r

Semiconductor device and method for manufacturing semiconductor device

A highly reliable semiconductor device is manufactured by giving stable electric characteristics to a transistor in which an oxide semiconductor film is used for a channel. An oxide semiconductor film which can have a first crystal structure by heat treatment and an oxide semiconductor film which can have a second crystal structure by heat treatment are formed so as to be stacked, and then heat treatment is performed; accordingly, crystal growth occurs with the use of an oxide semiconductor film having the second crystal structure as a seed, so that an oxide semiconductor film having the first crystal structure is formed. An oxide semiconductor film formed in this manner is used for an active layer of the transistor.




r

Manufacturing method of semiconductor film, manufacturing method of semiconductor device, and manufacturing method of photoelectric conversion device

A method for forming an amorphous semiconductor which contains an impurity element and has low resistivity and a method for manufacturing a semiconductor device with excellent electrical characteristics with high yield are provided. In the method for forming an amorphous semiconductor containing an impurity element, which utilizes a plasma CVD method, pulse-modulated discharge inception voltage is applied to electrodes under the pressure and electrode distance with which the minimum discharge inception voltage according to Paschen's Law can be obtained, whereby the amorphous semiconductor which contains an impurity element and has low resistivity is formed.




r

Protective film of polarizer, polarizer and method for producing it, and liquid crystal display device

A protective film to a polarizer including a cellulose acylate and satisfying the following requirement (1) or (2): (1): The surface of the film has a pH of from 3.0 to 4.5.(2): The surface of the film has a pH of more than 4.5 and at most 6.0, and the film has a moisture permeability of at least 2800 g/m2·day.




r

***WITHDRAWN PATENT AS PER THE LATEST USPTO WITHDRAWN LIST***Electroconductive sheet and touch panel

The present invention provides an electroconductive sheet and a touch panel which do not impair visibility in a vicinity of an electrode terminal in a sensing region. In an electroconductive sheet which has an electrode pattern constructed of a metal thin wire and an electrode terminal that is electrically connected to an end of the electrode pattern, a transmittance of the electrode pattern is 83% or more, and when the transmittance of the electrode pattern is represented by a %, a transmittance of the electrode terminal is controlled to be (a-20)% or more and (a-3)% or less.




r

Semiconductor device including a current mirror circuit

In a semiconductor device, where, with respect to a parasitic resistor in a current mirror circuit, a compensation resistor for compensating the parasitic resistor is provided in the current mirror circuit, the current mirror circuit includes at least two thin film transistors. The thin film transistors each have an island-shaped semiconductor film having a channel formation region and source or drain regions, a gate insulating film, a gate electrode, and source or drain electrodes, and the compensation resistor compensates the parasitic resistor of any one of the gate electrode, the source electrode, and the drain electrode. In addition, each compensation resistor has a conductive layer containing the same material as the gate electrode, the source or drain electrodes, or the source or drain regions.




r

Imaging and display system for vehicle

A vehicular imaging and display system includes a rear backup camera at a rear portion of a vehicle, a video processor for processing image data captured by the rear camera, and a video display screen responsive to the video processor to display video images. During a reversing maneuver of the equipped vehicle, the video display screen displays video images captured by the rear camera. During forward travel of the equipped vehicle, the video display screen is operable to display images representative of a portion of the field of view of the rear camera to display images representative of an area sideward of the equipped vehicle responsive to at least one of (a) actuation of a turn signal indicator of the vehicle, (b) detection of a vehicle in a side lane adjacent to the equipped vehicle and (c) a lane departure warning system of the vehicle.




r

Projection image display device comprising a plurality of illumination optical systems

The purpose of the present invention is to provide a projection image display device in which all of the multiple light sources to be used are positioned optimally, regardless of the mode of installation of the device. This projection image display device has two illumination optical systems (1, 2) that are each provided with a light source (111, 211), a color separator for separating into three colors of light, a liquid crystal panel (150, 250) for forming an optical image, and a color synthesis prism (160, 260) for color-synthesizing. A polarization beam splitter (3) for synthesis synthesizes an optical image formed by the illumination optical system (1, 2), and projects the same from a projection lens (4). The optical axis (101, 201) of each light source (111, 211) is positioned within the same plane as the optical axis (401) of the projection lens (4), and so as to orthogonally intersect the optical axis (401) of the projection lens.




r

Sensor substrate, method of manufacturing the same and sensing display panel having the same

A sensor substrate includes a blocking pattern disposed on a base substrate, a first electrode disposed on the base substrate and overlapping the blocking pattern, the first electrode including a plurality of first unit parts arranged in a first direction, each of the first unit parts including a plurality of lines connected to each other in a mesh-type arrangement, a color filter layer disposed on the base substrate, a plurality of contact holes defined in the color filter layer and exposing the first unit parts, and a bridge line between and connected to first unit parts adjacent to each other in the first direction, through the contact holes.




r

Opposed substrate, manufacturing method thereof and LCD touch panel

An opposed substrate (9') comprises: a substrate (1); a static electricity protective electrode (2), a bridging electrode (4) and a touch induction electrode (6) comprising a plurality of sub-units sequentially formed on the substrate (1), wherein the distribution of the static electricity protective electrode (2) on the substrate (1) corresponds to dummy regions between sub-units, and the static electricity protective electrode (2), the bridging electrode (4) and the touch induction electrode (6) are insulated from each other. The opposed substrate (9') has a good touching effect. A method for manufacturing the opposed substrate, and a liquid crystal display touch panel are also disclosed.




r

Switching liquid crystal panel and display device

Provided is a switching liquid crystal panel and a display device that have novel structures that are capable of preventing luminous regions from appearing in the light transmitting parts, in the vicinities of boundaries thereof with the light shielding parts. The switching liquid crystal panel includes a pair of substrates (26a, 26b) having a twisted nematic type liquid crystal layer (24) interposed therebetween, and a plurality of light shield forming electrodes (30) that are formed on at least one of the pair of the substrates (26a, 26b) and that form light shielding parts (40) of a parallax barrier (16) in cooperation with a counter electrode (34) when a voltage is applied, the counter electrode (34) being is opposed to the light shield forming electrodes (30) with the liquid crystal layer (24) interposed therebetween. A rubbing direction for an alignment film (36a) provided on the substrate (26a) side on which the light shield forming electrodes (30) are formed is at an angle of 45° or less to a lengthwise direction of the light shield forming electrodes (30).




r

Liquid crystal display element and liquid crystal module

A liquid crystal display element disclosed includes: a first substrate; a second substrate; a liquid crystal layer sandwiched between the first substrate and the second substrate; a first transparent electrode provided at a display region of the first substrate; and a second transparent electrode provided at a display region of the second substrate, at least one of d1 and d2 being not larger than 60 nm, where d1 represents a thickness of the first transparent electrode and d2 represents a thickness of the second transparent electrode.




r

Liquid crystal display having shielding conductor

Provided is a liquid crystal display including, on an insulation substrate having a polygonal display area and a peripheral area surrounding the display area a first signal line, a second signal line crossing the first signal line, a plurality of switching elements connected to the first signal line and the second signal line and disposed in the display area, a plurality of pixel electrodes each connected to the switching element and disposed in the display area, and a shielding conductor disposed in the peripheral area and extending along at least one side of the polygonal display area.




r

Semiconductor device and method of manufacturing the semiconductor device

In a semiconductor device, a first interlayer insulating layer made of an inorganic material and formed on inverse stagger type TFTs, a second interlayer insulating layer made of an organic material and formed on the first interlayer insulating layer, and a pixel electrode formed in contact with the second interlayer insulating layer are disposed on a substrate, and an input terminal portion that is electrically connected to a wiring of another substrate is provided on an end portion of the substrate. The input terminal portion includes a first layer made of the same material as that of the gate electrode and a second layer made of the same material as that of the pixel electrode. With this structure, the number of photomasks used in the photolithography method can be reduced to 5.




r

Back plate component having reflective sheet reinforcing structure and liquid crystal display device including the same

Provided is a back plate component having reflective sheet reinforcing structure. The back plate component includes: a frame, a reflective sheet and a plurality of supporting film sheets. The frame includes a plurality of lateral beams and vertical beams, and at least one hollow part is included between the lateral beams and the vertical beams. The reflective sheet is attached to the frame, and includes a reflective surface and a back surface corresponding to the reflective surface. A portion of the back surface covers the whole hollow part. The plurality of supporting film sheets is attached to the back surface at a region corresponding to the hollow part, and includes a material the same as that of the reflective sheet. A liquid crystal display device is further disclosed herein.




r

Ruggedized display device

A ruggedized display device is disclosed. The ruggedized display device may include an optical stack configured to resist a load up to a load threshold. The optical stack may include an electronic display including a top surface and a bottom surface, and a top protective component coupled to the top surface of the electronic display via a bonding material layer, to shield the electronic display. The top protective component and the bonding material layer may collectively have a first thickness of less than 1.0 millimeters. The optical stack may further include a bottom protective component, coupled to the bottom surface via a resiliently deformable adhesive layer, to support the electronic display from below. The bottom protective component and the adhesive layer may collectively have a second thickness less than 10.0 millimeters.




r

Liquid crystal display devices and methods of manufacturing liquid crystal display devices

A liquid crystal display device includes a first substrate, a first electrode on the first substrate, a second substrate opposed to the first substrate, and a second electrode on the second substrate. The second electrode corresponds to the first electrode. The liquid crystal display device also includes a liquid crystal structure between the first electrode and the second electrode. The liquid crystal structure includes a plurality of liquid crystal molecules and at least one movement control member. The movement control member in the liquid crystal structure restricts a movement of the liquid crystal molecules.




r

Optical compensated bending mode liquid crystal display panel and method for manufacturing the same

The present invention provides an optical compensated bending (OCB) mode liquid crystal display (LCD) panel and a method for manufacturing the same. The method comprises the following steps: forming alignment layers on substrate, respectively; forming a liquid crystal layer between the alignment layers to form a liquid crystal cell; applying an electrical signal across the liquid crystal cell; and irradiating light rays to or heating the liquid crystal cell, so as to form a first polymer alignment layer and a second polymer alignment layer, respectively. The present invention can reduce a phase transition time of liquid crystal molecules from a splay state to a bent state.




r

Liquid crystal display device

A liquid crystal display being capable of improving the contrast ratio in the front direction thereof is provided. A liquid crystal display 100 of the present invention includes, in sequence: a light source device 14 that emits a parallel light beam; a back surface-side polarizer 16; a liquid crystal cell 13; a display surface-side polarizer 11; and a light diffusion layer 15. The liquid crystal display 100 further includes: a selective light-shielding layer 12 between the display surface-side polarizer 11 and the light diffusion layer 15 so that the selective light-shielding layer 12 shields light that is generated by being depolarized and scattered in the liquid crystal cell 13 and travels in a direction that is different from a direction in which the parallel light beam travels.




r

Optical laminate and liquid crystal display device

There is provided an optical laminate which comprises: a polarizing film wherein a thin polarizing layer is laminated on one main surface of a substrate; and an optical element (lens array). The thin polarizing layer has a thickness of 8 μm or less. The substrate has a thickness of 20 μm to 80 μm. The optical element is a pattern retardation plate including a plurality of regions having different slow axis directions.




r

Counter substrate for liquid crystal display and liquid crystal display device

A counter substrate for liquid crystal display includes a transparent substrate, a black matrix, and stripe transparent electrodes. The black matrix divides a plane surface of the transparent substrate into pixel or sub-pixel unit to form a light-shielded area and openings above the plane surface. The stripe transparent electrodes are formed into the pixel unit or the sub-pixel unit above the plane surface. The black matrix includes a frame pattern including two sides facing each other in parallel in the pixel or the sub-pixel unit, and a linear central pattern which is parallel to the two sides of the frame pattern and is formed at a midsection of the pixel or the sub-pixel unit. The transparent electrodes are each parallel to the two sides of the frame pattern and the central pattern and are located symmetrically to the central pattern.




r

Liquid crystal display panel

A transverse electric field type liquid crystal display panel includes a pair of substrates opposed with a liquid crystal layer interposed therebetween. A plurality of sub-pixels having at least one curved portion in a display area are provided in a matrix on one side of the pair of substrates, and a pair of electrodes having at least one curved portion are formed in the plurality of sub-pixels. A light shield layer shielding a non-display area positioned on an outer peripheral side of the display area and between the plurality of sub-pixels is formed on the other side of the pair of substrates. The light shield layer of the non-display area is formed in a shape in which the outermost peripheral side of the display area is rectangular.




r

Display device and method of LC panel protection

A display device uses a multilayer film (104), which reflects (red) light having wavelengths between about 600 and 800 nm at a 60 degree angle of incidence (114), to protect a liquid crystal panel (102) from heat and sun damage. The film (104) transmits light of the visible band with a wavelength between about 420 and 650 nm at normal incidence (116). The outermost surface (106) of the film (104) may be a hard coat (124). A metal oxide layer (120) and a metal layer (130) may be included to reflect IR light greater in wavelength than about 850 nm.




r

Liquid crystal display device and manufacturing method of liquid crystal display device

Disclosed herein is a liquid crystal display device including a plurality of pixels each having a reflecting section and a transmitting section, the pixels each including a plurality of sub-pixels resulting from alignment division, the liquid crystal display device including: an element layer formed on a substrate; an insulating film formed on the substrate so as to cover the element layer; a pixel electrode formed on the insulating film so as to be connected to the element layer; a gap adjusting layer formed on the insulating film on the element layer including a region of connection between the element layer and the pixel electrode; and a dielectric formed on a connecting part for making an electric connection between the sub-pixels.




r

Liquid crystal display device and manufacturing method thereof

A liquid crystal display device includes a liquid crystal display element including a first alignment film and a second alignment film and a liquid crystal layer that is provided between the first alignment film and the second alignment film, wherein the first alignment film includes a compound in which a polymer compound that includes a cross-linked functional group or a polymerized functional group as a side chain is cross-linked or polymerized, the second alignment film includes the same compound as the compound that configures the first alignment film, and the formation and processing of the second alignment film is different from the formation and processing of the first alignment film and when a pretilt angle of the liquid crystal molecules which is conferred by the first alignment film is θ1 and a pretilt angle of the liquid crystal molecules which is conferred by the second alignment film is θ2, θ1>θ2.




r

Display device substrate, display device substrate manufacturing method, display device, liquid crystal display device, liquid crystal display device manufacturing method and organic electroluminescent display device

The present invention provides a display device substrate, a display device substrate manufacturing method, a display device, a liquid crystal display device, a liquid crystal display device manufacturing method and an organic electroluminescent display device that allow suppressing faults derived from occurrence of gas and/or bubbles in a pixel region. The present invention is a display device substrate that comprises: a photosensitive resin film; and a pixel electrode, in this order, from a side of an insulating substrate. The display device substrate has a gas-barrier insulating film, at a layer higher than the photosensitive resin film, for preventing advance of a gas generated from the photosensitive resin film, or has a gas-barrier insulating film, between the photosensitive resin film and the pixel electrode, for preventing advance of gas generated from the photosensitive resin film.




r

Array substrate and liquid crystal display panel

The disclosed technology discloses an array substrate and a liquid crystal display panel. The array substrate comprises: a base substrate; a gate line and a data line formed on the base substrate, the gate line and the data line defining a plurality of pixel regions; and a first electrode layer and a second electrode layer formed in each pixel region; and an insulating layer provided between the first electrode layer and the second electrode layer. The first electrode layer, the insulating layer and the second electrode layer are laminated on the base substrate in this order. The first electrode layer is provided with a plurality of first apertures therein, and the first electrode layer comprises a plurality of first electrode portions located between the plurality of first apertures.




r

Pixel structure, array substrate, and liquid crystal display panel

A pixel structure comprises a plurality of pixel regions, and each of the pixel regions includes first and second electrodes that are overlapped with each other, the first electrode is disposed above the second electrode, and each of the pixel regions is divided at least into a first to fourth domain display regions; strip-shaped first electrodes in the first to fourth domain display regions make first to fourth angles with a reference direction; the sum of the first angle and the second angle is 180 degrees, the sum of the third angle and the fourth angle is 180 degrees, and the first, the second, the third and the fourth angles are different from one another.




r

Liquid crystal display having wide viewing angle

Apertures are formed in the common electrode or in the pixel electrode of a liquid crystal display to form a fringe field. Storage capacitor electrodes are formed at the position corresponding to the apertures to prevent the light leakage due to the disclination caused by the fringe field. The apertures extend horizontally, vertically or obliquely. The apertures in adjacent pixel regions may have different directions to widen the viewing angle.




r

Tape substrate for chip on film structure of liquid crystal panel

The present invention discloses a tape substrate for chip on film structure of a liquid crystal panel. The tape substrate is provided with plural package units of chip on film structures arranged along its longitudinal direction, and the package unit has a driver chip, input leads and output leads. The longitudinal direction of the driver chip is parallel to the longitudinal direction of the tape substrate, and the input leads and the output leads are located at the two opposite sides of the driver chip. Each package unit is set up with a short side and a long side, and the input leads are formed at the short side, while the output leads are formed at the long side. In the package units adjacent to each other, the short side of one package unit joins the long side of a next package unit. This invention further discloses a liquid crystal panel having the tape substrate.




r

Liquid crystal display device

A liquid crystal display device includes a TFT substrate having a display region with first and second electrodes, TFTs, scanning signal lines connected to the TFTs, a counter substrate, a liquid crystal layer sandwiched between the TFT and counter substrates, and sealed by a sealant, scanning line leads connected to the scanning signal lines and formed outside of the display region, video signal line leads connected to the video signal lines and formed outside of the display region and a shield electrode formed on the TFT substrate covering the scanning line leads but not the video signal line leads. The second electrode is connected to one of the TFTs, and liquid crystal molecules of the liquid crystal layer are driven by an electric field, which is generated between the first and second electrodes. The shield electrode is electrically connected to the first electrode and overlapped with the sealant in plan view.




r

Liquid-crystal display device

One of the objects of the present invention is to provide a liquid crystal display device with high transmittance or viewing angle characteristics. A liquid crystal display device of the present invention includes: a first substrate (10) which includes a pixel electrode (30); a second substrate (20) which includes a counter electrode (25); and a liquid crystal layer (21) and a spacer (40) which are provided between the first substrate (10) and the second substrate (20). The pixel electrode (30) includes a first portion which is formed by a plurality of first branch portions (34A) extending in a first direction, a second portion which is formed by a plurality of second branch portions (34B) extending in a second direction, a third portion which is formed by a plurality of third branch portions (34C) extending in a third direction, and a fourth portion which is formed by a plurality of fourth branch portions (34D) extending in a fourth direction. The spacer (40) is provided at a position in the pixel (50) which is surrounded by the first to fourth portions of the pixel electrode (30) when viewed from a direction perpendicular to a plane of the first substrate (10).




r

Display apparatus having spacers with different heights and different upper and lower surface areas

A display apparatus includes a lower substrate, an upper substrate, a spacer and an image display layer. The spacer includes a main spacer, a first sub-spacer and a second sub-spacer. The main spacer has a height greater than that of the first and second sub-spacers. The second sub-spacer has an area wider than that of the main spacer and the first sub-spacer.




r

Bistable liquid crystal device

In a conventional bistable liquid crystal device, switching characteristics fluctuate among panels and there is a problem in mass productivity. As an intermediate layer, an uneven film is inserted between a low anchoring layer and ITO. The uneven film has an average surface roughness of 2 nm or less, which is measured by an atomic force microscope. In this manner, the low anchoring layer is not affected by the surface shape of the ITO film which differs among panels, and the switching characteristics are stabilized.




r

High extinction ratio liquid crystal optical switch

An optical switch for performing high extinction ratio switching of an optical signal includes a beam polarizing element and one or more optical elements. The optical elements are configured to direct an optical signal along a first or second optical path based on the polarization state of the optical signal as it passes through the optical elements. The optical switch performs high extinction ratio switching of the optical signal by preventing unwanted optical energy from entering an output port by using an absorptive or reflective optical element or by directing the unwanted optical energy along a different optical path.




r

Color filter substrate and method of manufacturing the same

Embodiments of the disclosed technology relate to a color filter substrate and a method of manufacturing the same. The color filter substrate comprises a base substrate having a black matrix pattern thereon, the black matrix pattern having a plurality of openings; and a plurality of color filter layers in different colors, disposed on the base substrate and located at the openings of the black matrix pattern, the color filter layers being glass layers in different colors.




r

Pixel electrode panel, a liquid crystal display panel assembly and methods for manufacturing the same

A liquid crystal display panel, including: a pixel electrode formed on a first substrate; an alignment layer formed on the pixel electrode, wherein the alignment layer includes an alignment layer material and aligns first liquid crystal molecules in a direction substantially perpendicular to the pixel electrode; and a photo hardening layer formed on the alignment layer, wherein the photo hardening layer includes a photo hardening layer material and aligns second liquid crystal molecules to be tilted with respect to the pixel electrode, wherein the alignment layer material and the photo hardening layer material have different polarities from each other.




r

Liquid crystal display device

It is an object of the present invention to provide a liquid crystal display device which has a wide viewing angle and less color-shift depending on an angle at which a display screen is seen and can display an image favorably recognized both outdoors in sunlight and dark indoors (or outdoors at night). The liquid crystal display device includes a first portion where display is performed by transmission of light and a second portion where display is performed by reflection of light. Further, a liquid crystal layer includes a liquid crystal molecule which rotates parallel to an electrode plane when a potential difference is generated between two electrodes of a liquid crystal element provided below the liquid crystal layer.




r

Liquid crystal display and method of manufacturing liquid crystal display

A liquid crystal display capable of realizing a high transmittance while maintaining favorable voltage response characteristics, and a method of manufacturing the same are provided. The liquid crystal display includes: a liquid crystal layer; a first substrate and a second substrate arranged to face each other with the liquid crystal layer in between; a plurality of pixel electrodes provided on a liquid crystal layer side of the first substrate; and an opposite electrode provided on the second substrate to face the plurality of pixel electrodes. One or both of a face on the liquid crystal layer side of the pixel electrode, and a face on the liquid crystal layer side of the opposite electrode includes a concavo-convex structure.




r

Backlight module and liquid crystal display device using same

The present invention provides a backlight module and a liquid crystal display device using the backlight module. The backlight module includes: a backplane (2), a light guide plate (4) arranged in the backplane (2), a backlight source (6) arranged in the backplane (2), an optic film assembly (8) arranged above the light guide plate (4), and a reflection plate (9) arranged between the backplane (2) and the light guide plate (4). The backlight source (6) includes a PCB (62) and a plurality of LED lights (64) mounted on and electrically connected to the PCB (62). The backplane (2) includes a bottom plate (22) and a plurality of side plates (24) perpendicularly connected to the bottom plate (22). The bottom plate (22) of the backplane (2) includes a snap-engagement structure (220) formed thereon. The PCB (62) is snap-fit into and retained by the snap-engagement structure (220). The reflection plate (9) is directly positioned on and supported by the PCB (62).




r

Liquid crystal display device, semiconductor device, and electronic appliance

The liquid crystal display device includes an island-shaped first semiconductor film 102 which is formed over a base insulating film 101 and in which a source 102d, a channel forming region 102a, and a drain 102b are formed; a first electrode 102c which is formed of a material same as the first semiconductor film 102 to be the source 102d or the drain 102b and formed over the base insulating film 101; a second electrode 108 which is formed over the first electrode 102c and includes a first opening pattern 112; and a liquid crystal 110 which is provided over the second electrode 108.




r

Liquid crystal display device, semiconductor device, and electronic appliance

The liquid crystal display device includes an island-shaped first semiconductor film 102 which is formed over a base insulating film 101 and in which a source 102d, a channel forming region 102a, and a drain 102b are formed; a first electrode 102c which is formed of a material same as the first semiconductor film 102 to be the source 102d or the drain 102b and formed over the base insulating film 101; a second electrode 108 which is formed over the first electrode 102c and includes a first opening pattern 112; and a liquid crystal 110 which is provided over the second electrode 108.




r

Multi-twist retarders for broadband polarization transformation and related fabrication methods

An optical element includes at least two stacked birefringent layers having respective local optical axes that are rotated by respective twist angles over respective thicknesses of the at least two layers, and are aligned along respective interfaces between the at least two layers. The respective twist angles and/or the respective thicknesses are different. The at least two stacked birefringent layers may be liquid crystal polymer optical retarder layers. Related devices and fabrication methods are also discussed.




r

Liquid crystal display device

It is an object of the present invention to apply a sufficient electrical field to a liquid crystal material in a horizontal electrical field liquid crystal display device typified by an FFS type. In a horizontal electrical field liquid crystal display, an electrical field is applied to a liquid crystal material right above a common electrode and a pixel electrode using plural pairs of electrodes rather than one pair of electrodes.




r

Liquid crystal display device

A liquid crystal display device is provided, which includes a thin film transistor including an oxide semiconductor layer, a first electrode layer, a second electrode layer having an opening, a light-transmitting chromatic-color resin layer between the thin film transistor and the second electrode layer, and a liquid crystal layer. One of the first electrode layer and the second electrode layer is a pixel electrode layer which is electrically connected to the thin film transistor, and the other of the first electrode layer and the second electrode layer is a common electrode layer. The light-transmitting chromatic-color resin layer is overlapped with the pixel electrode layer and the oxide semiconductor layer of the thin film transistor.




r

Multilayered cell culture apparatus

A multilayered cell culture apparatus for the culturing of cells is disclosed. The cell culture apparatus is defined as an integral structure having a plurality of cell culture chambers in combination with tracheal space(s). The body of the apparatus has imparted therein gas permeable membranes in combination with tracheal spaces that will allow the free flow of gases between the cell culture chambers and the external environment. The flask body also includes an aperture that will allow access to the cell growth chambers by means of a needle or cannula. The size of the apparatus, and location of an optional neck and cap section, allows for its manipulation by standard automated assay equipment, further making the apparatus ideal for high throughput applications.




r

Constant-temperature equipment

Constant-temperature equipment wherein mechanical and electrical structures are eliminated from the inside of a temperature-controlled chamber (15) by using a non-contact magnetic arrangement as a drive transmission for a sample table (5) and a sample table drive mechanism (6), thus reducing failure and enhancing maintainability. In addition, a conveyance mechanism (11) is provided with a pass box adjacent which sliding shielding plates (9) are stacked vertically, and the shielding plates (9) are linked with the conveyance mechanism (11) by an engaging mechanism provided in the conveyance mechanism (11) to allow the plates to be opened and closed by a travel mechanism (12), thus simplifying the structure and minimizing change in atmosphere during conveying. The sample table drive mechanism (6) and the conveyance mechanism (11) can be attached removably to the temperature-controlled chamber (15) to permit sterilization at high temperature.




r

Constant-temperature equipment

Provided is constant-temperature equipment wherein maintenance is facilitated with the least failure, and highly reliable culturing and testing can be carried out. Mechanical and electrical structures are eliminated from the inside of a temperature-controlled chamber (15) by using a non-contact magnetic arrangement as a drive transmission for a sample table (5) and a sample table drive (6), thus reducing failure and enhancing maintainability. In addition, a conveyor (11) is provided with a pass box to minimize change in atmosphere during conveying. The sample table drive (6) and the conveyor (11) can be attached removably to the temperature-controlled chamber (15) to permit sterilization at high temperature.




r

Plasmid vector, method for detecting gene promoter activity, and assay kit

According to one embodiment, a first gene encodes a reporter protein. The first gene is disposed at the downstream of the gene promoter. A second gene is disposed at the downstream of the gene promoter and encodes a replication origin-binding protein. An internal ribosome entry site is disposed between the first gene and the second gene. The transcription termination signal sequence encodes a signal for terminating the transcription of the first gene and the second gene. A replication origin sequence is recognized by the replication origin-binding protein.




r

Anti-human α9 integrin antibody and use thereof

The present invention relates to an anti-human α9 integrin antibody. More particularly, the present invention relates to: a monoclonal antibody, a chimeric antibody, a humanized antibody and a human antibody that specifically recognize human α9 integrin; a hybridoma cell that produces the monoclonal antibody; a method for producing the monoclonal antibody; a method for producing the hybridoma cell; a therapeutic agent comprising the anti-human α9 integrin antibody; a diagnostic agent comprising the human α9 integrin antibody; and a method for screening for a compound that inhibits the activity of human α9 integrin.




r

Production of viral vaccines in suspension on avian embryonic derived stem cell lines

The present invention relates to the development and manufacturing of viral vaccines. In particular, the invention relates to the field of industrial production of viral vectors and vaccines, more in particular to the use of avian embryonic stem cells, preferably the EBx® cell line derived from chicken embryonic stem cells, for the production of viral vectors and viruses. The invention is particularly useful for the industrial production of viral vaccines to prevent viral infection of humans and animals.