i

SEMICONDUCTOR APPARATUS

A semiconductor apparatus includes a pattern conversion circuit configured to generate conversion data in response to a monitoring enable signal, pattern select signals and parallel input data; a transmission circuit configured to output the conversion data as serial data in response to a plurality of clocks; a reception circuit configured to output the serial data as parallel output data in synchronization with the plurality of clocks; and a monitoring circuit configured to generate a result signal in response to the plurality of clocks, clock select signals and the serial data.




i

OFFSET VALUE CORRECTION DEVICE AND OFFSET VALUE CORRECTION METHOD FOR CORRECTING OFFSET VALUE IN RECEIVED SIGNAL

A baseband filter unit inputs a received signal including a sine wave at least in a portion of the received signal. A differentiator differentiates the received signal. A first correlator correlates the received signal differentiated and a cosine waveform. An acquisition unit acquires a value of the received signal as an offset value, at a time estimated based on a result of correlation in the first correlator and at a time when the received signal includes a sine waveform. A correction unit corrects the received signal in accordance with the offset value acquired in the acquisition unit.




i

PEAK CANCELLATION-CREST FACTOR REDUCTION DEVICE, PEAK-TO-AVERAGE POWER RATIO REDUCTION METHOD, AND PEAK VALUE DETERMINATION DEVICE

A peak cancellation-crest factor reduction (PC-CFR) device includes a clipping unit configured to output a clipping error signal by clipping amplitude values of a first baseband complex signal based on a predetermined threshold value; a peak value determination unit configured to receive the clipping error signal, and determine a first amplitude value as a peak value when the first amplitude value is greater than a second amplitude value input before the first amplitude value and a third amplitude value input after the first amplitude value among amplitude values of the clipping error signal; a cancellation pulse generator (CPG) allocation unit configured to allocate the peak value to a CPG; and a subtractor configured to subtract a cancellation pulse generated from the CPG from the first baseband complex signal and output a second baseband complex signal with a reduced peak-to-average power ratio (PAPR).




i

TIMING-CONTROLLER-CONTROLLED POWER MODES IN TOUCH-ENABLED SOURCE DRIVERS

This disclosure generally provides a processing system that includes a first controller coupled with a second controller via a first communication link. The first controller is configured to transmit display data and configuration data to the second controller via the first communication link. The second controller is configured to drive, using the display data, one or more coupled display electrodes for performing display updating. The second controller is further configured to operate one or more coupled sensor electrodes using the configuration data to acquire capacitive sensing data, and to transmit the capacitive sensing data to the first controller via the first communication link.




i

RECEIVER AND CONTROL METHOD FOR RECEIVER

A receiver includes: a frequency-characteristic-changing-circuit to change a frequency characteristic of an input signal in which N-level data value is pulse-amplitude-modulated, to generate a frequency-characteristic-changed-signal; a controller to control the frequency-characteristic-changing-circuit to obtain a desired ratio between a amplitude component of a target data value corresponding to the frequency-characteristic-changed-signal at a first timing and a second amplitude component thereof at a second timing which is later than the first timing; and a decision-feedback-equalization-circuit to which the frequency-characteristic-changed-signal is input, wherein the decision-feedback-equalization-circuit includes: a comparison-circuit to include comparators each to output a comparison result obtained from comparing the target data value and a threshold value, and N−1 selection circuits each to select one of comparison results output from the comparators at the second timing, based on the comparison results, and wherein at least one of the comparators outputs the comparison results to two of the N−1 selection circuits.




i

Communication device and method for signal determination in radio communication

A mobile communication device is provided that includes a receiver configured to receive a signal. The communication device further includes a calculation circuit configured to determine a cumulant value of an order higher than two of the received signal, to determine a function value of the determined cumulant value and to compare the determined function value with a predefined value. The communication device further includes a decoder configured to decode the received signal. The communication device further includes a target signal detector configured to activate the decoder based on the comparison of the function value with the predefined value.




i

PULSE AMPLITUDE MODULATION (PAM) DATA COMMUNICATION WITH FORWARD ERROR CORRECTION

The present invention is directed to data communication system and methods. More specifically, embodiments of the present invention provide an apparatus that receives data from multiple lanes, which are then synchronized for transcoding and encoding. A pseudo random bit sequence checker may be coupled to each of the plurality of lanes, which is configured to a first clock signal A. Additionally, an apparatus may include a plurality of skew compensator modules. Each of the skew compensator modules may be coupled to at least one of the plurality of lanes. The skew-compensator modules are configured to synchronize data from the plurality of lanes. The apparatus additionally includes a plurality of de-skew FIFO modules. Each of the de-skew compensator modules may be coupled to at least one of the plurality of skew compensator modules.




i

SENSOR ARRANGEMENT WITH VARIABLE CARRIER FREQUENCY AND GOERTZEL FILTERING

A method for processing a signal modulated with a variable carrier frequency includes calculating a coefficient for demodulation of the signal. The method also includes demodulating the signal by calculating discrete intermediate values utilizing the coefficient for a predefined maximum number of steps and calculating the signal with the aid of the intermediate values of the coefficient. The value of the coefficient is respectively calculated on the basis of carrier frequencies for each step.




i

PREAMBLE SYMBOL GENERATION AND RECEIVING METHOD, AND FREQUENCY-DOMAIN SYMBOL GENERATION METHOD AND DEVICE

Provided are a preamble symbol generation method and receiving method, and a relevant frequency-domain symbol generation method and a relevant device, characterized in that the method comprises: generating a prefix according to a partial time-domain main body signal truncated from a time-domain main body signal; generating the hyper prefix according to the entirety or a portion of the partial time-domain main body signal; and generating time-domain symbol based on at least one of the cyclic prefix, the time-domain main body signal and the hyper prefix, the preamble symbol containing at least one of the time-domain symbols. Therefore, using the entirety or a portion of a certain length of a time-domain main body signal as a prefix, it is possible to implement coherent detection, which solves the issues of performance degradation with non-coherent detection and differential decoding failure under complex frequency selective fading channels; and generating a hyper prefix based on the entirety or a portion of the above truncated time-domain main body signal enables the generated preamble symbol to have sound fractional frequency offset estimation performance and timing synchronization performance.




i

SIGNALING METHODS AND APPARATUS

A transmission apparatus and transmitting method for signaling parameters of a preamble, and a reception apparatus and receiving method for decoding the preamble. The transmitting method includes generating, using processing circuitry of a transmission apparatus, a bootstrap symbol based on the parameters of the preamble. The bootstrap symbol is prefixed to a frame that includes the preamble using the circuitry. The bootstrap symbol is selected from a plurality of patterns. Further, the plurality of patterns represent at least a subset of predetermined combinations of the parameters of the preamble including an FFT (Fast Fourier Transform) size, a guard interval, a frequency domain displacement component of a SPP (Scattered Pilot Pattern) and a L1 mode.




i

MULTI-BEAM CREST FACTOR REDUCTION

A system for use with beam signals, the system including: a crest factor reduction (CFR) module having inputs and corresponding outputs, wherein each of the inputs is for receiving a corresponding different beam signal of the beam signals and wherein each output corresponds to a different input of the plurality of inputs and is for outputting a different CFR-adjusted signal of a plurality of CFR-adjusted signals, each CFR-adjusted signal of the plurality of CFR-adjusted signals corresponding to a different beam signal of the plurality of beam signals; and a transmitter connected to the outputs of the CFR module, wherein the CFR module is configured to perform crest factor reduction on the beam signals to generate the plurality of CFR-adjusted signals, and wherein the crest factor reduction performed on the beam signals is based on a weighted sum of the magnitudes of multiple beams signals among the beam signals.




i

Bluetooth low energy frequency offset and modulation index estimation

A Bluetooth Low Energy (BLE) device, having a demodulator configured to translate in-phase and quadrature components of a received BLE signal into a differential phase signal; an estimator configured to estimate a frequency offset of the differential phase signal; and a detector configured to detect information in the differential phase signal corrected by the estimated frequency offset.




i

DELAY SPAN CLASSIFICATION FOR OFDM SYSTEMS USING SELECTIVE FILTERING IN THE FREQUENCY DOMAIN

It is proposed a method for delay spread classification of an orthogonal frequency-division multiplexing signal (multiplexing signal), and a receiving device and a telecommunication device connected thereto, the multiplexing signal comprising at least a first multiplexing symbol comprising at least two first reference symbols in the frequency domain, the method comprising: receiving at least the first multiplexing symbol; demodulating at least the first reference symbols of the first multiplexing symbol; determining at least a first autocorrelation value by autocorrelating the demodulated first reference symbols in the frequency domain; computing the filtered output energy of the autocorrelation and classifying the delay spread by mapping the ratio of the output energy for the filters.




i

DATA STRUCTURE FOR PHYSICAL LAYER ENCAPSULATION

Provided are a data structure including a header area, and a payload area comprising data, a method of generating the data structure, and extracting information from the data structure. At least one of the header area and the payload area includes at least one sub-area in which one or more signal fields are included. At least one signal field among the signal fields includes information for signalling presence or absence of one or more information fields located at least partly in the data structure, the one or more information fields corresponding to the one or more signal fields.




i

METHOD AND DEVICE FOR FREQUENCY SCANNING

A device set in a multimedia cable network includes a first modem including a first module to receive a beacon. The first modem has a first frequency and the beacon has a second frequency. When the first frequency of the first modem is not available, the first modem checks whether the second frequency is available in the multimedia cable network.




i

ADAPTIVE PARTITION SUBSET SELECTION MODULE AND METHOD FOR USE THEREWITH

A partition subset selection module selects a subset of available partitions for a macroblock pair of the plurality of macroblock pairs, based on motion search motion vectors generated by a motion search section, and further based on a macroblock adaptive frame and field indicator. A motion refinement module generates refined motion vectors for the macroblock pair, based on the subset of available partitions for a macroblock pair.




i

TEMPORAL MOTION DATA CANDIDATE DERIVATION IN VIDEO CODING

A method for derivation of a temporal motion data (TMD) candidate for a prediction unit (PU) in video encoding or video decoding is provided. The derived TMD candidate is for inclusion in an inter-prediction candidate list for the PU. The method includes determining a primary TMD position relative to a co-located PU in a co-located largest coding unit (LCU), wherein the co-located PU is a block in a reference picture having a same size, shape, and coordinates as the PU, and selecting at least some motion data of a secondary TMD position as the TMD candidate when the primary TMD position is in a bottom neighboring LCU or in a bottom right neighboring LCU of the co-located LCU, wherein the secondary TMD position is determined relative to the co-located PU.




i

Method and Apparatus for Entropy Coding in Image Compression

A method and apparatus of image coding including adaptive entropy coding are disclosed. According to this method, input pixels associated with a group of symbols generated from image or video data are received. Maximum bit-depth of the group of symbols is then determined. If the maximum bit-depth of the group of symbols is smaller than a first bit-depth threshold, the group of symbols is encoded or decoded using Golomb-Rice coding. If the maximum bit-depth of the group of symbols is greater than or equal to the first bit-depth threshold, the group of symbols is encoded or decoded using second entropy coding, where the second entropy coding is different from the Golomb-Rice coding. Outputs corresponding to encoded or decoded output associated with the group of symbols are provided. The maximum bit-depth of the group of symbols is signaled at the encoder or recovered at the decoder by parsing the bitstream.




i

Histogram Segmentation Based Local Adaptive Filter for Video Encoding and Decoding

Reconstructed picture quality for a video codec system may be improved by categorizing reconstructed pixels into different histogram bins with histogram segmentation and then applying different filters on different bins. Histogram segmentation may be performed by averagely dividing the histogram into M bins or adaptively dividing the histogram into N bins based on the histogram characteristics. Here M and N may be a predefined, fixed, non-negative integer value or an adaptively generated value at encoder side and may be sent to decoder through the coded bitstream.




i

INTERLAYER VIDEO DECODING METHOD FOR PERFORMING SUB-BLOCK-BASED PREDICTION AND APPARATUS THEREFOR, AND INTERLAYER VIDEO ENCODING METHOD FOR PERFORMING SUB-BLOCK-BASED PREDICTION AND APPARATUS THEREFOR

Provided is an inter-layer video decoding method including determining a size of a subblock of a current block by comparing at least one of a height and a width of a predetermined minimum size of the subblock with at least one of a height and a width of the current block of a first layer image; determining at least one subblock from the current block according to the size of the subblock of the current block; determining a candidate block that corresponds to the current block and is included in an encoded second layer image; determining a candidate subblock from the candidate block of the second layer image by using the subblock of the current block; determining motion information of the subblock included in the current block by using motion information of the candidate subblock included in the candidate block; and generating a prediction block of the current block by using the motion information of the subblock included in the current block.




i

Method of Alternative Transform for Data Compression

A method and apparatus of adaptive image and video coding including an alternative transform other than the discrete cosine transform (DCT) and discrete sine transform (DST) type VII (DST-VII) are disclosed. For at least one block size belonging to the size group, a transform from multiple transforms comprising an alternative transform in addition to DCT and DST-VII is selected and applied to a current block. The alternative transform may correspond to DCT type IV (DCT-IV) or DST type IV (DST-IV).




i

IMAGE PROCESSING DEVICE AND IMAGE PROCESSING METHOD

There is provided an image processing device including a decoding section that decodes an encoded stream and generates quantized transform coefficient data, and an inverse quantization section that, taking transform coefficient data as transform units to be used during inverse orthogonal transform, inversely quantizes the quantized transform coefficient data decoded by the decoding section, such that in a case where a non-square transform unit is selected, the inverse quantization section uses a non-square quantization matrix, corresponding to a non-square transform unit, that is generated from a square quantization matrix corresponding to a square transform unit.




i

METHOD AND APPARATUS FOR ENTROPY ENCODING USING HIERARCHICAL DATA UNIT, AND METHOD AND APPARATUS FOR DECODING

Provided are video encoding and decoding methods and apparatuses. The video encoding method includes: encoding a video based on data units having a hierarchical structure; determining a context model used for entropy encoding a syntax element of a data unit based on at least one piece of additional information of the data units; and entropy encoding the syntax element by using the determined context model.




i

MOTION COMPENSATION AND MOTION ESTIMATION LEVERAGING A CONTINUOUS COORDINATE SYSTEM

Computer processor hardware receives settings information for a first image. The first image includes a set of multiple display elements. The computer processor hardware receives motion compensation information for a given display element in a second image to be created based at least in part on the first image. The motion compensation information indicates a coordinate location within a particular display element in the first image to which the given display element pertains. The computer processor hardware utilizes the coordinate location as a basis from which to select a grouping of multiple display elements in the first image. The computer processor hardware then generates a setting for the given display element in the second image based on settings of the multiple display elements in the grouping.




i

Method and Apparatus of Bandwidth Estimation and Reduction for Video Coding

A method and apparatus of reusing reference data for video decoding are disclosed. Motion information associated with motion vectors for coded blocks processed after the current block are derived without storing decoded residuals associated with the coded blocks. Reuse information regarding reference data required for Inter prediction or Intra block copy of the coded blocks is determined based on the motion information. If the current block is coded in the Inter prediction mode or the Intra block copy mode, whether required reference data for the current block are in an internal memory is determined and the reference data are fetched from an external memory to the internal memory if the required reference data are not stored in the internal memory. The reference data in the internal memory is managed according to the reuse information to reduce data transferring between the external memory and the internal memory.




i

TRANSMISSION APPARATUS, TRANSMISSION METHOD, RECEPTION APPARATUS, AND RECEPTION METHOD

A receiving side is enabled to perform excellent decode processing according to decoding capability. An image encoding unit classifies image data of each picture consisting moving picture data into a plurality of layers, encodes the classified image data of the picture in each of the plurality of layers, and generates video data having the encoded image data of the picture in each of the plurality of layers A data transmission unit transmits the video data. An information transmission unit transmits a level designation value of a bit stream and information on a layer range in each of a plurality of layer ranges having a different maximum layer.




i

TRANSCODING METHOD AND ELECTRONIC APPARATUS

Disclosed are a transcoding method and electronic apparatus. The method includes: obtaining 16 H.264 video macro blocks; determining encoding type of the 16 H.264 video macro blocks; transcoding the 16 H.264 video macro blocks into a H.265 coding tree unit CTU according to preset intra-frame transcoding correspondence if the encoding type of the 16 H.264 video macro blocks is intra-frame coding; transcoding the 16 H.264 video macro blocks into one H.265 CTU according to preset inter-frame transcoding correspondence if the encoding type of the 16 H.264 video macro blocks is inter-frame coding. The device includes: capturing module, determination module, first transcoding module and second transcoding module. The present invention has no need to decode H.264 video macro blocks to produce original video data, so the transcoding process can speed up and save time.




i

VIDEO ENCODING METHOD, VIDEO DECODING METHOD, AND DEVICE USING SAME

The present invention relates to a video encoding method, a video decoding method, and a device using the same, and the video encoding method according to the present invention comprises the steps of: specifying a tile and a slice by partitioning an inputted picture; performing encoding on the basis of the tile and the slice; and transmitting the encoded video information, wherein the picture is partitioned into one or more tiles and one or more slices, and the restrictions for parallel processing can be applied to the tiles and the slices.




i

SYSTEM AND METHOD FOR TEMPORAL DIFFERENCING WITH VARIABLE COMPLEXITY

A system and method for transmitting compressed video. A transmitter receives uncompressed video data from a video source, and compresses it using one or more reference frames. A receiver receives the compressed video data and decodes it, using the same reference frames, to form display data. The reference frames are stored in compressed form in both the transmitter and the receiver. Each frame of display data becomes a reference frame for the decoding of a subsequent frame.




i

METHOD AND APPARATUS FOR MOTION COMPENSATED NOISE REDUCTION

An apparatus for motion compensated noise reduction for input images is provided. The motion estimation and motion compensation circuit performs a motion estimation operation and a motion compensation operation on a current image and a previous image to obtain a first patch. The block matching operation circuit performs a block matching operation on the current image and the previous image to obtain a second patch. The motion detection circuit performs a motion detection operation on a target patch according to the first patch and the second patch to output a set of third patches. The current image includes the target patch. The noise reduction circuit performs a noise reduction operation on the set of third patches according to a threshold curve, so as to generate the target patch that the noise is reduced. A method for motion compensated noise reduction for input images is also provided.




i

VIDEO ENCODING AND DECODING APPARATUS, SYSTEM AND METHOD

A video coding apparatus for encoding a compressive sensing signal has a processor. The processor obtains a compressive sensing sampling matrix; andcaptures the compressive sensing signal representing image data based on the compressive sensing sampling matrix, wherein the compressive sensing sampling matrix is non-uniform varied.




i

MOVING PICTURE ENCODING APPARATUS, MOVING PICTURE DECODING APPARATUS, MOVING PICTURE ENCODING METHOD, MOVING PICTURE DECODING METHOD, MOVING PICTURE ENCODING PROGRAM, AND MOVING PICTURE DECODING PROGRAM

An object of the present invention is to increase efficiency of information compression in coding and decoding. A moving picture encoding apparatus 10 of the present invention has a motion vector predicting part for performing, based on a temporal relation among adjacent reference frame images 703a, 703b, 703c referred to for detecting motion vectors of adjacent blocks adjacent to a coding target block, a target reference frame image 702 referred to for detecting a motion vector of the target block, and a target frame image 701 being the frame image of the coding target, or based on time information thereof, a correction of scaling the motion vectors 751a, 751b, 751c of the adjacent blocks on the basis of the target reference frame image 702; and a determination of an optimum predicted motion vector based on the motion vectors of the adjacent blocks; and thereby predicting the optimum predicted motion vector after the correction.




i

PICTURE PREDICTION METHOD AND RELATED APPARATUS

A picture prediction method and a related apparatus are disclosed. The picture prediction method includes: determining motion vector predictors of K pixel samples in a current picture block, where K is an integer greater than 1, the K pixel samples include a first vertex angle pixel sample in the current picture block, a motion vector predictor of the first vertex angle pixel sample is obtained based on a motion vector of a preset first spatially adjacent picture block of the current picture block, and the first spatially adjacent picture block is spatially adjacent to the first vertex angle pixel sample; and performing, based on a non-translational motion model and the motion vector predictors of the K pixel samples, pixel value prediction on the current picture block. Solutions in the embodiments of the present application are helpful in reducing calculation complexity of picture prediction based on a non-translational motion model.




i

MOTION VECTOR ENCODING/DECODING METHOD AND DEVICE AND IMAGE ENCODING/DECODING METHOD AND DEVICE USING SAME

The present disclosure relates to a method and apparatus for encoding/decoding a motion vector and a method and apparatus for encoding/decoding video using same. The motion vector encoding method includes selecting a predicted motion vector candidate set including one or more predicted motion vector candidates for a block; determining one or more search ranges for predicted motion vector candidate set; selecting one predicted motion vector candidate among one or more predicted motion vector candidates as predicted motion vector for each search point with respect to each search point within search range by first determination criterion prearranged with video decoding apparatus; selecting one predicted motion vector among the predicted motion vectors for each search point by a second determination criterion not prearranged with the video decoding apparatus, and determining predicted motion vector, differential motion vector, and current motion vector; and generating and encoding the differential motion vector as motion information.




i

MOVING PICTURE ENCODING DEVICE, MOVING PICTURE ENCODING METHOD AND MOVING PICTURE ENCODING PROGRAM AS WELL AS MOVING PICTURE DECODING DEVICE, MOVING PICTURE DECODING METHOD AND MOVING PICTURE DECODING PROGRAM

A first vector predictor candidate list generating unit generates a first motion vector predictor candidate list from motion vectors of encoded neighboring blocks to blocks to be encoded. A second vector predictor candidate list generating unit generates a second motion vector predictor candidate list from motion vectors of blocks at the same positions as the blocks to be encoded in an encoded image and neighboring blocks to the blocks at the same positions. A combination determining unit determines whether to generate a third vector predictor candidate list combining the first and second vector predictor candidate lists by comparison of a block size of the blocks to be encoded and a threshold size. A vector predictor candidate list deciding unit generates the third vector predictor candidate list from the first vector predictor candidate list.




i

MOVING PICTURE ENCODING DEVICE, MOVING PICTURE ENCODING METHOD AND MOVING PICTURE ENCODING PROGRAM AS WELL AS MOVING PICTURE DECODING DEVICE, MOVING PICTURE DECODING METHOD AND MOVING PICTURE DECODING PROGRAM

A first vector predictor candidate list generating unit generates a first motion vector predictor candidate list from motion vectors of encoded neighboring blocks to blocks to be encoded. A second vector predictor candidate list generating unit generates a second motion vector predictor candidate list from motion vectors of blocks at the same positions as the blocks to be encoded in an encoded image and neighboring blocks to the blocks at the same positions. A combination determining unit determines whether to generate a third vector predictor candidate list combining the first and second vector predictor candidate lists by comparison of a block size of the blocks to be encoded and a threshold size. A vector predictor candidate list deciding unit generates the third vector predictor candidate list from the first vector predictor candidate list.




i

PARSING FRIENDLY AND ERROR RESILIENT MERGE FLAG CODING IN VIDEO CODING

Methods and apparatus for parsing friendly and error resilient merge flag coding in video coding are provided. In some methods, in contrast to merging candidate list size dependent coding of the merge flag in the prior art, a merge flag is always encoded in the encoded bit stream for each inter-predicted prediction unit (PU) that is not encoded using skip mode. In some methods, in contrast to the prior art that allowed the merging candidate list to be empty, one or more zero motion vector merging candidates formatted according to the prediction type of the slice containing a PU are added to the merging candidate list if needed to ensure that the list is not empty and/or to ensure that the list contains a maximum number of merging candidates.




i

SYSTEM AND METHOD FOR CONSTRUCTING OPTICAL FLOW FIELDS

A system constructs an optical flow field that corresponds with a selected video frame. The optical flow field is constructed based on a first motion of a mobile platform having an imaging device and a status of the imaging device. The first motion and the status are determined with measurements of sensors installed on the mobile platform and/or the imaging device installed on the mobile platform. The first motion includes at least one of a first rotation, a horizontal movement, or a vertical movement of the mobile platform. The status includes a rotation of the imaging device and/or an orientation of the imaging device relative to the mobile platform.




i

METHOD AND APPARATUS FOR ENCODING/DECODING THE MOTION VECTORS OF A PLURALITY OF REFERENCE PICTURES, AND APPARATUS AND METHOD FOR IMAGE ENCODING/DECODING USING SAME

A video decoding method using an inter prediction, includes: reconstructing a first differential motion vector and a second differential motion vector of a current block by decoding encoded data; deriving a first predicted motion vector and a second predicted motion vector of the current block from one or more neighboring blocks of the current block; generating a first motion vector of the current block by adding the first candidate motion vector to the first differential motion vector, and a second motion vector of the current block by adding the second candidate motion vector to the second differential motion vector; generating a predicted block of the current block by using the first and second motion vectors; reconstructing a residual block by decoding residual signals included in the encoded data; and adding each pixel value of the predicted block to a corresponding pixel value of the residual block.




i

METHOD AND APPARATUS FOR ENCODING/DECODING THE MOTION VECTORS OF A PLURALITY OF REFERENCE PICTURES, AND APPARATUS AND METHOD FOR IMAGE ENCODING/DECODING USING SAME

A video decoding method using an inter prediction, includes: reconstructing a first differential motion vector and a second differential motion vector of a current block by decoding encoded data; deriving a first predicted motion vector and a second predicted motion vector of the current block from one or more neighboring blocks of the current block; generating a first motion vector of the current block by adding the first candidate motion vector to the first differential motion vector, and a second motion vector of the current block by adding the second candidate motion vector to the second differential motion vector; generating a predicted block of the current block by using the first and second motion vectors; reconstructing a residual block by decoding residual signals included in the encoded data; and adding each pixel value of the predicted block to a corresponding pixel value of the residual block.




i

METHOD AND DEVICE FOR ENCODING A FRAME AND/OR DECODING A BITSTREAM REPRESENTING A FRAME

The present disclosure generally relates to a method and device for encoding a frame. The method and the device comprises a processor configured for: —encoding (12) a backlight frame determined (11) from the frame; —obtaining (13) at least one component of a residual frame by dividing each component of the frame by a decoded version of the backlight frame; —mapping each component (YRes) of the residual frame (Res) such that the mapping of each pixel (YRes,P) of a component (YRes) of the residual frame Res depends on the pixel value (Balp) of either the backlight frame (Bal) or a decoded version of the backlight frame (Bal), associated with this pixel (p); and—encoding (18) the mapped residual frame. The disclosure further relates to a decoding method and device.




i

METHOD AND APPARATUS FOR DECODING A VIDEO SIGNAL

The present invention relates to a method for decoding a video signal, comprising the steps of: acquiring a transform size flag of the current macroblock from a video signal; checking the number of non-zero transform coefficients at each pixel position in a first transform block which corresponds to the transform size flag; changing a scan order of the first transform block by prioritizing the position of the pixel having the greatest number of the non-zero transform coefficients in the first transform block; determining the number of the non-zero transform coefficients at each pixel position in a second transform block, and setting the changed scan order of the first transform block as an initialized scan order of the second transform block; adding the number of the non-zero transform coefficients at each pixel position in the first transform block and the number of the non-zero transform coefficients at each pixel position in the second transform block, and changing the scan order of the second transform block by prioritizing the position of the pixel having the greatest number of the non-zero transform coefficients; and decoding the transform coefficients arranged in the scan order changed in the previous step, wherein the first transform block and the second transform block have sizes corresponding to the transform size flag, and are contained in the current macroblock.




i

METHOD AND APPARATUS FOR DETERMINING THE SEVERITY OF CORRUPTION IN A PICTURE

An encoder encodes pixels representative of a picture in a multimedia stream, generates a first approximate signature based on approximate values of pixels in a reconstructed copy of the picture, and transmits the encoded pixels and the first approximate signature. A decoder receives a first packet including the encoded pixels and the first approximate signature, decodes the encoded pixels, and transmits a first signal in response to comparing the first approximate signature and a second approximate signature generated based on approximate values of the decoded pixels. If a corrupted packet is detected, the multimedia application requests an intra-coded picture in response to the first approximate signature differing from the second approximate signature. The second signal instructs the decoder to bypass requesting an intra-coded picture and to continue decoding received packets in response to the first approximate signature being equal to the second approximate signature.




i

IMAGE DECODING METHOD, IMAGE CODING METHOD, IMAGE DECODING APPARATUS, IMAGE CODING APPARATUS, AND IMAGE CODING AND DECODING APPARATUS

The image decoding method includes: determining a context for use in a current block to be processed, from among a plurality of contexts; and performing arithmetic decoding on a bit sequence corresponding to the current block, using the determined context, wherein in the determining: the context is determined under a condition that control parameters of neighboring blocks of the current block are used, when the signal type is a first type, the neighboring blocks being a left block and an upper block of the current block; and the context is determined under a condition that the control parameter of the upper block is not used, when the signal type is a second type, and the second type is “inter_pred_flag”.




i

TRANSMISSION DEVICE, TRANSMISSION METHOD, RECEPTION DEVICE, AND RECEPTION METHOD

The present technology relates to a transmission device, a transmission method, a reception device, and a reception method that can improve transmission efficiency. An encoded signal is generated based on realtime data indicated by a waveform L using a predetermined fixed bit rate as a maximum code amount Sx and the encoded signal into which non-realtime data with an insufficient code amount is inserted is transmitted at the fixed bit rate, as indicated by a range Z12, when a code amount of the generated encoded signal is insufficient for the maximum code amount Sx. The present technology can be applied to broadcasting communication.




i

RECIPROCITY CALIBRATION FOR MULTIPLE-INPUT MULTIPLE-OUTPUT SYSTEMS

Systems and associated methods for reciprocity calibration of MIMO wireless communication are disclosed. In one embodiment, a method includes receiving, by a base station, a first set of pilot symbols by receivers (RXes) of the base station based on a first pilot symbol transmitted from a transmitter (TX) of at least one reference antenna, transmitting, by the base station, a second pilot symbol by TXes of the base station, wherein the transmitted second pilot symbol is received by an RX of the at least one reference antenna as a second set of r0,i pilot symbols calculating non-reciprocity compensation factors based on the first set of pilot symbols and the second set of pilot symbols.




i

Direct Drive Ceiling Fan

A direct drive ceiling fan is described that includes at least one blade and a permanent magnet motor (e.g., PMSM) as a driving source. The permanent magnet motor includes a stator with a 45 to 90 slot construction and multiple stator winding coils and the rotor assembly includes a permanent magnet that has from 50 to 80 magnetic poles. The coils are wound according to a symmetric winding pattern that is selected based on the numbers of slots and poles used in the motor. The resulting motor produces near zero to zero radial forces (Fx and Fy) during operation of the fan.




i

MULTISTAGE TURBOMACHINE WITH EMBEDDED ELECTRIC MOTORS

A multistage turbomachine is disclosed, comprising a casing with a fluid inlet and a fluid outlet and a plurality of stages arranged in the casing. A flow path extends from the fluid inlet to the fluid outlet through the sequentially arranged stages. Each stage is comprised of a rotating impeller and an electric motor embedded in the casing and arranged for rotating the impeller at a controlled rotary speed. Each electric motor comprises a motor rotor, arranged on the impeller and integrally rotating therewith, and a motor stator stationarily arranged in the casing. Pairs of sequentially arranged impellers are configured for rotation in opposite directions.




i

SEAL ASSEMBLY FOR A SUBMERSIBLE PUMPING SYSTEM AND AN ASSOCIATED METHOD THEREOF

A seal assembly for a submersible pumping system is presented. The seal assembly includes a housing and a support tube disposed within the housing. Further, the seal assembly includes a shape memory alloy (SMA) foil disposed within the housing, surrounding the support tube to define a first chamber between the shape memory alloy foil and the support tube. The first chamber is configured to store a motor fluid, and wherein the shape memory alloy foil is configured to restrict a flow of a wellbore fluid to the motor fluid.




i

Fan Motor Controller for Use in an Air Conditioning System

One aspect provides an air conditioning system that includes a compressor housing, a motor having fan blades rotatably coupled thereto and located within the compressor housing. The motor has a rotation sensor associated with it that is configured to sense a rotation of the fan blades. This embodiment further comprises a controller coupled to the motor and is configured to increase a torque of the motor when the rotation sensor indicates that the fan blades are not rotating after an on command signal is received by the motor.