ive Administrative scheme for the County of London made by the London County Council on 18th December, 1934, for discharging the functions transferred to the Council by Part I of the Local Government Act, 1929, and orders made bu the Minister of Health under By search.wellcomelibrary.org Published On :: England : London County Council, Public Assistance Department, 1935. Full Article
ive Dream narrative By search.wellcomelibrary.org Published On :: Oakland: Book River Press, 2018 Full Article
ive Geschichte der Appendizitis : von der Entdeckung des Organs bis hin zur minimalinvasiven Appendektomie / Mali Kallenberger. By search.wellcomelibrary.org Published On :: Berlin : Peter Lang [2019] Full Article
ive Trans reproductive justice: a radical transfeminism mini zine By search.wellcomelibrary.org Published On :: Leith, 2019 Full Article
ive The case for revenge : a pretty hopeless zine about the neoliberal university. By search.wellcomelibrary.org Published On :: [United Kingdom] : [Darcy Leigh], 2019. Full Article
ive Reproductive health matters. By search.wellcomelibrary.org Published On :: London : Reproductive Health Matters, 1993-2018. Full Article
ive Rx: 3 x/week LAAM : alternative to methadone / editors, Jack D. Blaine, Pierre F. Renault. By search.wellcomelibrary.org Published On :: Rockville, Maryland : The National Institute on Drug Abuse, 1976. Full Article
ive Cocaine use in America : epidemiologic and clinical perspectives / editors, Nicholas J. Kozel, Edgar H. Adams. By search.wellcomelibrary.org Published On :: Rockville, Maryland : National Institute on Drug Abuse, 1985. Full Article
ive Needle sharing among intravenous drug abusers: national and international perspectives / Editors, Robert J. Battjes, Roy W. Pickens. By search.wellcomelibrary.org Published On :: Rockville, Maryland : National Institute on Drug Abuse, 1988. Full Article
ive Evaluating and treating depressive disorders in opiate addicts / Bruce J. Rounsaville, Thomas R. Kosten, Myrna M. Wiessman, Herbert D. Kleber, for the National Institute on Drug Abuse. By search.wellcomelibrary.org Published On :: Rockville, Maryland : National Institute on Drug Abuse, 1985. Full Article
ive The therapeutic community : study of effectiveness : social and psychological adjustment of 400 dropouts and 100 graduates from the Phoenix House Therapeutic Community / by George De Leon. By search.wellcomelibrary.org Published On :: Rockville, Maryland : National Institute on Drug Abuse, 1984. Full Article
ive National drug/alcohol collaborative project : issues in multiple substance abuse / edited by Stephen E. Gardner. By search.wellcomelibrary.org Published On :: Rockville, Maryland : National Institute on Drug Abuse, 1980. Full Article
ive The aging process and psychoactive drug use. By search.wellcomelibrary.org Published On :: Rockville, Maryland : National Institute on Drug Abuse, 1979. Full Article
ive Professional and paraprofessional drug abuse counselors : three reports / Leonard A. LoSciuto, Leona S. Aiken, Mary Ann Ausetts ; [compiled, written, and prepared for publication by the Institute for Survey Research, Temple University]. By search.wellcomelibrary.org Published On :: Rockville, Maryland : National Institute on Drug Abuse, 1979. Full Article
ive National polydrug collaborative project : treatment manual I : medical treatment for complications of polydrug abuse. By search.wellcomelibrary.org Published On :: Rockville, Maryland : National Institute on Drug Abuse, 1978. Full Article
ive National polydrug collaborative project : treatment manual 3 : referral strategies for polydrug abusers. By search.wellcomelibrary.org Published On :: Rockville, Maryland : National Institute on Drug Abuse, 1977. Full Article
ive The incidence of drugs in fatally injured drivers : final report / [E. J. Woodhouse]. By search.wellcomelibrary.org Published On :: Springfield, Virginia : National Technical Information Service, 1974. Full Article
ive The wilderness of mind : sacred plants in cross-cultural perspective / Marlene Dobkin De Rios. By search.wellcomelibrary.org Published On :: Beverly Hills : Sage Publications, 1976. Full Article
ive The university chemical dependency project : final report : November 1 1986 / Steven A. Bloch, Steven Ungerleider. By search.wellcomelibrary.org Published On :: [Indiana] : Integrated Research Services, Inc., 1986. Full Article
ive प्रजनन स्वास्थ्य के मामले : Reproductive health matters. By search.wellcomelibrary.org Published On :: London : Reproductive Health Matters, 1993-2018. Full Article
ive 生殖健康问题 : Reproductive health matters. By search.wellcomelibrary.org Published On :: London : Reproductive Health Matters, 1993-2018. Full Article
ive проблемы репродуктивного здоровья : reproductive health matters. By search.wellcomelibrary.org Published On :: London : Reproductive Health Matters, 1993-2018. Full Article
ive Temas de salud reproductiva : Reproductive health matters. By search.wellcomelibrary.org Published On :: London : Reproductive Health Matters, 1993-2018. Full Article
ive Questions de santé reproductive : Reproductive health matters. By search.wellcomelibrary.org Published On :: London : Reproductive Health Matters, 1993-2018. Full Article
ive Questões de saúde reprodutiva : Reproductive health matters. By search.wellcomelibrary.org Published On :: London : Reproductive Health Matters, 1993-2018. Full Article
ive Archive of the Association Culturelle Franco-Australienne By feedproxy.google.com Published On :: 29/09/2015 12:00:00 AM Full Article
ive Series 03: Negatives of suburbs of Sydney NSW, ca 1960s-1980s By feedproxy.google.com Published On :: 2/10/2015 11:48:12 AM Full Article
ive Collodion is alive and well! By www.sl.nsw.gov.au Published On :: Thu, 10 Sep 2015 02:50:11 +0000 I just came across this Youtube video submitted by modern day exponent of the collodion process, Quinn Jacobson (http: Full Article
ive The scanner has arrived By www.sl.nsw.gov.au Published On :: Thu, 10 Sep 2015 02:50:14 +0000 The glass plate scanner has now arrived. Though officially known as a Kodak IQ3 Smart XY axis transparency scanner, I t Full Article
ive Top three Mikayla Pivec moments: Pivec's OSU rebounding record highlights her impressive career By sports.yahoo.com Published On :: Thu, 02 Apr 2020 22:26:58 GMT All-Pac-12 talent Mikayla Pivec's career in Corvallis has been memorable to say the least. While it's difficult to choose just three, her top moments include a career-high 19 rebounds against Washington, a buzzer-beating layup against ASU, and breaking Ruth Hamblin's Oregon State rebounding record this year against Stanford. Full Article video Sports
ive Top three Ruthy Hebard moments: NCAA record for consecutive FGs etched her place in history By sports.yahoo.com Published On :: Fri, 03 Apr 2020 23:08:48 GMT Over four years in Eugene, Ruthy Hebard has made a name for herself with reliability and dynamic play. She's had many memorable moments in a Duck uniform. But her career day against Washington State (34 points), her moment reaching 2,000 career points and her NCAA record for consecutive made FGs (2018) tops the list. Against the Trojans, she set the record (30) and later extended it to 33. Full Article video Sports
ive WNBA Draft Profile: Productive forward Ruthy Hebard has uncanny handling, scoring, rebounding ability By sports.yahoo.com Published On :: Thu, 09 Apr 2020 21:52:59 GMT Ruthy Hebard, who ranks 2nd in Oregon history in points (2,368) and 3rd in rebounds (1,299), prepares to play in the WNBA following four years in Eugene. Hebard is the Oregon and Pac-12 all-time leader in career field-goal percentage (65.1) and averaged 17.3 points per game and a career-high 9.6 rebounds per game as a senior. Full Article video Sports
ive WNBA Draft Profile: Do-it-all OSU talent Mikayla Pivec has her sights set on a pro breakout By sports.yahoo.com Published On :: Fri, 10 Apr 2020 16:39:53 GMT Oregon State guard Mikayla Pivec is the epitome of a versatile player. Her 1,030 career rebounds were the most in school history, and she finished just one assist shy of becoming the first in OSU history to tally 1,500 points, 1,000 rebounds and 500 assists. She'll head to the WNBA looking to showcase her talents at the next level following the 2020 WNBA Draft. Full Article video Sports
ive Bill Walton joins Pac-12 Perspective to talk about Bike for Humanity By sports.yahoo.com Published On :: Sat, 18 Apr 2020 01:59:16 GMT Pac-12 Networks' Yogi Roth and Ashley Adamson talk with Hall of Fame player and Pac-12 Networks talent Bill Walton during Thursday's Pac-12 Perspective podcast. Full Article video Sports
ive Ivey introduced as new Notre Dame coach, succeeding McGraw By sports.yahoo.com Published On :: Thu, 23 Apr 2020 17:21:29 GMT Niele Ivey is coming home. Full Article article Sports
ive Oregon State women's basketball receives Pac-12 Sportsmanship Award for supporting rival Oregon in tragedy By sports.yahoo.com Published On :: Thu, 07 May 2020 15:58:09 GMT On the day Kobe Bryant suddenly passed away, the Beavers embraced their rivals at midcourt in a moment of strength to support the Ducks, many of whom had personal connections to Bryant and his daughter, Gigi. For this, Oregon State is the 2020 recipient of the Pac-12 Sportsmanship Award. Full Article video Sports
ive Perspective maximum likelihood-type estimation via proximal decomposition By projecteuclid.org Published On :: Mon, 27 Apr 2020 22:02 EDT Patrick L. Combettes, Christian L. Müller. Source: Electronic Journal of Statistics, Volume 14, Number 1, 207--238.Abstract: We introduce a flexible optimization model for maximum likelihood-type estimation (M-estimation) that encompasses and generalizes a large class of existing statistical models, including Huber’s concomitant M-estimator, Owen’s Huber/Berhu concomitant estimator, the scaled lasso, support vector machine regression, and penalized estimation with structured sparsity. The model, termed perspective M-estimation, leverages the observation that convex M-estimators with concomitant scale as well as various regularizers are instances of perspective functions, a construction that extends a convex function to a jointly convex one in terms of an additional scale variable. These nonsmooth functions are shown to be amenable to proximal analysis, which leads to principled and provably convergent optimization algorithms via proximal splitting. We derive novel proximity operators for several perspective functions of interest via a geometrical approach based on duality. We then devise a new proximal splitting algorithm to solve the proposed M-estimation problem and establish the convergence of both the scale and regression iterates it produces to a solution. Numerical experiments on synthetic and real-world data illustrate the broad applicability of the proposed framework. Full Article
ive Adaptive estimation in the supremum norm for semiparametric mixtures of regressions By projecteuclid.org Published On :: Thu, 23 Apr 2020 22:01 EDT Heiko Werner, Hajo Holzmann, Pierre Vandekerkhove. Source: Electronic Journal of Statistics, Volume 14, Number 1, 1816--1871.Abstract: We investigate a flexible two-component semiparametric mixture of regressions model, in which one of the conditional component distributions of the response given the covariate is unknown but assumed symmetric about a location parameter, while the other is specified up to a scale parameter. The location and scale parameters together with the proportion are allowed to depend nonparametrically on covariates. After settling identifiability, we provide local M-estimators for these parameters which converge in the sup-norm at the optimal rates over Hölder-smoothness classes. We also introduce an adaptive version of the estimators based on the Lepski-method. Sup-norm bounds show that the local M-estimator properly estimates the functions globally, and are the first step in the construction of useful inferential tools such as confidence bands. In our analysis we develop general results about rates of convergence in the sup-norm as well as adaptive estimation of local M-estimators which might be of some independent interest, and which can also be applied in various other settings. We investigate the finite-sample behaviour of our method in a simulation study, and give an illustration to a real data set from bioinformatics. Full Article
ive Non-parametric adaptive estimation of order 1 Sobol indices in stochastic models, with an application to Epidemiology By projecteuclid.org Published On :: Wed, 22 Apr 2020 04:02 EDT Gwenaëlle Castellan, Anthony Cousien, Viet Chi Tran. Source: Electronic Journal of Statistics, Volume 14, Number 1, 50--81.Abstract: Global sensitivity analysis is a set of methods aiming at quantifying the contribution of an uncertain input parameter of the model (or combination of parameters) on the variability of the response. We consider here the estimation of the Sobol indices of order 1 which are commonly-used indicators based on a decomposition of the output’s variance. In a deterministic framework, when the same inputs always give the same outputs, these indices are usually estimated by replicated simulations of the model. In a stochastic framework, when the response given a set of input parameters is not unique due to randomness in the model, metamodels are often used to approximate the mean and dispersion of the response by deterministic functions. We propose a new non-parametric estimator without the need of defining a metamodel to estimate the Sobol indices of order 1. The estimator is based on warped wavelets and is adaptive in the regularity of the model. The convergence of the mean square error to zero, when the number of simulations of the model tend to infinity, is computed and an elbow effect is shown, depending on the regularity of the model. Applications in Epidemiology are carried to illustrate the use of non-parametric estimators. Full Article
ive On the predictive potential of kernel principal components By projecteuclid.org Published On :: Wed, 15 Apr 2020 04:02 EDT Ben Jones, Andreas Artemiou, Bing Li. Source: Electronic Journal of Statistics, Volume 14, Number 1, 1--23.Abstract: We give a probabilistic analysis of a phenomenon in statistics which, until recently, has not received a convincing explanation. This phenomenon is that the leading principal components tend to possess more predictive power for a response variable than lower-ranking ones despite the procedure being unsupervised. Our result, in its most general form, shows that the phenomenon goes far beyond the context of linear regression and classical principal components — if an arbitrary distribution for the predictor $X$ and an arbitrary conditional distribution for $Yvert X$ are chosen then any measureable function $g(Y)$, subject to a mild condition, tends to be more correlated with the higher-ranking kernel principal components than with the lower-ranking ones. The “arbitrariness” is formulated in terms of unitary invariance then the tendency is explicitly quantified by exploring how unitary invariance relates to the Cauchy distribution. The most general results, for technical reasons, are shown for the case where the kernel space is finite dimensional. The occurency of this tendency in real world databases is also investigated to show that our results are consistent with observation. Full Article
ive Asymptotic seed bias in respondent-driven sampling By projecteuclid.org Published On :: Wed, 08 Apr 2020 22:01 EDT Yuling Yan, Bret Hanlon, Sebastien Roch, Karl Rohe. Source: Electronic Journal of Statistics, Volume 14, Number 1, 1577--1610.Abstract: Respondent-driven sampling (RDS) collects a sample of individuals in a networked population by incentivizing the sampled individuals to refer their contacts into the sample. This iterative process is initialized from some seed node(s). Sometimes, this selection creates a large amount of seed bias. Other times, the seed bias is small. This paper gains a deeper understanding of this bias by characterizing its effect on the limiting distribution of various RDS estimators. Using classical tools and results from multi-type branching processes [12], we show that the seed bias is negligible for the Generalized Least Squares (GLS) estimator and non-negligible for both the inverse probability weighted and Volz-Heckathorn (VH) estimators. In particular, we show that (i) above a critical threshold, VH converge to a non-trivial mixture distribution, where the mixture component depends on the seed node, and the mixture distribution is possibly multi-modal. Moreover, (ii) GLS converges to a Gaussian distribution independent of the seed node, under a certain condition on the Markov process. Numerical experiments with both simulated data and empirical social networks suggest that these results appear to hold beyond the Markov conditions of the theorems. Full Article
ive A general drift estimation procedure for stochastic differential equations with additive fractional noise By projecteuclid.org Published On :: Tue, 25 Feb 2020 22:00 EST Fabien Panloup, Samy Tindel, Maylis Varvenne. Source: Electronic Journal of Statistics, Volume 14, Number 1, 1075--1136.Abstract: In this paper we consider the drift estimation problem for a general differential equation driven by an additive multidimensional fractional Brownian motion, under ergodic assumptions on the drift coefficient. Our estimation procedure is based on the identification of the invariant measure, and we provide consistency results as well as some information about the convergence rate. We also give some examples of coefficients for which the identifiability assumption for the invariant measure is satisfied. Full Article
ive Generalized bounds for active subspaces By projecteuclid.org Published On :: Mon, 17 Feb 2020 22:06 EST Mario Teixeira Parente, Jonas Wallin, Barbara Wohlmuth. Source: Electronic Journal of Statistics, Volume 14, Number 1, 917--943.Abstract: In this article, we consider scenarios in which traditional estimates for the active subspace method based on probabilistic Poincaré inequalities are not valid due to unbounded Poincaré constants. Consequently, we propose a framework that allows to derive generalized estimates in the sense that it enables to control the trade-off between the size of the Poincaré constant and a weaker order of the final error bound. In particular, we investigate independently exponentially distributed random variables in dimension two or larger and give explicit expressions for corresponding Poincaré constants showing their dependence on the dimension of the problem. Finally, we suggest possibilities for future work that aim for extending the class of distributions applicable to the active subspace method as we regard this as an opportunity to enlarge its usability. Full Article
ive Detection of sparse positive dependence By projecteuclid.org Published On :: Wed, 29 Jan 2020 22:01 EST Ery Arias-Castro, Rong Huang, Nicolas Verzelen. Source: Electronic Journal of Statistics, Volume 14, Number 1, 702--730.Abstract: In a bivariate setting, we consider the problem of detecting a sparse contamination or mixture component, where the effect manifests itself as a positive dependence between the variables, which are otherwise independent in the main component. We first look at this problem in the context of a normal mixture model. In essence, the situation reduces to a univariate setting where the effect is a decrease in variance. In particular, a higher criticism test based on the pairwise differences is shown to achieve the detection boundary defined by the (oracle) likelihood ratio test. We then turn to a Gaussian copula model where the marginal distributions are unknown. Standard invariance considerations lead us to consider rank tests. In fact, a higher criticism test based on the pairwise rank differences achieves the detection boundary in the normal mixture model, although not in the very sparse regime. We do not know of any rank test that has any power in that regime. Full Article
ive A Model of Fake Data in Data-driven Analysis By Published On :: 2020 Data-driven analysis has been increasingly used in various decision making processes. With more sources, including reviews, news, and pictures, can now be used for data analysis, the authenticity of data sources is in doubt. While previous literature attempted to detect fake data piece by piece, in the current work, we try to capture the fake data sender's strategic behavior to detect the fake data source. Specifically, we model the tension between a data receiver who makes data-driven decisions and a fake data sender who benefits from misleading the receiver. We propose a potentially infinite horizon continuous time game-theoretic model with asymmetric information to capture the fact that the receiver does not initially know the existence of fake data and learns about it during the course of the game. We use point processes to model the data traffic, where each piece of data can occur at any discrete moment in a continuous time flow. We fully solve the model and employ numerical examples to illustrate the players' strategies and payoffs for insights. Specifically, our results show that maintaining some suspicion about the data sources and understanding that the sender can be strategic are very helpful to the data receiver. In addition, based on our model, we propose a methodology of detecting fake data that is complementary to the previous studies on this topic, which suggested various approaches on analyzing the data piece by piece. We show that after analyzing each piece of data, understanding a source by looking at the its whole history of pushing data can be helpful. Full Article
ive Universal Latent Space Model Fitting for Large Networks with Edge Covariates By Published On :: 2020 Latent space models are effective tools for statistical modeling and visualization of network data. Due to their close connection to generalized linear models, it is also natural to incorporate covariate information in them. The current paper presents two universal fitting algorithms for networks with edge covariates: one based on nuclear norm penalization and the other based on projected gradient descent. Both algorithms are motivated by maximizing the likelihood function for an existing class of inner-product models, and we establish their statistical rates of convergence for these models. In addition, the theory informs us that both methods work simultaneously for a wide range of different latent space models that allow latent positions to affect edge formation in flexible ways, such as distance models. Furthermore, the effectiveness of the methods is demonstrated on a number of real world network data sets for different statistical tasks, including community detection with and without edge covariates, and network assisted learning. Full Article
ive Derivative-Free Methods for Policy Optimization: Guarantees for Linear Quadratic Systems By Published On :: 2020 We study derivative-free methods for policy optimization over the class of linear policies. We focus on characterizing the convergence rate of these methods when applied to linear-quadratic systems, and study various settings of driving noise and reward feedback. Our main theoretical result provides an explicit bound on the sample or evaluation complexity: we show that these methods are guaranteed to converge to within any pre-specified tolerance of the optimal policy with a number of zero-order evaluations that is an explicit polynomial of the error tolerance, dimension, and curvature properties of the problem. Our analysis reveals some interesting differences between the settings of additive driving noise and random initialization, as well as the settings of one-point and two-point reward feedback. Our theory is corroborated by simulations of derivative-free methods in application to these systems. Along the way, we derive convergence rates for stochastic zero-order optimization algorithms when applied to a certain class of non-convex problems. Full Article
ive A Convex Parametrization of a New Class of Universal Kernel Functions By Published On :: 2020 The accuracy and complexity of kernel learning algorithms is determined by the set of kernels over which it is able to optimize. An ideal set of kernels should: admit a linear parameterization (tractability); be dense in the set of all kernels (accuracy); and every member should be universal so that the hypothesis space is infinite-dimensional (scalability). Currently, there is no class of kernel that meets all three criteria - e.g. Gaussians are not tractable or accurate; polynomials are not scalable. We propose a new class that meet all three criteria - the Tessellated Kernel (TK) class. Specifically, the TK class: admits a linear parameterization using positive matrices; is dense in all kernels; and every element in the class is universal. This implies that the use of TK kernels for learning the kernel can obviate the need for selecting candidate kernels in algorithms such as SimpleMKL and parameters such as the bandwidth. Numerical testing on soft margin Support Vector Machine (SVM) problems show that algorithms using TK kernels outperform other kernel learning algorithms and neural networks. Furthermore, our results show that when the ratio of the number of training data to features is high, the improvement of TK over MKL increases significantly. Full Article
ive Learning Causal Networks via Additive Faithfulness By Published On :: 2020 In this paper we introduce a statistical model, called additively faithful directed acyclic graph (AFDAG), for causal learning from observational data. Our approach is based on additive conditional independence (ACI), a recently proposed three-way statistical relation that shares many similarities with conditional independence but without resorting to multi-dimensional kernels. This distinct feature strikes a balance between a parametric model and a fully nonparametric model, which makes the proposed model attractive for handling large networks. We develop an estimator for AFDAG based on a linear operator that characterizes ACI, and establish the consistency and convergence rates of this estimator, as well as the uniform consistency of the estimated DAG. Moreover, we introduce a modified PC-algorithm to implement the estimating procedure efficiently, so that its complexity is determined by the level of sparseness rather than the dimension of the network. Through simulation studies we show that our method outperforms existing methods when commonly assumed conditions such as Gaussian or Gaussian copula distributions do not hold. Finally, the usefulness of AFDAG formulation is demonstrated through an application to a proteomics data set. Full Article
ive Exact Guarantees on the Absence of Spurious Local Minima for Non-negative Rank-1 Robust Principal Component Analysis By Published On :: 2020 This work is concerned with the non-negative rank-1 robust principal component analysis (RPCA), where the goal is to recover the dominant non-negative principal components of a data matrix precisely, where a number of measurements could be grossly corrupted with sparse and arbitrary large noise. Most of the known techniques for solving the RPCA rely on convex relaxation methods by lifting the problem to a higher dimension, which significantly increase the number of variables. As an alternative, the well-known Burer-Monteiro approach can be used to cast the RPCA as a non-convex and non-smooth $ell_1$ optimization problem with a significantly smaller number of variables. In this work, we show that the low-dimensional formulation of the symmetric and asymmetric positive rank-1 RPCA based on the Burer-Monteiro approach has benign landscape, i.e., 1) it does not have any spurious local solution, 2) has a unique global solution, and 3) its unique global solution coincides with the true components. An implication of this result is that simple local search algorithms are guaranteed to achieve a zero global optimality gap when directly applied to the low-dimensional formulation. Furthermore, we provide strong deterministic and probabilistic guarantees for the exact recovery of the true principal components. In particular, it is shown that a constant fraction of the measurements could be grossly corrupted and yet they would not create any spurious local solution. Full Article