i

PIEZOELECTRIC DRIVING DEVICE, MOTOR, ROBOT, AND PUMP

A piezoelectric driving device includes: a substrate including a fixed portion, and a vibrating body portion which is provided with a piezoelectric element and is supported by the fixed portion; and a contact portion which comes into contact with a driven body, and transmits movement of the vibrating body portion to the driven body, the contact portion is provided at an end portion in the longitudinal direction of the vibrating body portion, and a difference between a distance between the end portion when the contact portion is not pressed against the driven body and a tip end of the contact portion, and a distance between the end portion when the contact portion is pressed against the driven body and the tip end, is smaller than a total amplitude in the longitudinal direction in a case where the vibrating body portion is driven.




i

MOTOR AND A HANDHELD DEVICE HAVING A MOTOR

A handheld device comprising a motor for generating an airflow through the device, the motor including: a frame for supporting a rotor assembly and a stator assembly, the frame including an inner wall and an outer wall and a plurality of diffuser vanes extending between the inner wall and outer wall; a rotor assembly including a shaft, a magnet, a bearing assembly and an impeller; and a stator assembly including a bobbin, a stator core and a winding wound around the bobbin; the frame being formed of zinc and the impeller being formed of aluminium.




i

AXIAL PUMP AND HYDRAULIC DRIVE SYSTEM

A hydraulic device having an input shaft and an output shaft, the device comprising: a housing having the input shaft mounted at one end and the output shaft mounted at the other end; an axially reciprocating hydraulic pump mounted on the input shaft within the housing, the axially reciprocating hydraulic pump having: a plurality of pistons located in respective piston bores and configured for axial reciprocation therein; a cam plate connected to the input shaft, the cam plate having a plurality of cam surfaces distributed about the cam plate for driving the plurality of pistons towards Top Dead Center (TDC) of the piston bores; a rotating hydraulic motor mounted on the output shaft within the housing for rotating with the output shaft; and a pair of shared fluid conduits, one of the pair directly and fluidly connecting a fluid outlet of the axially reciprocating hydraulic pump with a fluid inlet of the rotating hydraulic motor and the other of the pair for directly and fluidly connecting a fluid outlet of the rotating hydraulic motor with a fluid inlet of the axially reciprocating hydraulic pump, such that the pair are contained within the housing; wherein flow of hydraulic fluid between the axially reciprocating hydraulic pump and the rotating hydraulic motor bypasses any fluid reservoir external to the housing.




i

PUMPING SYSTEM FOR CHROMATOGRAPHY APPLICATIONS

A pumping system for compressible fluids comprises a first pump (20) having a first pump outlet (21) and a second pump (30) having a second pump outlet (31), wherein the first pump outlet (21) and the second pump outlet (31) merge in a junction (40) which is in fluid communication with a main outlet (48). The pumping system further comprises a control (50) to regulate the output pressure (p2) of the second pump (30) on the basis of a measurement of the output pressure (p1) of the first pump (20). The corresponding method of operating a pumping system is also disclosed.




i

BICYCLE PUMP

A bicycle pump includes a pump body assembly, a handle assembly, a flexible hose assembly, and/or a magnet. The pump body assembly may include an outer tube, which defines an air chamber, and a head assembly with an air outlet opening. The handle assembly may slidably be associated with the body assembly, and include an inner tube and a piston, slidable inside the outer tube. The flexible hose assembly may be suitable to be stored inside the inner tube when the pump is not in use, and suitable to be connected to the air outlet opening during pumping. The magnet may connect the flexible hose assembly to the air outlet opening of the head assembly in a removable manner.




i

ELECTRIC COMPRESSOR

Disclosed herein is an electric compressor including: a main housing (4) having therein a suction chamber into which low-temperature refrigerant is drawn; an inverter housing (1) including an internal seating surface (1a) formed adjacent to the suction chamber, with at least one inverter element (2) fixed at a surface thereof to the internal seating surface (1a) while making contact with the internal seating surface (1a), the at least one inverter element (2) conducting heat to the main housing (4); and at least one heat dissipation cover (6) disposed toward the main housing (4) while facing another surface of the inverter element (2) and enclosing the inverter element (2), the at least one heat dissipation cover (6) having therein a receiving space (64) in which the inverter element (2) is received.




i

ELECTRIC-MOTOR-DRIVEN LIQUID PUMP

A liquid pump has a housing with a suction connection, a pressure connection and a electric motor for rotationally driving a conveying device that has a suction inlet and pressure outlet which communicate with the suction connection and the pressure connection respectively. An electronic power unit for the electric motor is adjacent to the motor and extends transversely to the axis of rotation and is on the rear side of the partition wall of the housing. The suction inlet is arranged at a height smaller than an inner radius of an annular gap between the stator and rotor, whereas a rotor passage extends at a constant height, so that a liquid inducted by way of the suction connection is guided in part via the annular gap and undergoes a deflection at the partition wall, cooling the latter before it passes through the rotor passage to the suction inlet.




i

METHOD FOR CONTROLLING AN ELECTRIC VENTILATOR

A method for controlling an electric ventilator includes: setting a first threshold temperature T1D of a microcontroller lower than a maximum threshold temperature T3D of the microcontroller; monitoring a temperature TD of the microcontroller; setting a first threshold temperature T1M of an electronic power device lower than a maximum threshold temperature T3M of the electronic power device; monitoring a temperature TM of the electronic power device; preparing a counter of a predetermined time X; activating the counter if the temperature TD or the temperature TM exceeds respective first threshold temperatures T1D, T1M; reducing a speed V of rotation of an electric motor to a second value V1 lower than a first value V1 if after the predetermined time X, the temperature TD or the temperature TM is higher than the respective first threshold temperatures T1D, T1M.




i

HYBRID VENTILATOR

A ventilator (10) comprises a ventilator stator (12) for mounting to a structure and a ventilator rotor (14) for mounting and rotation with respect to the stator. One or more wind drivable elements (44) are mounted to the ventilator rotor. A motor (20) is provided for operation between the ventilator rotor and ventilator stator for selective motor-driven rotation of the ventilator rotor.




i

SUPERCHARGER AND MOTOR COOLING METHOD

Provided is an electric-assist supercharger configured such that a motor (30) is attached to the end portion of a rotor shaft (15) close to a silencer (26), the rotor shaft (15) being connected to a compressor portion. Such a supercharger includes a suction air introduction path (24) formed in the silencer 26 such that a main suction air flow flows in the radial direction of the silencer (26) toward a connection portion between the silencer (26) and the compressor portion, and a cooling air intake path (40) formed in the silencer (26) in which at least an outlet thereof is on the center axis of the rotor shaft (15).




i

AXIAL THRUST CONTROL FOR ROTARY COMPRESSORS

Systems and methods are used to control operation of a rotary compressor of a refrigeration system to limit or prevent movement of rotors due to axial thrust loading resulting from rapid changes in speed of the rotors of the compressor. The operational profile of the motor is controlled to maintain acceleration torque and deceleration torque within predefined limits. The acceleration torque and deceleration torque are maintained within the predefined limits by controlling the speed of the motor, or by controlling the torque applied by the motor to the rotors during acceleration or deceleration.




i

INTEGRATED FUEL CELL AIRCRAFT PRESSURIZATION AND COOLING SYSTEM

According to one embodiment of this disclosure an integrated fuel cell and environmental control system includes a turbo-compressor. The turbo-compressor includes a rotatable shaft, a compressor rotatable with the shaft to generate a flow of compressed air, a motor connected to the shaft, and a turbine connected to the shaft. The system further includes a fuel cell connected to the compressor by a first compressed air supply line that supplies a first portion of the flow of compressed air to the fuel cell. The fuel cell is connected to the turbine by a fuel cell exhaust line that supplies a flow of fuel cell exhaust to the turbine and causes the turbine to rotate. The system further includes an environmental control system connected to the compressor by a second compressed air supply line that supplies a second portion of the flow of compressed air to the environmental control system.




i

OBSERVER BASED SENSORLESS CONTROL FOR U-SHAPE SINGLE PHASE SYNCHRONOUS PERMANENT MAGNET MOTORS

A method for controlling a U-shape single phase synchronous permanent magnetic motor having a rotor and a stator and coupled to a single phase alternating current (AC) power source through a switch includes estimating back-electromotive force and the position of the rotor based on a voltage feedback signal, a current feedback signal, and a phase feedback signal indicative of a zero-crossing of the single phase AC power source. Once the speed and position of the rotor are determined, a controller can trigger a switch to supply power to the motor.




i

Suction Pump with a Safety Valve

A suction pump, in particular a breast pump, comprises a bleed valve with a bleed opening, a bleed body which seals the bleed opening and an operating means for operating the bleed body. The bleed body may be operated such that upon opening the valve initially only a partial region of the bleed opening is released and subsequently a greater part thereof or the whole bleed opening is released. The suction pump provides a large functionality with the smallest size and, furthermore, is cheap to produce and easily assembled.




i

VEHICLE ACCESSORY POWER MANAGEMENT ASSEMBLY

A vehicle accessory power management assembly has a power device, an accessory device, a power transmitting device and a controller. The power transmitting device has an input part coupled to the power device, an output part coupled to the accessory device, and a speed ratio switching part switchable between a first operating state in which the input part and the output part rotate at a first speed ratio relative to one another and a second operating state in which the input part and the output part rotate at a second speed ratio relative to one another. The controller is configured to switch the speed ratio switching part between the first operating state and the second operating state in response determining whether the speed of output of the power device is above a pre-determined value or below a pre-determined value.




i

VARIABLE-CAPACITY COMPRESSOR CONTROL VALVE

Provided is a variable-capacity compressor control valve that can suppress a decrease in the efficiency by reducing the amount of leakage in the valve without requiring severe accuracy of the components, avoid possible operation failures, and suppress the influence on the sliding resistance as well as the influence on the control characteristics. A main valve element of a valve element or a valve body is provided with a flexible or elastic sealing member. The sealing member is adapted to, when the valve orifice is closed by the main valve element, abut an end portion on the higher pressure side in a gap between sliding surfaces that is formed between the main valve element and a guide hole into which the main valve element is adapted to be slidably fitted and inserted, and thus seal the gap between the sliding surfaces.




i

VARIABLE-CAPACITY COMPRESSOR CONTROL VALVE

Provided is a variable-capacity compressor control valve where a valve body can be easily machined and the machining time and machining cost can be reduced without a decrease in the valve closing property or a decrease in the slidability of the valve element due to shaft misalignment. The valve body includes a support member having formed therein a valve orifice and a guide hole into which the valve element is adapted to be slidably fitted and inserted; and a body member having formed therein a Ps inlet/outlet port, a Pd introduction port, and a Pc inlet/outlet port. The support member is fixedly inserted into a recess hole provided in the body member. In addition, a chip sealing portion (pocket portion) for sealing chips of the body member and/or the support member is provided between the body member and the support member.




i

VARIABLE-CAPACITY COMPRESSOR CONTROL VALVE

Provided is a variable-capacity compressor control valve where a decrease in the sealability or the operability due to shaft misalignment can be effectively suppressed without requiring high dimensional accuracy. The dimensions and the shape of each part are designed such that when the sub valve element closes the in-valve release passage, the tapered portion (sub valve element portion) provided at the lower end portion of the sub valve element enters the release through-hole of the in-valve release passage, and the sub valve element is thus aligned with the main valve element by the tapered portion.




i

VARIABLE -CAPACITY COMPRESSOR CONTROL VALVE

Provided is a variable-capacity compressor control valve where the size of a plunger can be reduced, the machining and assembly process can be simplified, weight reduction can be achieved, and cost reduction can also be achieved, for example. The plunger has a slit through which a valve element is assembled to the plunger by being inserted from a lateral side. The slit serves as a flow path for releasing the pressure Pc in the crank chamber to the suction chamber of the compressor from the Ps inlet/outlet port when the sub valve element has opened the in-valve release passage.




i

BELLOWS INSTALLATION AND RETENTION METHOD

A reciprocating pump includes a housing, a rod, a sleeve, a bellows, and a nut. The housing includes a bellows chamber and a working chamber. The rod extends into the reciprocating pump such that the rod extends through the bellows chamber and partly into the working chamber. The rod includes a shoulder. The sleeve is connected to the rod such that the sleeve surrounds a portion of the rod. The bellows is connected to the sleeve such that the bellows surrounds a portion of the sleeve. The nut is attached to a bottom end of the sleeve such that the nut clamps an end of the bellows to the bottom end of the sleeve.




i

BELLOWS PRESSURE RELIEF VALVE

A valve for a reciprocating pump includes a housing, a first chamber, a second chamber, a first valve element, and a second valve element. The housing includes an inlet and an outlet. The first and second chambers are within the housing. The first chamber includes a first valve seat and is fluidly connected to the inlet. The second chamber includes a second valve seat and is fluidly connected to the outlet. The first valve element is disposed in the first chamber and includes a spring-loaded check valve element. The second valve element is disposed in the second chamber and includes a buoyant material.




i

ENVIRONMENTAL SENSOR AND METHOD OF OPERATING THE SAME

A gaseous-fluid environmental sensor having a gaseous-fluid flow system that defines a flow path coupling an intake port to an exhaust port. The gaseous-fluid flow system includes a blower and a flow sensor. The blower includes a motor and the flow sensor is for sensing a flow parameter. The gaseous-fluid environmental sensor further includes a controller electrically coupled to the flow sensor and the motor. The controller is configured to drive the motor with a first commutation sequence and to drive the motor with a second commutation sequence different than the first commutation sequence. The controller is further configured to select the first commutation sequence and the second commutation sequence based on the sensed flow parameter. Also discloses is a method for controlling the gaseous-fluid environmental sensor.




i

SYSTEM AND METHOD FOR CONTROLLING A FLUID TRANSPORT SYSTEM

A fluid transport system includes at least one flow control device and a multiphase pump configured to transport fluid. At least one pump sensing device is configured to measure at least one operating characteristic of the multiphase pump. A controller is programmed with a pump map including a correlation of the at least one operating characteristic of the multiphase pump with at least one operating characteristic of the fluid. The controller is configured to determine an estimated value of the at least one operating characteristic of the fluid based on the measured value of the at least one operating characteristic of the multiphase pump and the pump map. At least one regulating device coupled to at least one flow control device is modulated based on the estimated value of the at least one operating characteristic of the fluid.




i

METHODS AND APPARATUS TO CALIBRATE ROD PUMP CONTROLLERS

Methods and apparatus to calibrate rod pump controllers are described. An example method includes obtaining initial values related to a pumping unit, determining parameters based on the initial values, the parameters including at least one of a leaked off load value, a residual friction value, and a buoyant rod weight value, and based on one or more of the initial values and the parameters, calculating one or more dimensions of a rod string, the one or more dimensions to be used to determine a pump card of the pumping unit.




i

INTERNAL BELLOWS BEARING

A reciprocating pump includes a housing, a rod, a bellows, and a bearing. The housing surrounds a bellows chamber and a displacement chamber. A first portion of the rod extends into the bellows chamber. The bellows has a first end connected to the housing and a second end connected to the rod. The bellows surrounds a second portion of the rod. The bellows includes a plurality of convolutions. The bearing is disposed within the bellows between the bellows and the rod.




i

INTEGRATED SUMP PUMP CONTROLLER WITH STATUS NOTIFICATIONS

A sump pump system having a primary pump, a fluid level sensor, and a primary controller electrically connected to the primary pump for activating the pump when the fluid level sensor indicates a predetermine fluid level has been reached, the primary controller having a primary interface for communicating with a secondary pump. In some forms, the system includes a secondary pump having a secondary controller electrically connected to the secondary pump and having a secondary interface, the primary and secondary interfaces allowing the primary and secondary pump controllers to communicate with one another and allowing at least one of the primary and secondary pump controllers to assume control of both the primary and secondary pump. Related methods are further described herein.




i

THERMAL ENHANCEMENT OF CABIN AIR COMPRESSOR MOTOR COOLING

A cabin air compressor assembly includes a cabin air compressor, and a cabin air compressor motor operably connected to the cabin air compressor. The cabin air compressor motor includes a rotor and a stator having a plurality of end windings. A cabin air compressor housing includes at least one cooling airflow hole formed therein. A motor cooling flow is movable across a portion of the cabin air compressor motor to cool the stator and the end windings. A duct extends from the cabin air compressor housing to an adjacent end winding such that a cooling outlet flow provided via the at least one cooling air flow hole is arranged in fluid communication with the end winding.




i

SHOCK ABSORBING AND WEAR RESISTANT BALL CHECK SEAT FOR ABRASIVE MEDIA

A check valve includes a ball and a seat. The seat includes a body and a hole extending through the body. The hole is smaller in diameter than the ball. The body of the seat is formed from ultra-high-molecular-weight polyethylene. The ultra-high-molecular-weight polyethylene of the seat has an ASTM D648 heat deflection temperature of 46.7° C. at 1.8 MPa.




i

PRECONDITIONING FLOW TO AN ELECTRICAL SUBMERSIBLE PUMP

A system and method of producing fluid from a wellbore by pressurizing the fluid and then directing the pressurized fluid to a centrifugal pump. Pressurizing the fluid compresses gas or vapor within the fluid, thereby decreasing the volume ratio of the gas or vapor within the fluid, which in turn increases operating efficiency of the centrifugal pump. A positive displacement pump, such as a gerotor pump, is used for pressurizing the fluid prior to sending it to the centrifugal pump.




i

MICRO SCALE ELECTRO HYRDODYNAMIC (EHD) MODULAR CARTRIDE PUMP

An electro hydrodynamic pump apparatus includes a cartridge body member including an interior cavity portion and openings on either end of the cartridge body member; a first electrode member disposed within the interior cavity portion of the cartridge body member, the first electrode member including a conductive bar member with a plurality of spaced apart elements extending therefrom; a second electrode member disposed within the interior cavity portion of the cartridge body member, the second electrode member including a conductive bar with a plurality of spaced apart element extending therefrom; and wherein the elements of the first electrode member are configure to be interspersed with the elements of the second electrode member when the first electrode member and the second electrode member are disposed within the interior cavity portion of the cartridge body member.




i

Electrical Control Valve for an Air Conditioning Compressor

A control valve for an air conditioning compressor is disclosed. The control valve comprises a control piston, an electric motor, a sensor, and a control unit. The control piston connects a refrigerant flow between a high-pressure area and a crankcase pressure area of the air conditioning compressor in a first position. The control piston further connects the refrigerant flow between the crankcase pressure area and a low-pressure area of the air conditioning compressor in a second position. The electric motor moves the control piston between the first position and the second position. The sensor determines the position of the control piston. The control unit is connected to the sensor and the electric motor. The control unit controls the electric motor to move the control piston and control the refrigerant flow based on the position of the control piston determined by the sensor.




i

Radial Bearing Arrangement in a Refrigeration Compressor

The compressor includes a bearing hub, defining a radial bearing having a first and a second end portion and supporting a crankshaft having an eccentric end portion supporting the larger eye of a connecting rod coupled to the piston, for example, by a smaller eye mounted around a piston pin. The second end portion and, optionally, the first end portion of the bearing hub and the larger and smaller eyes of the connecting rod are internally provided with bushings. End portions of the bearing hub and of the larger and smaller eyes may have their structure resistant to the pressing of a confronting compressor component supported on said end portions, or further present a terminal portion elastically deformable together with a confronting terminal portion of the associated bushing.




i

UTERINE DISTENSION FLUID MANAGEMENT SYSTEM WITH PERISTALTIC PUMPS

A pump cartridge for mounting on a drive rotor includes a roller assembly having first and second hubs maintained in a spaced apart relationship and defining an axis, and a plurality of planetary rollers arranged in a circumferentially spaced orientation about the axis, the rollers mounted to the hubs displacement radially outward. One or more compressible tubing lines are interposed between the rollers and an interior wall of the pump cartridge housing. The housing and the first and second hubs collectively define a passageway through which a spreader on the drive rotor extends and may be rotated relative to the roller assembly to displace the rollers radially outward to thereby compress the tubing lines against the interior wall. A coupling feature on the first hub engages a roller driving feature of the rotor, so that rotation of the rotor causes rotation of the roller assembly about the axis.




i

Rotary Hydraulic Pump with ESP Motor

A submersible pumping system includes an electric motor and a pump driven by the electric motor. The pump includes a rotatable shaft driven by the motor, one or more piston assemblies configured for linear reciprocating motion and a mechanism for converting the rotational movement of the shaft to linear reciprocating movement in the piston assemblies. In one aspect, the mechanism for converting the rotational movement of the shaft includes a tilt disc assembly. In another aspect, the mechanism for converting the rotational movement of the shaft includes a camshaft assembly.




i

RECIPROCATING WATER PUMP

A reciprocating jetting water pump primarily for use on a vacuum truck is disclosed. The jetting water pump includes a pair of reciprocating pistons that are each movable within an outer cylinder mounted to a center block. Each of the outer cylinders is mounted to the center block by a plurality of tie-rod that each extend between the center block and an end plate. An airflow passageway is formed in the center block to vent air trapped within the open interior of the first outer cylinder during reciprocating movement of the piston in the first outer cylinder. A control system mounted to the vacuum truck senses the pressure of water leaving the jetting water pump and controls the supply of pressurized hydraulic fluid to the jetting water pump to maintain the water pressure at an operator selected value.




i

ROTATIONAL METERING PUMP FOR INSULIN PATCH

Metering systems and methods are disclosed. A metering system is part of a larger fluidics sub-system that includes a flexible reservoir for storing insulin and a cannula assembly for delivering the insulin into sub-cutaneous tissue. The metering system draws a small dose of fluid from the reservoir and then pushes it down the cannula line and into the patient. The fluid dose is small relative to the reservoir volume, such that many pump strokes are required to completely empty the reservoir.




i

INTEGRATED DISPLACEMENT CONTROLLED PUMP

A pump system includes a motor, a pump, and a single shaft extending from the motor into the pump, the single shaft being configured to operate simultaneously as both a motor output shaft and a pump input shaft. A first end of the single shaft interacts with the motor, and a second end of the single shaft interacts with the pump, to configure the shaft to operate as the motor output shaft and the pump input shaft. The pump system further may include a mounting accessory configured to support the motor and the pump. The motor may be an electric motor, and the pump may be a hydraulic pump. A drive controller is configured to generate commands for controlling the electric motor, which in turn drives the pump to achieve a desired flow of hydraulic fluid.




i

PUMP SYSTEM, USE OF A PNEUMATIC RESISTANCE AND MEDICAL DEVICE OR GAS-MEASURING DEVICE

A pump system (120) has a central pump unit (110), with which at least one hook-up unit (130). The least one hook-up unit (130) is from a group of a plurality of hook-up units (130) that can be combined in modular form for setting an operating point of a pump (10) that forms the pump unit (110). A method uses such a hook-up unit (130) in a pump system (120) for setting an operating point of the pump unit (110) thereof. A medical device is provided with such a pump unit (110) or with such a pump unit (110) and at least one hook-up unit (130) combined with the pump unit (110).




i

CONTAINER ASSEMBLY FOR A PUMP

A container assembly (10) for a pump is described, provided with at least one pumping group (12, 14, 16, 18) and with at least one system (20) for transmitting power to such pumping group (12, 14, 16, 18). The container assembly (10) comprises at least one elastic element (26) sealingly housed inside such container assembly (10) at a predefined internal wall (28) thereof. Inside the elastic element (26), at least one cavity (32) is obtained which defines a corresponding air chamber configured for damping the variations of volume and the expansion of the fluid contained inside the pump following a possible change of state of the fluid itself when subjected to temperatures lower than its freezing point.




i

FLUID CONDITIONING MODULE

A fluid conditioning module having a fluid inlet and a fluid outlet is provided. The fluid conditioning module includes a first pump element, a second pump element, a pressure regulator, a controller, and a prime mover to impart rotational motion in the first and second pump elements. A first pump inlet is in fluid communication with the fluid inlet. A filter inlet is in fluid communication with a first pump outlet and a second pump outlet, and a filter outlet is in fluid communication with the fluid outlet. A pressure regulator inlet and a pressure regulator outlet are in fluid communication with the filter outlet and a recirculation conduit, respectively. The control valve has a first position and a second position, which allows fluid flow through the recirculation conduit. The controller adjusts operation of one or more of the prime mover and the control valve based upon a predetermined parameter.




i

AERO-ENGINE LOW PRESSURE PUMP

An aero-engine low pressure pump is provided for supplying fuel at a raised pressure to a high pressure pump. The low pressure pump has a pumping mechanism which raises the pressure of fuel flowing though the mechanism. The low pressure pump further has electrical motor which drives the pumping mechanism. The low pressure pump further has a variable frequency motor drive which supplies electrical power to the electrical motor. The variable frequency motor drive measures the electrical power supplied to the electrical motor. The low pressure pump further has a control unit which compares the measured electrical power to a reference power, and, when the measured electrical power is less than the reference power by a predetermined amount, controls the motor drive to increase the power supplied to the electrical motor thereby increasing the pressure rise produced by the pumping mechanism.




i

Pump Seal Lubricator

The disclosed invention modifies existing centrifugal pump design by replacing a compression seal with a mechanical seal and lubricant reservoir. The mechanical seal creates a sealed chamber to lubricate the rotating shaft. The rotating shaft is covered in a shaft sleeve that facilitates the flow of lubricant to and from the sealed chamber. This improvement provides independent lubrication to the centrifugal pump to protect against seal failure.




i

Non-Welded Suction Chamber for Surface Pumping Systems

A suction chamber for use in a surface pumping system includes a central housing that is substantially cylindrical and has a motor end and a pump end opposite the motor end. The suction chamber includes a motor-end plate bolted to motor end of the central housing and a pump-end plate bolted to the pump end of the central housing. The suction chamber also includes an inlet branch connected to the central housing. A method for assembling a non-welded suction chamber is also disclosed.




i

LOW NOISE TURBINE FOR GEARED TURBOFAN ENGINE

A gas turbine engine has a fan section including a fan. A turbine section has a first turbine and a second turbine. A gear reduction between the fan and the first turbine includes an epicycle gear train. The gear reduction is configured to receive an input from the first turbine and to turn the fan at a lower speed than the first turbine in operation. The first turbine further includes a number of turbine blades in each of a plurality of rows of the first turbine. The first turbine blades operate at least some of the time at a rotational speed. The number of blades and the rotational speed is such that the following formula holds true for at least one of the blade rows of the first turbine: (number of blades×speed)/60≧5500. A turbine section is also disclosed.




i

Methods of filtering multiple contaminants, mitigating contaminant formation, and recycling greenhouse gases using a humic and fulvic reagent

A highly alkalized humic and fulvic filter reagent for the removal of multiple contaminants from a gas is provided. The contaminants removed from the gas stream may include, but are not limited to, Carbon Dioxide, Sulfur Oxide, Nitrogen Oxides, Hydrogen Sulfides, radionuclides, mercaptans, ammonia, toxic metals, particulates, volatile vapors, and organics. The present invention further includes the disposal of the filter reagent by way of using the highly alkalized humic and fulvic filter for soil fertility, releasing the carbon dioxide from the filter reagent, converting the liquid filter reagent into a solid for disposal or for use as a contaminant removal filter for waters, wastes, and chemicals.




i

Integrated processes for refining syngas and bioconversion to oxygenated organic compound

Integrated processes are provided for syngas refining and bioconversion of syngas to oxygenated organic compound. In the integrated processes ammonia contained in the syngas is recovered and used as a source of nitrogen and water for the fermentation. The integrated processes first remove tars from syngas by scrubbing using a first aqueous medium under conditions that ammonium bicarbonate is unstable. With tars removed, contact between the syngas and a second aqueous medium enables ammonia and carbon dioxide to be removed from the syngas without undue removal of components adverse to the fermentation, processing or oxygenated product such as benzene, toluene, xylene, ethylene, acetylene, and hydrogen cyanide. At least a portion of the second aqueous medium is supplied as a source of water and ammonia for the fermentation.




i

Hydrogen purifier

Techniques are generally described herein for the design and manufacture of hydrogen generation apparatuses and systems. Other embodiments may also be disclosed and claimed. Some methods described herein pressing together a first end plate, one or more intermediate plates, and a second end plate using a press to form a hydrogen purifier module, and placing a plurality of clips around the hydrogen purifier module to hold the first end plate, the one or more intermediate plates, and the second end plate together.




i

Article for CO2 capture having heat exchange capability

An article comprising a plurality of intersecting walls having outer surfaces that define a plurality of cells extending from one end to a second end, wherein the walls forming each cell in a first subset of cells are covered by a barrier layer to form a plurality of heat exchange flow channels, and wherein the walls forming each cell in a second subset of cells different from the first subset of cells, comprise a CO2 sorbent and form reaction flow channels. Heat exchange flow channels allow quick and uniform heating and cooling of the sorbent body. The article may be useful, for example, for removing CO2 from a gas stream.




i

Process and apparatus for the production of synthesis gas

Reactive diluent fluid (22) is introduced into a stream of synthesis gas (or “syngas”) produced in a heat-generating unit such as a partial oxidation (“POX”) reactor (12) to cool the syngas and form a mixture of cooled syngas and reactive diluent fluid. Carbon dioxide and/or carbon components and/or hydrogen in the mixture of cooled syngas and reactive diluent fluid is reacted (26) with at least a portion of the reactive diluent fluid in the mixture to produce carbon monoxide-enriched and/or solid carbon depleted syngas which is fed into a secondary reformer unit (30) such as an enhanced heat transfer reformer in a heat exchange reformer process. An advantage of the invention is that problems with the mechanical integrity of the secondary unit arising from the high temperature of the syngas from the heat-generating unit are avoided.




i

Coil arrangement for air intake system for gas turbine and methods

An air intake system for a gas turbine includes one or more coils in airflow communication with an inlet arrangement. Each coil is constructed and arranged to have a respective upstream face velocity that is intended to be within 20% of the other coils. Each coil utilizes a working fluid of a predetermined temperature range conveyed there through and a plurality of spaced fins. The fins are spaced apart to permit air to flow between adjacent fins as air flows through the coil. At least one of the coils has a number of fins per inch that is different from the number of fins per inch of the other coils. Alternatively, each individual coil has at least one section with fewer or greater numbers of fins per inch that the other sections of that coil.