N is the number of dimensions and M is the number of “hits.” Embodiments of the present disclosure utilize vectorization to identify a plurality of neighboring hits for each max power scatter and removes the neighboring hits of lesser power that are within a predetermined isolation region. Advantageously, embodiments of the present invention perform M−1 comparisons.




a

Apparatus and method for assisting vertical takeoff vehicles

According to one aspect of the present invention, a radar system is provided which accurately measures the surface profile in a wide sector beneath and forward of a helicopter, to aid low level transit and landing in poor visibility. This uses an electronic beam synthesis technique to form multiple beams directed at the area of interest, each measuring the distance to the first reflected signal received by each beam. These distances represent the profile of the ground and any objects on the ground. A processor then compares the measured profile with the ideal ground profile for safe landing. If the deviations from straight and level exceed the specified requirement for safe landing, or if sufficient rotor clearance is not detected, then a warning is given to the operator. A display will show the measured ground profile highlighting the unsafe regions, allowing the operator to seek a safe region to land. The novelty lies in the way the beams are formed to measure and display the ground profile and provide a warning system. This beam-forming technique is simpler and more cost effective than with a conventional phased array radar.




a

Object detection device and object detection method

Disclosed is an object detection device capable of improving object detection accuracy by preventing erroneous combination detection. In this device, a detection object region correction unit (103) corrects a detection object region set by a detection object region set unit (102) on the basis of moving speed map information associated with a coordinate group in a reference image plane and the detected moving speed on each coordinate, which is detected by a radar. Thus, the detection object region can be amended by the use of the moving speed map information even when the detection object region is obtained as a result of erroneous combination. As a result, the object detection accuracy can be improved.




a

Systems and methods for determining a radar device coverage region

A system for determining a coverage region of a radar device is disclosed. The system may have one or more processors and a memory. The memory may store instructions that, when executed, enable the one or more processors to receive radar data generated by a radar device and lidar data generated by a lidar device. The radar data may include radar data points representing objects detected by the radar device and the lidar data may include lidar data points representing objects detected by the lidar device. The one or more processors may be further enabled to determine a radar coverage region for the radar device by comparing one or more radar data points to one or more lidar data points, and to generate data used to display a graphical representation of the radar coverage region.




a

Device and method for controlling tracking information, and radar device

This disclosure provides a tracking information control device. The device includes a receiver for receiving, from two radar devices, data relating to a target echo received by a radar antenna of one of the radar devices, and data relating to a target echo received by a radar antenna of the other radar device, the data being obtained from tracking the target echoes, respectively, a determiner for determining whether the target echoes indicate the same target object, an ID applier for applying the same ID to the target echoes when the determiner determines that the target echoes indicate the same target object, and a transmitter for transmitting the same IDs to the radar devices in order to inform whether the target echoes displayed by the radar devices, respectively, indicate the same target object.




a

Method, device and program for processing signals, and radar apparatus

A signal processing device, which includes an echo signal input module for inputting echo signals from an antenna discharging electromagnetic waves to a predetermined area and receiving the echo signals reflected on a target object, an echo signal level detection module for detecting a level of each of the echo signals from each location within the predetermined area, a target object detection module for detecting the target object based on the levels of the echo signals, a correlation processing module for performing scan-to-scan correlation processing of a plurality of scans, and a level adjustment module for adjusting the levels of the echo signals after the scan-to-scan correlation processing. The level adjustment module adjusts the levels of the echo signals corresponding to the locations where the target object detection module detects the target object.




a

Radar sensor and method of detecting object using the same

A radar sensor and a method of detecting an object by using the same are provided. The method includes: receiving at least one radar signal reflected from the object; converting the received at least one radar signal to at least one signal in a frequency domain; accumulating the converted at least one signal for a predetermined time and extracting at least one feature from the accumulated at least one signal; and identifying the object by comparing the extracted at least one feature with at least one reference value stored in a database.




a

Target tracking apparatus, storage medium stored a target tracking program, target tracking system, and target tracking method

According to one embodiment, a target tracking apparatus acquires a first determination result by determining which combination of N-dimensional tracks is for the real target, acquires a second determination result by determining which combination of N-dimensional angular observation values is for the real target, selects the first determination result when an observation environment is an environment other than a dense environment, selects the second determination result when the observation environment is a dense environment, and calculates distance information to thereby generate an (N+1)-dimensional track for each target.




a

RF based tracker for rotating objects

An RF beam is used to probe the presence or absence of a rotating blade in a known field of view. Timing of appearance or disappearance or “zero-crossing” of a reflected signal is correlated with timing of the blade movement. Blades which are leading or lagging versus other blades will produce different timing signatures representative of alignment of the blades.




a

Determining the location of a load for a tower crane

A tower crane load location determiner is disclosed. One example includes a load location measurer to provide load location measurement information for a load coupled with a tower crane. In addition, a load position determiner utilizes the load location measurement information to determine a location of the load. A user accessible load location provider provides the determined location of the load.




a

Multibeam radar apparatus for vehicle, multibeam radar method and multibeam radar program

An on-board multibeam radar apparatus includes a plurality of beam elements that constitute an antenna transmitting a transmission wave and receiving an incoming wave reflected by and arriving from a target in response to the transmission wave, and a processing unit configured to apply a Fourier transformation to beam element data which are data of a received wave received through the plurality of beam elements based on the number of elements and the element interval of a desired virtual array antenna so as to create virtual array data, and to perform a predetermined process based on the created virtual array data.




a

Method for filtering of clutter by scan-to-scan correlation using doppler information

The present disclosure concerns a method for post-processing of radar data that uses information of Doppler speed as obtained by coherent processing of the input data, to reduce clutter due to waterbodies, in particular the sea clutter. The present disclosure further concerns a coherent radar provided with means suitable to implement the invention method.




a

Non Doppler-tolerant pulse compression in radar systems

A method for processing return radar waveforms in response to transmitted radar waveforms. The method includes receiving, with a processor, a return radar waveform having a Doppler shift larger than Doppler tolerance. The method also includes separating, with the processor, the return radar waveform into a plurality of shortened waveforms. The method also includes compressing, with the processor, each of the plurality of shortened waveforms with a shortened form of the return radar waveform. The method also includes summing, with the processor, the plurality of compressed, shortened waveforms by computing a Doppler Fourier transform for each radar range bin of the return radar waveform using the plurality of compressed, shortened waveforms.




a

Radar receiver, and radar device equipped with same

There is provided a radar receiver that effectively prevents local oscillator signals from leaking out from an antenna. A receiver 21 includes a local oscillator 5, a mixer 6, a buffer amplifier 11, and a mode switcher 16. The local oscillator 5 outputs a local oscillation signal LO. The mixer 6 mixes a high-frequency signal RF received by a radar antenna 2 with the local oscillation signal LO. The buffer amplifier 11 is disposed between the local oscillator 5 and the mixer 6. The mode switcher 16 switches at least between a standby mode in which power is supplied to the local oscillator 5 and no power is supplied to the buffer amplifier 11 and a reception mode in which power is supplied to both the local oscillator 5 and the buffer amplifier 11.




a

GNSS state machine searching received signal, moving bits, updating registers

Enhancing search capacity of Global Navigation Satellite System (GNSS) receivers. A method for searching satellite signals in a receiver includes performing a plurality of searches sequentially. The method also includes storing a result from each search of the plurality of searches in a consecutive section of a memory. Further, the method includes detecting free sections in the memory. The method also includes concatenating the free sections in the memory to yield a concatenated free section. Moreover, the method includes allocating the concatenated free section for performing an additional search.




a

Phased array transmission methods and apparatus

A phased array transmitter includes a plurality of vector modulators, an in-phase/quadrature (I/Q) signal generator, and a multiphase generator. The output phases of the plurality of vector modulators, and hence the direction of transmission of the phased array transmitter, are set and controlled by adjusting both the magnitude ratios of I/Q signal pairs generated by the I/Q signal generator and applied to I and Q inputs of the plurality of vector modulators and phases of a plurality of local oscillator (LO) signal phases generated by the multiphase generator and applied to LO inputs of the plurality of vector modulators. Setting and controlling the output phases of the vector modulators by varying both the magnitude ratios of the I/Q signal pairs and the phases of the LO signal phases allows the output phases of the plurality of vector modulators to be more precisely set and controlled than if the output phases were to be set and controlled only through the LO paths or only through the I/Q signal paths of the plurality of vector modulators.




a

Method and apparatus for doubling the capacity of a lens-based switched beam antenna system

A lens-based switched beam antenna system including a beam-forming lens, and a beam port router coupled to the beam-forming lens, including a plurality of beam ports, and configured to transmit beams via corresponding ones of the beam ports, wherein a first group of the beam ports corresponds to a first signal, and wherein a second group of the beam ports corresponds to a second signal.




a

Apparatus and method for producing a multi-pattern wireless frame

Multi-pattern transmission of frames. The method of operations comprises transmitting a first portion of a frame using a first radiation pattern. The frame comprises one or more preambles and a single data portion associated with the one or more preambles. Thereafter, an operation is conducted to switch the radiation pattern from the first radiation pattern, used to produce the first portion of the frame, to a second radiation pattern. A second portion of the same frame is produced using the second radiation pattern.




a

Single-cable automatic IRD installation procedure

A method, apparatus, system, and computer program product for auto-installing an integrated receiver/decoder (IRD) includes issuing an auto-installation command from the IRD to an outdoor unit (ODU) and receiving a plurality of tones from the ODU in response to the auto-installation command, each tone representing a center frequency of available user bands (UBs). The auto-installation also includes acquiring a UB center frequency by the IRD, requesting the ODU to confirm a UB number corresponding to the acquired UB center frequency, and receiving confirmation from the ODU that a UB number corresponds to the acquired UB center frequency. The auto-installation also includes sending an acceptance of the assigned UB number from the IRD to signal the ODU that it may mark the assigned UB as assigned.




a

Positioning for WLANS and other wireless networks

Techniques for positioning access points and terminals in WLANs and other wireless networks are described. For access point positioning, measurements are obtained for at least one access point in a WLAN. The measurements may be based on transmission sequences (e.g., beacon frames) transmitted periodically by each access point. The measurements may be made by multiple terminals at different locations or a single mobile terminal at different locations. The location of each access point is determined based on the measurements and known locations of the terminal(s). For terminal positioning, measurements for at least one access point in a WLAN are obtained. The location of the terminal is determined based on the measurements and known location of each access point. The measurements may be round trip time (RTT) measurements, observed time difference (OTD) measurements, time of arrival (TOA) measurements, signal strength measurements, signal quality measurements, etc.




a

Method of determining the orientation of a machine

A method of determining the orientation of a robotic machine at a worksite contemplates providing a target on the machine, moving the target to a first position on said machine, determining the location of the first position in the worksite, moving the target to a second position on said machine, and determining location of the second position in the worksite. The first and second positions are known with respect to the machine. Finally, a vector between the first and second locations defines the orientation of the machine with respect to the worksite. The target may be moved to additional positions on the machine.