i

Contactless coupling and method for use with an electrical appliance

A coupling and various methods of use of the coupling. In one embodiment a coupling is provided for use with an appliance operated by a power supply, which coupling allows mounting/dismounting of the appliance without electrical isolation from the supply, said coupling comprising: a) a mounting member having a first encapsulated transformer element and suitable controls connectable to the power supply, said member being suitable for fixing to a structure; and b) a holder member engageable with said mounting member and suitable for holding or for connecting thereto an appliance, said holder member including a second encapsulated transformer element able to conduct power to an appliance.




i

Removable surface-wave networks for in-situ material health monitoring

A system for measuring properties of a surface under test with surface waves includes a surface wave network including a dielectric substrate, a reactive grid of a plurality of metallic patches on a first surface of the dielectric substrate, a plurality of electronic nodes on the first surface of the dielectric substrate, and a ground plane on a second surface of the dielectric substrate permeable to RF fields of the surface waves, and a controller configured for causing a respective one of the electronic nodes to transmit at least one surface wave and configured for collecting data for signals received by at least one other of the plurality of electronic nodes.




i

Thermally activated magnetic and resistive aging

Examples of the present invention include apparatus and methods for monitoring aging of an item. A solid-state structure is located within, adjacent to, or otherwise proximate the item, the solid-state structure including nanostructures. The electrical resistance and/or magnetization of the solid-state structure is determined to determine the degree of aging of the item. In representative examples, the solid-state structure includes nanostructures of a metal, such as a ferromagnetic metal, within a non-magnetic matrix, such as a semimetal, semiconductor, or insulator.




i

Identifying the presence of an individual near medical radiation emitting equipment

Systems and methods are disclosed herein to a radiation safety system comprising radiation emitting medical equipment; a radiation safety system controller connected to the radiation emitting medical equipment through a first communication means configured to determine a number of people within a radiation room housing the radiation emitting medical equipment and prevent the radiation emitting medical equipment from performing radiation emitting functions if the radiation safety system controller determines that more people than a maximum allowed number of people are presently in the radiation room; and a scanner connected to the radiation safety controller through a second communication means configured to detect people in the radiation room and communicate to the radiation safety system controller that a person has been detected.




i

Capturing and processing of high dynamic range images using camera arrays

A camera array, an imaging device and/or a method for capturing image that employ a plurality of imagers fabricated on a substrate is provided. Each imager includes a plurality of pixels. The plurality of imagers include a first imager having a first imaging characteristics and a second imager having a second imaging characteristics. The images generated by the plurality of imagers are processed to obtain an enhanced image compared to images captured by the imagers. Each imager may be associated with an optical element fabricated using a wafer level optics (WLO) technology.




i

External cavity laser source

A tunable laser source that includes multiple gain elements and uses a spatial light modulator in an external cavity to produce spectrally tunable output is claimed. Several designs of the external cavity are described, targeting different performance characteristics and different manufacturing costs for the device. Compared to existing devices, the tunable laser source produces high output power, wide tuning range, fast tuning rate, and high spectral resolution.




i

Multi-sector computed tomography image acquisition

An approach is disclosed for acquiring multi-sector computed tomography scan data. The approach includes activating an X-ray source during heartbeats of a patient to acquire projection data over a limited angular range for each heartbeat. The projection data acquired over the different is combined. An image having good temporal resolution is reconstructed using the combined projection data.




i

Device for checking pharmaceutical products, in particular hard gelatin capsules

The invention relates to a device (10; 10a;10b; 10c; 50) for checking pharmaceutical products (1), in particular hard gelatin capsules, by means of at least one radiation source (30; 60) preferably embodied as an X-ray source, and a conveying device which conveys the products (1) in a clocked manner in a radiation area (31) of the radiation source (30; 60). The radiation emitted by the radiation source (30; 60) penetrating the products (1) preferably perpendicular to the longitudinal axes thereof (2), and the radiation is captured on the side of the products (1) opposite the radiation source (30) by means of at least one sensor element (35) which is coupled to an evaluation device (36). The invention is characterized in that the conveyor device is embodied as a conveyor wheel (15; 15a; 51) which can rotate in a stepped manner about an axis (12; 52), and the products (1) are arranged, while being conveyed in the radiation area (31), in receiving areas (28; 37; 56) of the conveyor wheel (15; 5a; 51).




i

Acquisition method and apparatus for mass spectrometer data

A method and apparatus for acquiring data from a mass spectrometer and its transmission to a computer system including a data acquisition engine, a network interface and a throughput optimization module which includes a ring buffer and a protocol stack. A compression engine may be provided between the acquisition engine and the ring buffer. The ring buffer is configured as a number of segments containing portions of memory matching the size of data words from the acquisition engine. When a segment is full of data corresponding to the words, or is partially full and has received data containing an end of scan marker, the number of words in the segment is written into a header word in the segment and the data in that segment are moved to the protocol stack. Subsequent data is received by the next segment in the buffer.




i

System and method of ion neutralization with multiple-zoned plasma flood gun

An apparatus comprises a plasma flood gun for neutralizing a positive charge buildup on a semiconductor wafer during a process of ion implantation using an ion beam. The plasma flood gun comprises more than two arc chambers, wherein each arc chamber is configured to generate and release electrons into the ion beam in a respective zone adjacent to the semiconductor wafer.




i

Airflow-organization testing method for a clean room and system using the same method

An airflow-organization testing method for a clean room and a system using the same method are disclosed. The airflow-organization testing method for a clean room uses a thermal imaging device to detect a sample gas-flow formed by a sample gas in the clean room, and the sample gas has a temperature difference from ambient air. The airflow-organization testing system for a clean room includes a sample gas supplier and a thermal imaging device, and the thermal imaging device can continuously detect a spatial position of the sample gas and display it on a display, thereby improving detection precision and expanding detection range.




i

Detection apparatus configured to detect soft X-ray radiation and detection system configured to detect soft X-ray radiation

A detection apparatus configured to detect soft X-ray radiation, includes a conversion unit and a circuit unit disposed on a semiconductor substrate. The conversion unit has a plurality of conversion elements that convert the soft X-ray radiation incident on the semiconductor substrate into electric charge. The circuit unit has an amplifier transistor that amplifies and outputs a signal supplied from the conversion unit. A shielding unit is disposed above the circuit unit. The shielding unit blocks the soft X-ray radiation incident on the circuit unit. Preferably, the soft X-ray shielding coefficient of a material that forms the shielding unit is higher than the soft X-ray shielding coefficient of each of aluminum and copper. Alternatively, a material that forms the shielding unit has an atomic number higher than or equal to 70.




i

A/D converter and solid-state imaging apparatus with offset voltage correction

Provided is an A/D converter including an input terminal, a reference signal line for supplying a reference signal which changes temporally, a comparator, a correction capacitor connected to an inverting input terminal of the comparator; and an output circuit which outputs digital data corresponding to an analog signal input to the input terminal. In a first state in which a total voltage of a first analog signal and an offset voltage of the comparator is held in the correction capacitor, a second analog signal input to the input terminal is supplied to a non-inverting input terminal of the comparator, and the second analog signal or the total voltage is changed using the reference signal, thereby outputting, from the output circuit, digital data.




i

High pressure mass spectrometry systems and methods

Mass spectrometers and methods for measuring information about samples using mass spectrometry are disclosed.




i

Photoelectric conversion device comprising photoelectric conversion element

It is an object to provide a photoelectric conversion device whose power consumption and a mounting area are reduced and yield is improved and further to provide a photoelectric conversion device whose number of manufacturing processes and manufacturing cost are reduced. A photoelectric conversion device includes a photoelectric conversion element for outputting photocurrent corresponding to illuminance, and a resistor changing resistance corresponding to illuminance. In the photoelectric conversion device, one terminal of the photoelectric conversion element and one terminal of the resistor are electrically connected in series; the other terminal of the photoelectric conversion element is connected to a high power supply potential; the other terminal of the resistor is connected to a low power supply potential; and a light intensity adjusting unit is provided on a light reception surface side of the photoelectric conversion element or the resistor to adjust illuminance.




i

Image sensors having variable voltage-current characteristics and methods of operating the same

Image sensors and methods of operating the same. An image sensor includes a pixel array including a plurality of pixels. Each of the plurality of pixels includes a photo sensor, the voltage-current characteristics of which vary according to energy of incident light, and that generates a sense current determined by the energy of the incident light; a reset unit that is activated to generate a reference current, according to a reset signal for resetting at least one of the plurality of pixels; and a conversion unit that converts the sense current and the reference current into a sense voltage and a reference voltage, respectively.




i

Method of investigating and correcting aberrations in a charged-particle lens system

A system of investigating aberrations in a charged particle lens system, wherein a charged particle beam is directed from a multitude of directions through a pivot point on a sample stage. An image figure is recorded for each of multiple focus settings at each beam direction setting, creating a set of registered images. This set of images is compared to reference images to derive aberrations present in the lens system without the use of an amorphous sample present.




i

Solid state imaging device, portable information terminal device and method for manufacturing solid state imaging device

According to one embodiment, a solid state imaging device includes a sensor substrate having a plurality of pixels formed on an upper face, a microlens array substrate having a plurality of microlenses formed and a connection post with one end bonded to a region between the microlenses on the microlens array substrate and with the other end bonded to the upper face.




i

Image capture based on scanning resolution setting compared to determined scanning resolution relative to target distance in barcode reading

An arrangement for, and a method of, electro-optically reading a target by image capture, employ an aiming assembly for projecting an aiming light pattern on the target that is located within a range of working distances relative to a housing, an imaging assembly for capturing an image of the target and of the aiming light pattern over a field of view, and a controller for determining a distance of the target relative to the housing based on a position of the aiming light pattern in the captured image, for determining a scanning resolution based on the determined distance, for comparing the determined scanning resolution with a scanning resolution setting, and for processing the captured image based on the comparison.




i

Magnetic shims to alter magnetic fields

An example particle accelerator includes a coil to provide a magnetic field to a cavity; a cryostat comprising a chamber for holding the coil, where the coil is arranged in the chamber to define an interior region of the coil and an exterior region of the coil; magnetic structures adjacent to the cryostat, where the magnetic structures have one or more slots at least part-way therethrough; and one or more magnetic shims in one or more corresponding slots. The one or more magnetic shims are movable to adjust a position of the coil by changing a magnetic field produced by the magnetic structures.




i

Inspection method and inspection apparatus of winding state of sheet member

Laser light is emitted to a sheet member wound on a forming drum in a range which includes the entire width of the sheet member and distance data on a distance to a reflecting surface is obtained, using a two-dimensional laser sensor which has a detection range along a drum circumferential direction, while moving either the two-dimensional laser sensor or the forming drum in a drum width direction. Further, the positions of width-directional opposite end sections of the sheet member are calculated on the basis of the obtained distance data.




i

Monolithic optical coupling module based on total internal reflection surfaces

In one aspect, an optical device comprises a monolithic optical module which includes a first total internal reflection (TIR) surface, a second TIR surface adjacent the first TIR surface, and a first optical port aligned with the first internal optical beam dividing interface. An interface between the first TIR surface and the second TIR surface forms a first internal optical beam dividing interface. An exterior surface of the first TIR surface and an exterior surface of the second TIR surface form a generally V-shaped notch on the monolithic optical module. A first optical beam entering the monolithic optical module through the first optical port and incident on the first internal optical beam dividing interface is partially reflected by the first TIR surface to travel in a first direction as a second optical beam and partially reflected by the second TIR surface to travel in a second direction as a third optical beam. The second direction is generally opposite to the first direction.




i

Flameless combustion burner

A burner has a fuel/oxidant nozzles and a pair of dynamical lances spaced on either side thereof that inject a jet of fuel and primary oxidant along a fuel injection axis, and jets of secondary oxidant, respectively. Jets of actuating fluid impinge against the jets of secondary oxidant to fluidically angle the jets of secondary oxidant away from the fuel injection axis. The action of the angling away together with staging of the oxidant between primary and secondary oxidant injections allows achievement of distributed combustion conditions.




i

Gasifier having a slag breaker and method of operating the same

A gasifier comprises an internal chamber, a slag collection region, a slag passageway, a slag breaker, and an actuator. The internal chamber comprises a main combustion region that is configured and adapted to gasify fuel. The slag collection region is located beneath the main combustion region. The slag passageway operatively connects the main combustion region to the slag collection region. The slag breaker comprises a face that is movable relative to the internal chamber. The face is configured and adapted to move within the slag passageway in a manner such that the face contacts and mechanically breaks solidified slag into chunks of solidified slag that then fall into the slag collection region. The actuator is connected to the slag breaker and is configured and adapted to move the face of the slag breaker.




i

Low sulfur coal additive for improved furnace operation

The present invention is directed to additives for coal-fired furnaces, particularly furnaces using a layer of slag to capture coal particles for combustion. The additive(s) include iron, mineralizer(s), handling aid(s), flow aid(s), and/or abrasive material(s). The iron and mineralizers can lower the melting temperature of ash in low-iron, high alkali coals, leading to improved furnace performance.




i

Reducing mercury emissions from the burning of coal

Sorbent components containing halogen, calcium, alumina, and silica are used in combination during coal combustion to produce environmental benefits. Sorbents such as calcium bromide are added to the coal ahead of combustion and other components are added into the flame or downstream of the flame, preferably at minimum temperatures to assure complete formation of the refractory structures that result in various advantages of the methods. When used together, the components: reduce emissions of elemental and oxidized mercury; increase the level of Hg, As, Pb, and/or CI in the coal ash; decrease the levels of leachable heavy metals (such as Hg) in the ash, preferably to levels below the detectable limits; and make a highly cementitious ash product.




i

Induced-draft injection systems and methods

An exemplary embodiment of the present invention provides an induced-draft injection system comprising an injection line in fluid communication with a duct under negative pressure, a particulate storage containing particulate, and a feeder receiving the particulate from the particulate storage and feeding the particulate to the injection line. The negative pressure in the duct supports the transportation of at least a portion of the particulate through the injection line and into the duct. Inside the duct, a binding portion of the particulate is bound to a portion of mercury in a flue gas passing through the duct, thus enabling a portion of the mercury to be filtered out of the flue gas.




i

Steam generation system

A steam generation system delivers heats water and carbon dioxide at high temperatures in the presence of one or more plasma arc torches and converts the materials into hydrogen and carbon monoxide. The converted gas is delivered to a heat recovery steam generator (“HRSG”) to produce steam, which may be used to power a steam turbine. Depending on the amount of steam and/or power desired, the system may use a control system to vary the flow, temperature and pressure of the gas delivered to the HRSG. The control system may do this by bringing additional torches on-line or off-line in the processing chamber, by adding unheated gas directly from a supply source, shunting the gas from the HRSG, and varying the flow of water delivered to the HRSG.




i

Apparatus and methods for large particle ash separation from flue gas using screens having semi-elliptical cylinder surfaces

Apparatus for separating ash particles from a flue gas. The apparatus includes a screen that has a plurality of semi-elliptical cylinder surfaces. The semi-elliptical cylinder surfaces having holes through which said flue gas flows and through which the ash particles will not pass. The screen has a single layer for performing the separation in a manner such that the ash particles fall away from the screen and collect outside of the screen. A method of reducing velocity of a flue gas passing through screening apparatus for separating flue gas from ash particles. The method includes replacing a first screen of the screening apparatus with a second screen that has a plurality of semi-elliptical cylinder surfaces.




i

Boiler grate and a boiler

A boiler grate including air channels for supplying primary air to a furnace of a boiler. At least one channel, which is open on top, is arranged to collect ash and material from the furnace. At least one removal element is arranged in the channel and to mechanically move ash and material along the channel. A boiler includes a grate, a furnace which is limited by the walls of the furnace and the grate, and an ash chute, which is arranged to remove ash and material from the furnace. The ash removal elements is arranged to move ash and material towards the air chute.




i

Incineration plant and method for controlling an incineration plant

The invention relates to an incineration plant with a furnace, a device for feeding back incineration residues into the furnace, a device for measuring at least one parameter of the incineration, and devices for controlling the incineration. Moreover, the invention relates to a method for controlling an incineration plant.




i

Pipe connecting structure of water heater

A pipe connecting structure of a water heater. Individual parts in the water heater are integrally coupled with a pipe body, which is injection-molded, provides paths of tap water and hot water, reduces the number of pipes connecting the individual parts, and simplifies the connection structure of the pipes. The pipe connecting structure of the water heater includes a tap water inlet pipe connected from a tap water inlet to a heat exchanger; a hot water supply pipe connected from the heat exchanger to a hot water outlet; a flow sensor for measuring the flow rate of the tap water introduced via the tap water inlet; and a flow control valve for controlling the flow rate of the hot water discharged via the hot water outlet. The pipe body connects and is integral with the tap water inlet, the tap water inlet pipe, the hot water supply pipe, and the hot water outlet.




i

Wall lining of industrial ovens

A wall lining of industrial ovens for protecting from corrosion, in particular, a heat-resistant wall made of concrete, steel, sheet metal, or the like. The lining of the wall is made of at least two layers, wherein a layer is pressurized as a blocking layer.




i

Methods and apparatus for the improved treatment of carbonaceous fuel and/or feedstocks

The inventive technology includes methods and apparatus for the generation and application of segregated catalytic additives for the pre-combustion treatment of carbonaceous fuel and/or feedstocks. The application of such segregated additives results in the reduction of environmentally harmful emissions during combustion as well as gasification processes. Specifically, pre-combustion treatment of carbonaceous materials with the inventive additives results in the reduction of NOx and/or mercury emissions by least 20% and 40% respectively.




i

Pulverized coal burner and pulverized coal boiler having it

A pulverized coal burner and a pulverized coal boiler. The coal burner comprises a primary air cylinder (111) and a pulverized coal concentration device (112). The coal concentration device (112) makes the concentration of the coal flow gradually decrease from inside to outside along the radial direction, with respect to an axis (100) of the primary air cylinder (111). The coal burner further comprises a coal separating cylinder (113) and a coal guiding cylinder (114) located downstream of the device (112), the rear end of the cylinder (113) is connected with the front end of the coal guiding cylinder (114). The outlet of the cylinder (114) has a conical expansion portion (1141). The coal burner further comprises a divergent nozzle (115) connected with the rear end of the primary air cylinder (111) and whose cross-sectional area gradually increases along the flow direction of the coal flow.




i

Method of constructing a stationary coal nozzle

Disclosed herein is an apparatus and method of constructing a stationary wear-resistant stationary nozzle 200 and/or nozzle liner 230 for solid fueled furnaces. A transition section 210 is constructed from several flat pieces 211-218 several that may have identical starting shapes. This reduces manufacturing complexity and costs. All pieces 211-218 have a high-wear weld overlay on their inner surface 316, 416. Corner pieces 215-218 are folded into a corner shape at an outlet edge 412 and rolled into a curved shape at an inlet edge 411. Horizontal 211, 212 and vertical pieces 213, 214 are only rolled at an inlet edge 311. The pieces have seam tab 240 along longitudinal edges that are welded together to construct a transition section 210. The transition section 210 may be used as a liner to reduce wear in an existing stationary nozzle or may be constructed to be connected to an inlet piece 220 to form a strong, wear-resistant coal nozzle 200.




i

Method of processing waste material

An aspect of the present invention is a method of processing a waste material that contains mercury or a mercury compound, and chlorine or a mercury chloride, the method including a step of adding a chlorine scavenger to the waste material, and stowing the waste material in a treatment vessel; and a step of subjecting the waste material to a blasting treatment by fitting an explosive to the treatment vessel and detonating the explosive inside a pressure-proof container.




i

Apparatus for turbulent combustion of fly ash

An apparatus for processing fly ash comprising a heated refractory-lined vessel having a series of spaced angled rows of swirl-inducing nozzles which cause cyclonic and/or turbulent air flow of the fly ash when introduced in the vessel, thus increasing the residence time of airborne particles. Also disclosed is a method of fly ash beneficiation using the apparatus.




i

System and method for cogeneration from mixed oil and inert solids, furnace and fuel nozzle for the same

This invention provides a system and method for efficiently and completely combusting oil in mixture with particulate solids. A furnace (kiln) having a feed nozzle with a lead screw drives the mixture from a feed hopper. This nozzle includes forced-air jets/ports at its tip providing makeup air and allowing atomization of the mixture. The nozzle thereby directs the mixture into a rotating combustion chamber that is tilted downwardly from the front toward a solid waste outlet port at the rear. Uncombusted fuel and air backflow to an upper, secondary chamber near the primary chamber front, and are completely combusted at a high temperature. Gasses exit a flue that can include a heat exchanger. This heat exchanger can be operatively connected to a heating device or other mechanism that converts the heat into usable energy. The nozzle can include a cone with axially tilted air ports about its perimeter.




i

Dust coal boiler, dust coal combustion method, dust coal fuel thermal power generation system, and waste gas purification system for dust coal boiler

A pulverized coal thermal power generation system that significantly reduces the amount of NOx emissions from a boiler and does not require a denitration unit is provided. When a denitration unit is not used, performance to remove mercury from a boiler waste gas is reduced. A waste gas purification system for a pulverized coal boiler, that compensates for this is provided. A pulverized coal boiler having a furnace for burning pulverized coal, burners for supplying pulverized coal and air used for combustion into the furnace so as to burn the pulverized coal in an insufficient air state and after-air ports provided on the downstream side of the burners for supplying air used for perfect combustion characterized in that, an air ratio in the furnace is 1.05 to 1.14, and the residence time of a combustion gas from the burner disposed on the uppermost stage to a main after-air port is 1.1 to 3.3 seconds. Preferably, water is mixed in advance with the air supplied from the after-air port so as to increase the specific heat. Furthermore, pulverized coal carrying air in the burner and a part of air used for combustion are mixed together in advance before they are jetted into the furnace.A waste gas purification system having a pulverized coal boiler, an air heater disposed downstream of the pulverized coal boiler for exchanging heat with a boiler waste gas to heat air used for combustion in the pulverized coal boiler, a dust removing unit, and a desulfurizing unit characterized in that, at least one of a halogen gas supply unit, a catalyst unit for oxidizing a mercury gas, and a mercury adsorbent blowing device is provided so as to oxidize mercury included in the waste gas.




i

Slag remover for discharging combustion residues of an incineration plant

A slag remover for discharging combustion residues of an incineration plant comprises a trough, which has a trough housing having two side walls, which define the trough width, and having a trough bottom, and which is intended to collect the combustion residues evacuated from a combustion chamber of the incineration plant. The trough further comprises at least two push rams for pushing the combustion residues out of the trough, and a shaft rotatably mounted in two shaft bearings and on which at least one drive lever cooperating with a cylinder-piston unit and at least two output levers connected to respectively one of the push rams are disposed in a rotationally secure manner. The cylinder-piston unit is here designed such that the push rams move back and forth between a retracted position and an extended position. The drive lever is disposed between two output levers.




i

Combustion controller

The combustion controller controls the fuel and air that are supplied to the combustion furnace for burning substances, and addresses the aforementioned object by including: fuel supply unit for supplying fuel and air into the combustion furnace; air supply unit for supplying air into the combustion furnace, the air supply unit being disposed downstream of the fuel supply unit in the direction of flow of combustion air; concentration measuring unit for measuring the concentration of hydrogen sulfide of the combustion air by passing a measurement beam of light through the combustion air at a measurement position downstream of the fuel supply unit in the direction of flow of the combustion air; and control unit for controlling the amount of air supplied from the fuel supply unit based on a measurement result provided by the concentration measuring unit.




i

Stir alarm

A stir alarm device for monitoring a forced air in-bin grain stirring system and alerting an individual when the stirring system malfunctions. The stir alarm device may include a movement device which is movably secured to the stirring system, such that movement of the stirring system causes movement of the movement device. The stir alarm device may further include a detection mechanism for monitoring the movement of the movement device. The stir alarm may also include a signaling device operably attached to the detection mechanism, the signaling device for signaling a malfunction when an amount of movement detected by the movement detection mechanism is below a threshold for a predetermined period of time and may include methods or components to control the operation of the stir machine and/or drying system.




i

Grain-drying facilities

The present invention provides grain-drying facilities which can effectively use the heat energy of a biomass combustion hot-air that has been generated in a biomass combustion furnace. The grain-drying facilities adopt technical means of providing the grain-drying facilities 1 which include: a biomass combustion furnace 3 provided with a heat exchanger 24 for generating hot air on the basis of a combustion heat of a biomass fuel and an outside air which has been taken in from the outside; and a circulation type grain-drying apparatus 2 provided with a grain-drying portion 7 to which the hot air that has been generated in the biomass combustion furnace 3 is supplied through a pipe 15 for supplying the hot air, wherein the above described circulation type grain-drying apparatus 2 has a grain-heating portion 6 which has a plurality of heating pipes 6a for heating the grains in the above described grain storing/circulating tank 5, and also has an air-exhaust fan 14 that is communicated with an exhaust side opening 6c that is located in one end side of each of the heating pipes 6a, and has a pipe 11 for supplying an exhaust hot-air, which communicates the exhaust hot-air sent from the above described biomass combustion furnace 3 with a supply side opening 6b that is located in the other end side of the heating pipe 6a.




i

Melters for glass forming apparatuses

Melters for glass forming apparatuses and glass forming apparatuses comprising the same are disclosed. According to one embodiment, a melter for melting glass batch materials includes a base portion and a rigid exoskeleton rigidly attached to the base portion and comprising a plurality of upright members interconnected with a plurality of cross members defining an exoskeleton interior volume. Connection nodes formed at intersections of the plurality of cross members with upper ends of the plurality of upright members are constrained from movement relative to the base portion in a longitudinal direction, a transverse direction, and a vertical direction. A tank assembly is positioned on the base portion in the exoskeleton interior volume and coupled to the rigid exoskeleton. In some embodiments, the melter has a dynamic resistance greater than 0.3.




i

Adapting of an oxy-combustion plant to energy availability and to the amount of CO2 to be trapped

A carbon fuel combustion process, employing an air gas separation unit, a combustion unit operating either with air or with an oxidizer leaner in nitrogen than air, coming from the air gas separation unit, and a unit for compressing and/or purifying the CO2 coming from the combustion flue gas, wherein the power consumed by the air gas separation unit and/or the flow of oxygen produced by the air gas separation unit and/or the capture of the CO2 coming from the combustion flue gas are variable over time is presented.




i

Metal basket fitting inside kamado grills for removing charcoal

An ash basket can act as a sieve or strainer, allowing a user to lift out the charcoal from a kamado grill, clean out the ash, and place the ash basket back into the grill for future use. The ash basket retains larger pieces of charcoal that can be reused, while allowing the ash to pass through to a bottom plate of the grill. The bottom plate has openings to permit the ash to fall to an ash collection chamber. Without the ash basket, pieces of charcoal can block the openings in the bottom plate, making ash collection difficult. Moreover, with the openings blocked, proper air flow through the openings. Finally, the ash basket creates and additional air space that covers the entire surface of the interior walls by separating the ash from the wall, improving air flow, which is critical to the kamado grill design.




i

Combustion process

A combustion process wherein a comburent, a fuel and the following components are fed: i) component B) sulphur or compounds containing sulphur in an amount to have a molar ration B1/C1≧0.5, wherein B1 is the sum by moles between the total amount of sulphur present in component B)+the total amount of sulphur (component B11)) contained in the fuel, C1 is the sum by moles between the total amount of alkaline and/or alkaline-earth metals contained in the fuel (component C11))+the amount (component C)) of alkaline and/or alkaline-earth metals in the form of salts and/or oxides contained in component B), ii) component A), comprising low-melting salts and/or oxides or their mixtures, having a melting temperature




i

Method and multi-component nozzle for reducing unwanted substances in a flue gas

A method is illustrated and described for reducing unwanted substances by injecting a reactant into a flue gas of a steam generator. In order that the reactant can also be used in larger steam generators and/or combustion chambers, a method is proposed, in which the reactant is injected into the combustion chamber of the steam generator via a reactant opening of a multi-component nozzle, in which an enveloping medium is injected into the combustion chamber through at least one enveloping medium opening arranged outside the reactant opening, and in which the enveloping medium at least partly envelops the reactant in the combustion chamber and in this way at least partly shields the reactant from the flue gas.




i

Apparatus for treating a substance with wave energy from plasma and an electrical Arc

An apparatus for synergistically combining a plasma with a comminution means such as a fluid kinetic energy mill (jet mill), preferably in a single reactor and/or in a single process step is provided by the present invention. Within the apparatus of the invention potential energy is converted into kinetic energy and subsequently into angular momentum by means of wave energy, for comminuting, reacting and separation of feed materials. Apparatuss of use of the apparatus in the practice of various processes are also provided by the present invention.