ev

Concentricity test device

A test device for testing concentricity between first and second holes in parallel plates includes a positioning pole and a test pole. The positioning pole includes a head segment having a tapered positioning portion. The positioning pole axially defines a through hole. The test pole is telescopically received in the through hole of the positioning pole. The test pole includes a test head with a diameter slightly less than a diameter of the second hole. The positioning portion of the positioning pole extends into the first hole with the conic section of the positioning portion abutting against an inner wall bounding the first hole. The test head of the test pole faces the second plate and approaches and confirms the concentricity of the hole in the second plate by sliding the test pole relative to the positioning pole.




ev

Method and device for inspecting a threading of a tubular connection used in the oil industry

A device and method for inspecting a width of thread roots of a tubular component for exploration or working of hydrocarbon wells, the device including two arms each including a first and a second end, the first ends being connected together by a deformable portion allowing an angular displacement between the second ends, the second ends each carrying a contact element and a mechanism determining the angular displacement.




ev

Transparent measuring device with enhanced viewing windows

A tool for measuring, marking, or cutting material, the tool formed of a rigid sheet of transparent material having a plurality of lines formed thereon, and a plurality of windows formed in the lines to enable viewing of material underlying the tool. The windows can be outlined in opaque lines, and alternating windows can be filled with contrasting transparent colors.




ev

Physiological measurement device or wearable device interface simulator and method of use

A physiological measurement device or wearable device simulator includes a frame and a plurality of surfaces distributed within the frame. For each surface, a surface actuator links the surface of the frame. At least one of: i) force or position imparted by the surface on a physiological feature of a subject by the surface actuator; and ii) the force imparted by the physiological feature of the subject on the surface, can be employed to modulate the positions of the surfaces relative to each other independently of the forces imparted by or on those surfaces, thereby measuring the physiological feature of the subject or simulating a wearable device interface.




ev

Handheld forestry device

A rugged hand-held mobile computing device for a forester to collect and use dendrometric data from trees and tree stands is claimed. The device includes a processor which operates in connection with a memory, a user interface, a GPS receiver, a sound sensor capable of emitting an ultra-sonic pulse and a computer readable code embodied on the memory. The device communicates with a transponder by way of the ultra-sonic pulse emitted by the sound sensor. The transponder also emits an ultra-sonic pulse back to device. The device calculates the distance traveled based on the knowledge of the speed of the pulses. The memory, which also includes basic mapping software, uses the data to update a map in real time with the location of the trees and other information collected.




ev

Computing device and method for calibrating star probe of image measuring machine

In a method for calibrating a star probe of an image measuring machine, the star probe includes one or more probe heads. Probe configuration information for the star probe is configured when there is no probe configuration file of the star probe stored in a storage device of the image measuring machine, and one of the probe heads to be calibrated is selected from the star probe. The method calibrates a radius value of the selected probe head, and calibrates the deviation between the center point of the selected probe head and the focus of the camera lens. The method further generates a star probe model of the star probe according to the probe configuration information and the probe calibration information, and displays the star probe model of the star probe on a display device of the image measuring machine.




ev

Oral Cavity Suction Device

A disposable saliva ejector that utilizes a single planar, double leaf shaped plate design that is embossed on their inner faces with a series of arced ribs and folded about its midpoint. A tab and slot arrangement about the center of the plates, joins the two plates. The distal tips are held together by a dovetail arrangement on raised pads at the distal tips of each plate. The distal and proximal tips are also held in operational contact by the suction forces passed through the device. The arced ribs form a series of channels about perimeter of the device. A trough runs along the linear axis of both of the plates to direct any fluid and debris that is sucked into the channels into a connected suction tube. Placement of the saliva ejector within the mouth lies along the interior of the patient's cheek, keeping the oral cavity clear of viewing obstructions. The discharge end connects to a discharge tube, wrapping around the oral commissure then hooking onto the patient's outer cheek. Once properly placed within the patient's mouth the dental assistant is relieved from providing suction during various procedures.




ev

PLANNING AND GUIDING METHOD AND EXCAVATION GUIDING DEVICE FOR CORRECTLY IMPLANTING ARTIFICIAL TOOTH ROOT AT PREDETERMINED SITE

A planning and guiding method and excavation guiding device correctly implant an artificial tooth root at a predetermined site, perform various excavation processes on a cortical bone section and a spongy bone section by stage-based guidance, and guide eccentric excavation of the cortical bone section and concentric excavation of the spongy bone section according to a bone pattern, such that the artificial tooth root thus implanted is not only positioned at a planned ideal site but also manifests appropriate initial stability.




ev

DENTAL PROSTHESES DEVICES AND METHODS

Root canal abutment devices and methods which facilitate the adjustment or removal of an oral appliance, e.g., a crown or bridge, from a reconfigurable abutment assembly are described. The adjustable abutment assembly may be secured within a pulp chamber of a pre-existing tooth. The abutment assembly has a projecting abutment portion with one or more shape memory alloy sleeves or plates or elements extending along the abutment. Each of the sleeves has a length with at least one curved or arcuate portion. Energy may be applied to the elements such that the arcuate portion flattens to allow for the oral appliance to be placed thereupon while removal of the energy allows the elements to reconfigure into its curved configuration thereby locking the oral appliance to the abutment. Removal of the oral appliance may be effected by reapplication of energy to the elements.




ev

MULTIPLE LAYER COATING AND COATING METHOD FOR DENTAL DEVICES AND THE LIKE

A multi-layer coating of alternating titanium nitride (TiN) and titanium carbo nitride (TiCN) layers is applied to at least part of a dental device for use in attaching crowns, overdentures, and the like in a patient's jaw, where the outermost layer is TiCN with a predetermined percentage of carbon to produce a pink color. The pink outermost layer is of sufficient thickness to conceal the color of the underlying layers, and is very hard and resistant to wear and damage in use. At the same time, the outermost TiCN layer is of a color consistent with the gingival anatomy, and is very hard and resistant to wear and damage in use.




ev

DENTAL TOOL AND GUIDANCE DEVICES

The present invention is directed to a system of devices and a method for preparing a tooth to receive a restoration. The system includes a dental instrument for removal of portions of a tooth in the mouth of a patent and an overlay for guiding the dental instrument during the step of tooth removal. The overlay is designed for temporary installation into the mouth of the patient to guide the dental instrument to remove tooth material. The overlay has one or more sets of guide walls, with a predetermined configuration capable of contacting one or more guide projections of the dental instrument, and a receptacle capable of receiving and attaching to the dental instrument.




ev

ORAL TREATMENT DEVICE

An oral treatment device that includes a mouthpiece and an electromagnetic radiation source. In one aspect, the oral treatment device includes a mouthpiece comprising a curved wall having a concave inner surface and a bite platform extending from the concave inner surface of the curved wall to a distal end, the distal end of the bite platform extending continuously in a non-interrupted manner from a first end of the bite platform to a second end of the bite platform; an electromagnetic radiation source configured to emit electromagnetic radiation from the curved wall; and wherein the bite platform comprises a collapsible region such that the mouthpiece is alterable between: (1) a biased state in which the curved wall has a first curvature; and (2) a flexed state in which the curved wall has a second curvature that is different than the first curvature.




ev

ORAL TREATMENT DEVICE

An oral treatment device that emits light onto surfaces of a user's teeth. In one aspect, the oral treatment device includes an intraoral mouthpiece. The mouthpiece comprises a lamp support structure comprising a lamp support surface and is formed of a first material. A flexible lamp is mounted to the lamp support surface so that a light emitting surface of the flexible lamp assumes a concave curvature, thereby forming a lamp assembly. A guard component is overmolded to the lamp assembly. The guard component is formed of an elastomeric material having a hardness that is less than a hardness of the first material. In one embodiment, the oral treatment device may be a teeth whitening device.




ev

ORAL TREATMENT DEVICE

An oral treatment device that emits light onto surfaces of a user's teeth. In one aspect, the oral treatment device includes an intraoral mouthpiece comprising: a lamp support surface; and a lamp. When the lamp is mounted to the lamp support surface, a first contact surface of the lamp contacts a first contact surface of a first electrical contact element of the lamp support surface; and (2) a second contact surface of the lamp contacts a second contact surface of a second electrical contact element of the lamp support surface.




ev

ORAL TREATMENT DEVICE

An oral treatment device that emits light onto surfaces of a user's teeth. In one aspect, the oral treatment device includes an intraoral mouthpiece. The mouthpiece may comprise a lamp support structure comprising a lamp support surface; first and second lamps, each of the first and second lamps comprising a plurality of light emitters that generate light which is emitted from a rear surface of the lamp; each of the first and second lamps mounted to the lamp support surface, thereby forming a lamp assembly, each of the first and second lamps operably coupled to a control circuit having a power source; and a lamp retaining component coupled to the lamp support structure, a lower portion of the first lamp and an upper portion of the second lamp retained between the lamp retaining component and the lamp support surface of the lamp support structure.




ev

ORAL TREATMENT DEVICE

An oral treatment device that emits light onto a user's teeth. The oral treatment device includes an intraoral mouthpiece comprising: a lamp comprising: a flexible sheet body having a front surface and a rear surface; and a plurality of light emitting diodes embedded within the flexible sheet body that generate light which is emitted from the rear surface of the flexible sheet body. The flexible sheet body comprises: a flexible lens plate formed of a biocompatible material. The plurality of light emitting diodes are printed to the front surface of the flexible lens plate, the rear surface of the flexible lens plate forming the rear surface of the flexible sheet body. The rear surface of the flexible sheet body of the lamp having a concave curvature and being exposed so as to form a light emitting surface of the mouthpiece.




ev

ORAL TREATMENT DEVICE

An oral treatment device that emits light onto surfaces of a user's teeth. In one aspect, the oral treatment device includes an intraoral mouthpiece. The mouthpiece comprises: a first light emitting surface configured to emit light onto a user's maxillary teeth, the first light emitting surface having a concave curvature; a second light emitting surface configured to emit light onto a user's mandibular teeth, the second light emitting surface having a concave curvature; the first and second light emitting surface located on opposite sides of a horizontal reference plane; the first light emitting surface inclined so that a first acute angle is formed between with the first light emitting surface and the horizontal reference plane; and the second light emitting surface inclined so that a second acute angle is formed between with the second light emitting surface and the horizontal reference plane.




ev

NOVEL DENTAL SCANNER DEVICE AND SYSTEM AND METHODS OF USE

A three-dimensional (3D) scanner device for generating a three dimensional (3D) surface model of shaped objects, such as dental structures, applicable for use in the field of dentistry, particularly to dental prosthetics manufacturing is described. The scanning device can include a probe head having a particular configuration and utility. Methods and systems relating to the device and components thereof are also disclosed.




ev

Fluid Driving Device, Motor Assembly and Friction Clutch Thereof

A fluid driving device, a motor assembly and a friction clutch thereof are disclosed. The friction clutch includes: a fixing member fixed on a rotary shaft; a connecting member slidable disposed on the rotary shaft, wherein when the rotary shaft starts rotating, an axial distance between the connecting member and the fixing member changes such that a friction force between the fixing member and the connecting member increases until the connecting member rotates synchronously with the fixing member; a loading member slidable disposed on the rotary shaft, the loading member and the connecting member being circumferentially positioned; and a restoring member configured to reduce an amount of change of the axial distance between the fixing member and the connecting member when the rotary shaft stops rotating.




ev

WET DUAL MULTI-PLATE CLUTCH WITH LEVERS OUTSIDE THE WET CHAMBER

A multi-plate dual clutch for coupling a motor vehicle engine to a drive shaft of a motor vehicle transmission and to an auxiliary power take-off output shaft of the motor vehicle. The dual clutch includes a drive clutch for coupling the motor vehicle engine with the drive shaft, and an auxiliary power take-off clutch for coupling the motor vehicle engine with the auxiliary output shaft. The drive clutch and the auxiliary power take-off clutch can each to be operated independently of one another by a separate lever mechanism. The dual clutch includes a wet chamber housing in which the drive clutch and the auxiliary power take-off clutch are accommodated in fluid-tight relationship, while the respective lever mechanisms for the drive clutch and the auxiliary power take-off clutch are located outside the wet chamber housing.




ev

DOUBLE CLUTCH ASSEMBLY AND DEVICE FOR ASSISTING ACTUATOR OF THE SAME

The present disclosure provides a double clutch assembly and a device for assisting an actuator of the double clutch. The device applies an assistance force to the actuator upon an operation of the actuator. In particular, the double clutch assembly includes first and second actuators which engage or disengage first and second clutches, respectively. The device includes: an elastic member to apply an elastic force; a first transfer portion to transfer the elastic force of the elastic member to the first actuator; and a second transfer portion to transfer the elastic force of the elastic member to the second actuator.




ev

A CLUTCH DRIVING DEVICE FOR DECELERATION CLUTCH

A driving device for a deceleration clutch, comprises a on a driving motor shaft. The drive wheel has a supporting surface with a height difference in the axial direction. A head of a shift fork lever controls the clutch sleeve to move up and down. A tail of the shift fork lever is supported on the supporting surface. The tail of the shift fork lever relatively slides on the supporting surface, so that a height of the tail of the shift fork lever changes which drives a height of the head of the shift fork and further drives the clutch sleeve to move up and down. Alternatively, the drive wheel has a supporting slide rail with a height difference in the axial direction, or has cam circumference that is radially gradient, or a bracing rod is eccentrically arranged on an end surface of the drive wheel.




ev

CLUTCH DEVICE FOR MOTORCYCLE

A clutch center includes a pressure receiving part and is accommodated inside a clutch housing. A pressure plate includes a pressure applying part disposed at an interval from the pressure receiving part in an axial direction. A clutch portion is disposed between the pressure receiving part and the pressure applying part, and allows and blocks transmission of a power between the clutch housing and the clutch center. A first cam portion is disposed on one side of the clutch center in the axial direction, and increases an engaging force of the clutch portion when a forward drive force acts on a clutch device. A second cam portion is disposed on the other side of the clutch center in the axial direction, and reduces the engaging force of the clutch portion when a reverse drive force acts on the clutch device.




ev

CLUTCH DEVICE FOR MOTORCYCLE

A clutch center includes a pressure receiving part and is accommodated inside the clutch housing. A pressure plate includes a pressure applying part disposed at an interval from the pressure receiving part in an axial direction. A clutch portion is disposed between the pressure receiving part and the pressure applying part, and allows and blocks transmission of a power between the clutch housing and the pressure plate. A first cam portion is disposed on one side of the pressure plate in the axial direction, and increases an engaging force of the clutch portion when a forward drive force acts on a clutch device. A second cam portion is disposed on the other side of the pressure plate in the axial direction, and reduces the engaging force of the clutch portion when a reverse drive force acts on the clutch device.




ev

FREQUENCY DYNAMIC ABSORBER FOR TORSIONAL VIBRATION DAMPER OF HYDROKINETIC TORQUE COUPLING DEVICE

A torsional vibration damper assembly for a hydrokinetic torque coupling device, comprises a torsional vibration damper, and a dynamic absorber operatively connected to the torsional vibration damper. The torsional vibration damper comprises a driven member rotatable about a rotational axis, a first retainer plate rotatable relative to the driven member coaxially with the rotational axis, and a plurality of damper elastic members interposed between the first retainer plate and the driven member. The damper elastic members elastically couples the first retainer plate to the driven member. The dynamic absorber includes an inertial member. The inertial member is mounted to the torsional vibration damper rotatably relative to the driven member. The inertial member is rotationally guided and centered relative to the rotational axis by the driven member of the torsional vibration damper.




ev

TORSIONAL VIBRATION REDUCTION DEVICE

A torsional vibration reduction device that is provided inside of a fluid power transmitting device that has a driving side member that generates a fluid flow, and a driven side member that is driven by the fluid flow, includes a rolling element configured to move in a reciprocating manner according to a variation in torque; a retaining member that has a rolling chamber configured to house the rolling element in a manner that enables the rolling element to move in a reciprocating manner; and a housing configured to shield the rolling element and the rolling chamber from fluid inside of the fluid power transmitting device. The retaining member is enclosed and fixed inside the housing, and the housing is fixed to the driven side member.




ev

ADJUSTABLE PTO MOUNTING DEVICES AND METHODS

Systems and methods for mounting components to machinery, including machinery with a rotatable shaft, are disclosed. Embodiments include systems and methods for mounting auxiliary devices, such as hydraulic pumps or electric generators, to a power takeoff (PTO). In some embodiments, the mounting system maintains alignment of the auxiliary device with the PTO while allowing hand rotation of the auxiliary device to an appropriate orientation and secures the auxiliary device to the PTO in the selected orientation. Embodiments include a stationary member that connects to a PTO and captures a rotatable member between the stationary member and the PTO. When the appropriate orientation of the auxiliary device is achieved, the rotatable member can be moved toward the auxiliary device to connect to the auxiliary device and to engage the stationary member (and to possibly engage teeth in the stationary member) to lock the orientation of the rotatable member.




ev

CLUTCH DEVICE

A clutch device 1 is provided with a first clutch C1 and a second clutch C2, which disengageably transmit a rotational motion. The first clutch C1 includes a first outer drum 111, first outer plates 111a, a first inner hub 113, and first inner discs 113a. The second clutch C2 includes a second outer drum 121, second outer plates 121a, a second inner hub 123, and second inner discs 123a. The first outer drum 111 and the second outer drum 121 are connected, and the second inner hub 123 is journaled by the first inner hub 113 through the intermediary of a ball bearing 131.




ev

CLUTCH ACTUATION DEVICE

A clutch actuation device includes two plates that can selectively extend and compress relative to one another to selectively engage or disengage a clutch. Each plate includes a plurality of grooves, each groove having a deep end portion, a shallow end portion, and a ramped or inclined surface between the end portions. Each groove on the first plate corresponds with a respective groove on the second plate to define a plurality of pockets. Within each pocket is an elongated member having a pair of curved ends and an elongated shaft therebetween. The curved ends sit in the deep end portions of the grooves. To extend the plates relative to one another, the first plate is rotated relative to the second plate. This causes the curved ends of the elongated members to pivot within the deep end portions, and the elongated shaft extends away from the ramped surface, separating the plates.




ev

DEVICE FOR ACTUATING A CLUTCH-CONTROLLED TRANSFER CASE HAVING A TWO-STAGE INTERMEDIATE GEARING AND CLUTCH-CONTROLLED TRANSFER CASE THAT HAS A TWO-STAGE INTERMEDIATE GEARING AND THAT IS EQUIPPED WITH SAID DEVICE

The invention relates to a device for actuating a clutch-controlled transfer case having a two-stage intermediate gearing and a clutch-controlled transfer case that has a two-stage intermediate gearing and that is equipped with such a device. The device comprises: a rotatably driven selector shaft,a drive for rotating the selector shaft,a clutch cam disk, which can be rotated about a clutch cam disk axis by means of the selector shaft, andat least one scissor lever, wherein: one end (06) of at least one scissor lever is guided in a gate provided on the clutch cam disk,the gate has a curved path for each scissor lever, in which curved path the end of the scissor lever associated with the curved path is guided,the curved path winds around the clutch cam disk axis by at least 360°,the curved path has at least one helical segment having a continuously increasing or decreasing distance from the clutch cam disk axis, along which segment one end of a scissor lever guided therein experiences a continuously increasing or decreasing change in deflection with respect to the clutch cam disk axis during a rotation of the clutch cam disk with increasing angle of rotation, andthe clutch cam disk is disposed in such a way that the clutch cam disk can be rotated with respect to the selector shaft between two stops by an angle-of-rotation range such that, by means of rotation of the selector shaft within the angle-of-rotation range situated between said stops, shifting back and forth between the shifting stages of the intermediate gearing occurs, and, by means of rotation of the selector shaft beyond the angle-of-rotation range, the end of the at least one scissor lever experiences a deflection for actuating the clutch while a selected shifting stage is maintained.




ev

POWER EQUIPMENT DEVICE WITH REMOVABLE ATTACHMENTS

The disclosed technology relate to a device and system that include an outdoor power equipment power unit or cart configured to releasably couple a number of different interchangeable attachments or work implements to a common power unit, where some attachments include and/or require operator presence control, while other attachments do not include and/or require operator presence control. The outdoor power equipment power unit includes a power transfer coupling member operatively coupled to the drive shaft and configured to transfer rotational power to the associated attachment; and an operator presence actuation member operatively coupled to the operator presence control member, the operator presence actuation member configured to rotate in response to user actuation of the operator presence control member.




ev

SHIFTING DEVICE FOR A CLUTCH

A shifting device for a positively engaging clutch having complementary first and second positively engaging coupling elements includes a housing and an actuator rod which is axially movable within the housing by means of an associated rod actuating mechanism. A clutch shift fork for engagement with the first coupling element is mounted on the actuator rod for axial movement of the first coupling element into and out of engagement with the second coupling element in response to axial movement of the actuator rod. The clutch shift fork is mounted on the actuator rod by a threaded connector such that the clutch shift fork is axially movable on the actuator rod. Thus conveniently the axial position of the clutch fork on the shaft may be altered by rotating the shaft relative to the clutch fork for accurate positioning of the clutch fork relative to the coupling element with which it engages.




ev

REVERSE INPUT BLOCKING CLUTCH

In a locking type reverse input blocking clutch, smooth finished surfaces having no directionality are formed, by barrel polishing, on surfaces brought into contact with rollers while rotation is being transmitted from the input side to the output side, i.e. an inner peripheral cylindrical surface of an outer ring and a surface of a lid portion opposed to the rollers. With this arrangement, it is possible to reduce the sliding resistance between the rollers and the outer ring and between the rollers and the lid portion, without the need to reduce the forces of springs for pushing the rollers into narrow portions of wedge-shaped spaces. This in turn makes it possible to reduce the torque necessary to transmit rotation from the input side to the output side, while maintaining high locking performance.




ev

DAMPER DEVICE AND STARTING DEVICE

A damper device has a dynamic damper that includes a mass body and vibration absorption springs that couple the mass body and an intermediate member to each other. The vibration absorption springs are arranged side by side with outer springs in the circumferential direction. The mass body has spring abutment portions that abut against end portions of the vibration absorption springs. The intermediate member has first outer spring abutment portions that abut against end portions of the outer springs and second outer spring abutment portions that abut against end portions of the vibration absorption springs on the radially inner side with respect to the spring abutment portions. The first outer spring abutment portions extend toward the radially outer side with respect to the second outer spring abutment portions.




ev

DRIVE FORCE TRANSFER DEVICE

A drive force transfer device that includes a friction clutch with improved response at the time when the friction clutch is pressed by a hydraulic pressure is provided. A drive force transfer device has: a clutch drum; an inner shaft; a friction clutch that has a plurality of outer clutch plates that are rotatable together with the clutch drum and a plurality of inner clutch plates that are rotatable together with the inner shaft; a piston that receives a hydraulic pressure supplied to a cylinder to press the friction clutch; and a hydraulic circuit that supplies the cylinder with working oil. The hydraulic circuit has a first pump portion that supplies the cylinder with the working oil, and a second pump portion that supplies the cylinder with the working oil at a pressure that is higher than that of the working oil supplied by the first pump portion.




ev

DUAL CLUTCH DEVICE

A dual clutch device includes a first piston applying a first clutch by a hydraulic pressure supplied into a first hydraulic pressure chamber and releasing the first clutch by a first spring, a second piston applying a second clutch by a hydraulic pressure supplied into a second hydraulic pressure chamber and releasing the second clutch by a second spring, a first supply line supplying a hydraulic pressure into the first hydraulic pressure chamber and a second hydraulic pressure canceling chamber, a second supply line supplying a hydraulic pressure into the second hydraulic pressure chamber and a first hydraulic pressure canceling chamber, a first valve allowing or cutting the supply of hydraulic pressure into the first hydraulic pressure chamber and the second hydraulic pressure canceling chamber, and a second valve allowing or cutting the supply of hydraulic pressure into the second hydraulic pressure chamber and the first hydraulic pressure canceling chamber.




ev

INTEGRATED TORQUE LIMITER/NO-BACK DEVICE

An integrated torque limiter/no-back device for use in an actuator with an input shaft, an output, and a gear reduction. The device includes an input ramp, an output ramp coupled to the gear reduction, a combined ramp disposed between the input ramp and the output ramp, a first plurality of balls arranged between the input ramp and the combined ramp, a second plurality of balls arranged between the combined ramp and the output ramp, a pin, and a brake. The pin extends from the input ramp to the combined ramp and coupled to the input shaft. The combined ramp, the output ramp, and the second plurality of balls therebetween are configured to operate as a torque limiter by causing the combined ramp and the output ramp to separate and the output ramp to engage the brake when the torque from the input shaft exceeds a torque threshold.




ev

Self-contained and wireless device for a washing machine

The invention relates to a self-contained and wireless monitoring device (10) for use in a washing machine (1) to indicate shortage of detergent in said washing machine. The monitoring device comprises a sensor (13) arranged to monitor detergent concentration in washing liquid (5) of said washing machine and to provide an alarm signal (A) when said monitored detergent concentration is below a target value. The monitoring device is capable of floating in said washing liquid and comprises signalling means (11) for indicating said shortage of detergent in response to said alarm signal. The invention further relates to a package containing such a monitoring device and a method for indicating shortage of detergent.




ev

Dye composition using a 2-hydroxynaphthalene, (acylamino)phenol or quinoline coupler in a fatty-substance-rich medium, dyeing process and device therefor

The present invention relates to a cosmetic composition for dyeing keratin fibers, in particular human keratin fibers such as the hair, comprising: a) one or more fatty substances; b) one or more surfactants; c) one or more oxidation bases; d) one or more couplers based on 2-hydroxynaphthalene derivatives or particular phenol derivatives, acylaminophenol derivatives or quinoline derivatives; f) one or more basifying agents; e) optionally one or more chemical oxidizing agents; and the fatty substance content representing in total at least 25% by weight relative to the total weight of the formulation. The present invention also relates to a process using this composition, and to a multi-compartment device that is suitable for performing the said process.




ev

TWO-DIMENSIONAL MATERIAL SEMICONDUCTOR DEVICE

A semiconductor device comprises a two-dimensional (2D) material layer, the 2D material layer comprising a channel region in between a source region and a drain region; a first gate stack and a second gate stack in contact with the 2D material layer, the first and second gate stack being spaced apart over a distance; the first gate stack located on the channel region of the 2D material layer and in between the source region and the second gate stack, the first gate stack arranged to control the injection of carriers from the source region to the channel region and the second gate stack located on the channel region of the 2D material layer; the second gate stack arranged to control the conduction of the channel region.




ev

INTERNAL POWER SUPPLY CIRCUIT AND SEMICONDUCTOR DEVICE

A control switch is connected to a power supply voltage and turns on based on a control signal to output a current. A clamp circuit is connected to a load and performs clamp control of the output voltage of the control switch. A current control element conducts or shuts off a current based on the output voltage to be clamp-controlled. A selector switch group includes switches, and performs switching based on a voltage varying with the current control by the current control element, thereby switching between paths for generating an internal power supply. The switch circuit connects or disconnects the coupling between the clamp circuit and the selector switch group.




ev

Active Filter Device and Circuit Arrangement Comprising an Active Filter Device

An active filter device and a circuit arrangement comprising an active filter device are disclosed. In an embodiment the active filter device includes sensor terminals for applying a sensor signal depending on a sensed noise signal, an output terminal for providing a correction signal that is suitable for reducing the noise signal, a signal source adapted for generating a correction signal and a high-pass filter coupled between the sensor terminals and the signal source, wherein the correction signal is generated with a dependence on a high-pass filtered sensor signal.




ev

SEMICONDUCTOR DEVICE AND CIRCUIT PROTECTING METHOD

A semiconductor device includes a first transistor and a clamping circuit. The first transistor is arranged to generate an output signal according to a control signal. The clamping circuit is arranged to generate the control signal according to an input signal, and to clamp the control signal to a predetermined signal level when the input signal exceeds the predetermined signal level.




ev

TRANSMISSION CIRCUIT WITH LEAKAGE PREVENTION CIRCUIT

A transmission circuit includes: a first transistor, a first current source, a third transistor. The first transistor has a source terminal coupled to a first reference voltage terminal of the transmission circuit and a drain terminal coupled to a first output terminal of the transmission circuit. The first current source is coupled between a gate terminal of the first transistor and a second reference voltage terminal of the transmission circuit. The third transistor has a drain terminal coupled to the first output terminal of the transmission circuit, a source terminal coupled to the second reference voltage terminal of the transmission circuit, and a gate terminal for receiving a first input signal. The first transistor is of a first conducting type, and the second transistor is of a second conducting type different from the first conducting type.




ev

ELECTRONIC SWITCH, AND CORRESPONDING DEVICE AND METHOD

A high-voltage electronic switch includes first and second transistors defining a current flow path between an input and output of the switch. The transistors have a common point of the current flow path and a common control terminal. A control circuit includes a voltage line receiving a limit operating voltage and first and second branches coupled between the voltage line and the common point and common control terminal, respectively. Further transistors are activated, upon turning-off of the first and second transistors, for coupling the branches to the voltage line. The branches include a parallel connected resistor, diode, and string of diodes with opposite polarities. The diode of the first branch plus string of diodes of the second branch and diode of the second branch plus string of diodes of the first branch provide coupling paths between the voltage line and, respectively, the common point and common control terminal.




ev

LOOP FILTER WITH ACTIVE DISCRETE-LEVEL LOOP FILTER CAPACITOR IN A VOLTAGE CONTROLLED OSCILLATOR

A loop filter with an active discrete-level loop filter capacitor can be used in a VCO (such as for CDR). A loop filter capacitor function is simulated by sensing input loop filter current (such as with a current mirror and source follower in the input leg), and forcing back a loop filter (VCO) control voltage. Loop filter voltage control is provided using a VDAC with a discrete-level VDAC feedback voltage, incremented/decremented based on the sensed loop filter current. In one embodiment, the VDAC voltage is provided as the non-inverting input to an amplifier, with the inverting input providing the control voltage, forced to the VDAC feedback voltage. The VDAC feedback voltage can be provided by increment/decrement comparators based on a voltage deviation on a C2 capacitor (from a reference voltage) that receives the sensed loop filter current (effectively multiplying the C2 capacitance to provide a simulated loop filter capacitance).




ev

MULTICHANNEL TRANSDUCER DEVICES AND METHODS OF OPERATION THEREOF

The present disclosure is directed to multichannel transducer devices and methods of operation thereof. One example device includes at least two acquisition modules that have different sensitives and a signal processing stage that generates a blended signal representative of a lower gain signal mapped onto a higher gain signal. One example method of operation includes receiving a first signal from a first sensor having a first sensitivity, receiving a second signal from a second sensor having a second sensitivity that is different from the first sensitivity, generating a blended signal by mapping the second signal to the first signal, outputting the first signal while the first signal is below a first threshold and above a second threshold, and outputting the blended signal when the first signal is above the first threshold and when the first signal is below the second threshold.




ev

Electronic Switching Device and System

The present invention is directed to an electronic switch device, the device including a housing assembly including a front cover assembly having a user accessible surface, a back body assembly, terminals configured to be coupled to an AC power source and the load; an antenna assembly including an antenna substrate disposed inside the housing assembly adjacent a portion of the front cover assembly, an antenna being disposed on the antenna substrate having a conductive grid structure; and a circuit assembly disposed inside the housing assembly coupled to the terminals, the circuit assembly comprising a printed circuit board, the printed circuit board including a ground plane, the circuit assembly being electrically connected to the antenna assembly via a conductor, the printed circuit board being separated from the antenna assembly by a predetermined distance, the circuit assembly including a relay switch having at least one solenoid winding connected to the circuit assembly and a set of contacts.




ev

SYSTEMS AND METHODS FOR CONTROLLING A PLURALITY OF POWER SEMICONDUCTOR DEVICES

A power conversion system may include a plurality of power devices and a sensor operably coupled to at least one of the plurality of power devices and configured to detect a voltage, current, or electromagnetic signature signal associated with the plurality of power devices. The power converter may also include circuitry operably coupled to the plurality of power devices and the sensor. The circuitry may send a respective gate signal to each respective power device of the plurality of power devices, such that each respective gate signal is delayed by a respective compensation delay that is determined for the respective power device based on a respective time delay of the respective power device and a maximum time delay of the plurality of power devices.




ev

CIRCUIT, LOGIC CIRCUIT, PROCESSOR, ELECTRONIC COMPONENT, AND ELECTRONIC DEVICE

A circuit suitable for data backup of a logic circuit is provided. The circuit includes first to fourth nodes, a capacitor, first to third transistors, and first and second circuits. Data can be loaded and stored between the circuit and the logic circuit. The first node is electrically connected to a data output terminal of the logic circuit. The second node is electrically connected to a data input terminal of the logic circuit. The capacitor is electrically connected to the third node. The first transistor controls electrical continuity between the first node and the third node. The second transistor controls electrical continuity between the second node and the third node. The third transistor controls electrical continuity between the second node and the fourth node. The first and second circuits have functions of raising gate voltage of the first transistor and raising gate voltage of the second transistor, respectively.