o

Optical transceiver having an extra area in circuit board for mounting electronic circuits

An optical transceiver of one embodiment includes a transmitter optical subassembly to transmit an optical signal, a receiver optical subassembly to receive an optical signal, a mother board, a daughter board, and a housing. The mother board mounts electronic circuits that electrically communicate with the optical transmitter optical subassembly and the receiver optical subassembly. The daughter board mounts other electronic circuits that electrically communicate with the optical transmitter optical subassembly and the receiver optical subassembly. The daughter board has an extra area mounting a portion of the other electronic circuits. The housing defines a space for installing the optical transmitter optical subassembly, the receiver optical subassembly, the mother board, and the daughter board. The extra area is disposed outside the space.




o

Intrapersonal data communication systems

Intrapersonal communication systems and methods that provide an optical digital signal link between two or more local devices are disclosed. In some embodiments, the system includes a first signal converter disposed at a first end of the optical digital signal link and configured to convert between electrical digital signals from a first local device and optical digital signals from the optical digital signal link. The system can include an optical connector having a non-contact portion configured to couple optical digital signals between the first signal converter and the optical digital signal link across a gap. The system can include a second signal converter disposed at a second end of the optical digital signal link and configured to convert between electrical digital signals from the second local device and optical digital signals from the optical digital signal link.




o

Clock and data recovery unit and power control method therefor and PON system

In the present invention, wasted power consumption caused when a clock and data recovery unit in an optical network unit in a PON system is activated from a power-saving state is reduced and rapid, secure communication is performed. A clock and data recovery unit includes a phase-locked loop that can be set to normal mode or power-saving mode and that includes a voltage-controlled oscillator and recovers a clock signal and a data signal from input signals. The clock and data recovery unit includes a reference clock multiplier circuit that multiplies a reference clock signal and outputs the multiplied reference clock signal; and a frequency training loop that includes the same voltage-controlled oscillator and performs synchronous oscillation training by the voltage-controlled oscillator using the reference clock multiplier circuit before the phase-locked loop transitions from power-saving mode to normal mode.




o

Illumination device and method for embedding data symbols in a luminance output

The invention relates to embedding data symbols of a data signal into a luminance output of an illumination device. The device includes a controller configured for receiving a first base pattern and a second base pattern within a frame period, and generating a shifted second pattern by phase shifting the second base pattern within the frame period with respect to the first base pattern in response to the data signal such that the data symbols are embedded in the luminance output of the device. The device also includes a first light source configured to generate a first luminance output in response to the first base pattern and a second light source configured to generate a second luminance output in response to the shifted second pattern. The first and second luminance outputs have different output spectra and the luminance output of the illumination device comprises both the first and second luminance outputs. With this approach, the short-time average light output of the illumination device remains constant, decreasing the visible flicker and allowing the use of lower switching frequencies relative to the prior art approaches.




o

Network management system, repeater, and repeating method

A repeater includes a reception part configured to receive an optical signal transmitted by wavelength division multiplexing from a preceding repeater in a path from a source to a destination; a determination part configured to determine the channel allocation of the signal received by the reception part by determining a bit rate and a modulation technique with respect to each of channels in the received signal; and a detection part configured to detect a prohibited channel not to be included in the optical signal to be transmitted from the repeater, based on the channel allocation and a predetermined criterion.




o

Transmitter optical module

Disclosed is a transmitter optical module which includes a first package generating an optical signal; a second package bonded with the first package by using chip-to-chip bonding, having a silicon optical circuit platform structure, and amplifying the optical signal; and an optical waveguide forming a transmission path of the optical signal from the first package to the second package.




o

Mitigating signal offsets in optical receivers

An optical receiver circuit is disclosed in which a number of electrical signals are processed to extract data encoded therein. The electrical signals may be compared during the process to selectively remove one or more waveforms from one or more corresponding electrical signals. Various data signals, each including one or more waveforms, may then be processed to extract the encoded data. The optical receiver circuit reduces, or eliminates, electrical offsets which may be present in one or more of the electrical signals to reduce corresponding errors in the encoded data signals.




o

Cutting tool

A tool is provided. The tool comprises an interchangeable cutting portion and a holder to which the interchangeable cutting portion is adapted to be replaceably mounted. The interchangeable cutting portion comprises a first part with at least one cutting edge and a second part for connection to the holder, the second part being provided with a conical external abutment surface and an external cylindrical screw thread. The holder is provided with an internal cylindrical screw thread, to which the external screw thread is removably screwed, and a conical internal abutment surface, the conical external abutment surface and the conical internal abutment surface being mutually engageable for positioning the cutting portion and the holder relative to one another.




o

Cutting edge replacement type groove forming tool and end face groove forming method

A cutting insert (130) is formed to be rotationally symmetric with respect to an axis line (C3) of a height direction and to be planarly symmetric with respect to a virtual plane of the insert (VS1), an axis line (C2) of a traverse direction is gradually inclined toward the front of a rotational direction around which a workpiece (W) rotates moving toward a first traverse direction (C2A), an axis line (C1) of a longitudinal direction extends toward a lower surface side of an insert body (131) so as to approach a virtual plane of the tool moving toward a first longitudinal direction (C1A), and one corner portion (143C) in the other cutting edge (132B) is disposed further toward a first traverse direction (C2A) than one corner portion (143A) in one cutting edge (132A).




o

Skiving tool comprising cutter bars

A skiving tool for manufacturing a rotationally symmetrical periodical structure on a work piece by means of a power skiving method. The skiving tool comprises a base body comprising a central rotation axis and a plurality of receiving openings and a plurality of cutter bars, fewer than or equal to the number of receiving openings. Each of the receiving openings has an elongate shape having a longitudinal axis, and the receiving openings can be arranged uniformly around the central rotation axis. The longitudinal axes of the receiving openings are generators of a rotation hyperboloid, which is arranged rotationally symmetrical to the central rotation axis.




o

Cutting tool

A cutting tool has a main tool body and at least one insert seat disposed thereon. The seat has a bottom surface for mounting a cutting insert, and further has a dowel pin, which penetrates a through-hole of the mounted cutting insert and the bottom surface and can be fixed to the main tool body. A center longitudinal axis of the fixed dowel pin is arranged at an acute angle with respect to the bottom surface. The dowel pin contains a spherical segment for mounting on a bearing surface of the through-hole. The surface of the spherical segment is interrupted by a segment groove.




o

Toolholder assembly with internal coolant delivery system

A toolholder assembly includes a toolholder body having a coolant passage and a cutting insert seated within a recess of the body. The cutting insert includes an insert orifice extending between a top face and a bottom face that aligns with the coolant passage. A lock pin includes a lock pin orifice that aligns with and is in fluid communication with the coolant passage of the body. The lock pin orifice has an outlet port to allow the fluid to flow through the lock pin orifice and exit through the outlet port. A lock pin ring includes a coolant port in fluid communication with the outlet port of the lock pin to effectively discharge cooling fluid in the direction of a cutting area of the cutting insert.




o

Tool

To provide a tool that can reduce the maximum value of cutting resistance when adjacent peripheral edges cut a workpiece simultaneously. A lead L of a spiral flute 21, a waveform pitch P, the number of edges N of peripheral edges 22, and a natural number m are set to satisfy L/N=m×P−P/N±P/2 or L/N=m×P+P/N±P/2, the waveforms of adjacent ones of the peripheral edges 22 at the positions where they contact a workpiece simultaneously are in an anti-phase relationship when the adjacent peripheral edges 22 cut the workpiece simultaneously. Therefore, there is an effect that the length of the cutting edges that contact the workpiece simultaneously is shortened to reduce the maximum value of cutting resistance.




o

Milling cutter and method of operating same, and other machine tools, and an adjustment mechanism therefor

Milling cutter and method of operating same, and other machine tools, and an adjustment mechanism therefor. A cutting insert is adjusted by moving a resilient web with an adjusting screw.




o

Cutting tool

The present invention is directed to a cutting tool, comprising: at least one cutting insert; a tool body including a pocket portion to which the cutting insert is mounted; a means for fixing the cutting insert to the pocket portion of the tool body; and a screw for finely adjusting the position of the cutting insert fixed to the pocket portion of the tool body. The screw has a head portion, a threaded portion and a portion for connecting the head portion to the threaded portion. The pocket portion has a bottom surface with a screw hole formed thereon into which the threaded portion is fastened. It also has a side wall comprising a surface for closely contacting the head portion of the screw. The head portion of the screw closely contacts and resiliently pressurizes the close contact surface of the pocket portion when the threaded portion is fastened into the screw hole.




o

Milling tool as well as set of milling inserts of a milling tool

A milling tool for slot milling includes a tool body and a plurality of separated first seats, which form root insert seats for root inserts arranged one after the other along a first line and a plurality of separated flank insert seats that includes a plurality of second seats for flank inserts . The plurality of second seats is arranged one after the other along a second line on a primary side of the root insert seats. A plurality of third seats for flank inserts is arranged one after the other along a third line on a secondary side of the root insert seats. Each flank insert seat includes a bottom surface, an inner side surface, and an outer side surface. Each flank insert includes an under side, an opposite upper side, and a circumferential edge side that forms a rake face connecting the upper side and the underside.




o

Cutting insert, cutting tool, and method of manufacturing machined product using the same

A cutting insert of the present invention includes an upper surface; a lower surface; a side surface; a cutting edge which is located along an intersection of the upper surface and the side surface, and comprises a major cutting edge, a flat cutting edge, and a minor cutting edge located between the major cutting edge and the flat cutting edge; and a land part located along the cutting edge on the upper surface. The land part includes a minor cutting edge land portion located correspondingly to the minor cutting edge. The minor cutting edge land portion is inclined downward toward a central part of the upper surface. The present invention also provides a cutting tool including the cutting insert, and a method of manufacturing a machined product by using the cutting tool.




o

Severing and beveling tool

A tool for both severing the end of a pipe and beveling the cut end includes a spiral cutting mill having an elongate end received in the bore of a frustoconical shell cutter. The shell cutter is locked for rotation with the cutting mill such that a single tool has two cutting surfaces, one for severing a length of pipe and one for beveling the outer edge thereof.




o

Rotary cutting tool

To provide a rotary cutting tool in which a satisfactory cut state in which burrs and uncut portions are absent is obtained, even when counterboring is applied to a composite honeycomb member. A first cutting-chip discharge groove (2) disposed from a tool tip towards a base-end side is formed on an outer periphery of a tool body (1); a plurality of second cutting-chip discharge grooves (3), provided along a spiral disposed from the tool tip towards the base-end side so as to intersect with the first cutting-chip discharge groove (2), are formed on an outer periphery section of the tool body (1) where the first cutting-chip discharge groove (2) is absent; and a base-end-side outer periphery cutting edge (4) is formed on an intersection ridge between a rake face of a second cutting-chip discharge groove (3), which faces a direction of tool rotation, and an outer peripheral surface of the tool body (1) or an outer peripheral relief face; wherein an end cutting edge (5) is provided at a tip section of the tool body (1); a tip-side outer periphery cutting edge (6) is formed on an intersection ridge between the rake face at a tip section of a first cutting-chip discharge groove (2) and an outer peripheral surface of the tip section of the tool body (1) or an outer periphery relief face (18); and the base-end-side outer periphery cutting edge (4) is provided further towards the tool base-end side than the tip-side outer periphery cutting edge (6).




o

Sintered cubic boron nitride compact and sintered cubic boron nitride compact tool

It is an object of the present invention to provide a sintered cBN compact having excellent wear resistance and fracture resistance even in machining centrifugally cast iron having a property of being difficult to machine, and to provide a sintered cBN compact tool. A sintered cBN compact of the present invention contains 20% by volume or more and 65% by volume or less of cBN and, as a binder, 34% by volume or more and less than 80% by volume of Al2O3, at least one selected from the group consisting of nitrides, carbides, carbonitrides, borides, and boronitrides of Zr and solid solutions thereof (hereinafter, referred to as “X”), and ZrO2, the total amount of X and ZrO2 being 1.0% by volume or more and 6.0% by volume or less, the volume ratio of ZrO2 to Al2O3, ZrO2/Al2O3, being 0.010 or more and less than 0.100, in which the ratio Itetragonal ZrO2(101)/IαAl2O3(110) is 0.1 or more and 3 or less, where Itetragonal ZrO2(101) is the intensity of the (101) plane of tetragonal ZrO2 and IαAl2O3(110) is the intensity of the (110) plane of αAl2O3 among X-ray diffraction peaks of the sintered cBN compact.




o

Cutting insert and chip-control arrangement therefor

A cutting insert has at least first and second side surfaces, with a chip-control arrangement. The chip-control arrangement includes at least one projection disposed at an intersection of a corner of the cutting insert. When the chip-control arrangement includes two projections they can be disposed symmetrically on both sides of the intersection. Each of the at least one projections is elongated and extends longitudinally along an associated side surface.




o

Cutting insert and cutting tool

A cutting insert is capable of boring or drilling without the formation of a prepared hole in a workpiece. A cutting edge includes a cutting edge portion extending from the outer peripheral side to the tool center axis side of a cutting tool body when the cutting insert is attached to a mounting seat, reaching a first plane including the tool center axis, and traversing from one side to the other side of a second plane which is perpendicular to the first plane and which includes the tool center axis.




o

Super-hard cutter inserts and tools

A cutter insert assembly for a drill bit for boring into the earth, comprising a super-hard structure clampable to a support body by means of a clamp mechanism; the clamp mechanism comprising opposed or opposable compression members connected or connectable by a tension member capable of sustaining a clamping force between the compression members when the cutter insert assembly is in a clamped condition, in which condition the compression members exert opposing compressive forces on the super-hard structure and the support body, operable to clamp the super-hard structure to the support body, and in which condition the cutter insert assembly is self-supporting and capable of being mounted onto a drill bit body.




o

Cutting insert and shim for milling cutters

A cutting tool includes a polygonal cutter body and an end cutting insert for chipforming machining mounted in a serrated seat disposed at an axial end of the cutter body. A bottom surface of the insert has a plurality of parallel serrations meshing with corresponding serrations of the seat. The serrations extend transversely relative to the longitudinal axis for resisting axially rearward cutting forces applied to the insert. The seat is formed directly by the cutter body, or by a shim disposed beneath the insert. The shim is provided with a downward lip to transfer axial forces to the cutter body. The insert can be square or triangular, wherein the serrations are in the form of a plurality of sets of parallel serrations disposed adjacent respective cutting edges.




o

Electrode milling cutter with milling edges interrupted by cut-outs

Electrode milling cutter for machining spot welding electrodes, said electrode milling cutter having one or more milling edges, wherein at least one of the milling edges is interrupted by one or more cut-outs at one or more points. The invention also relates to a milling device and to an apparatus for subsequently machining spot welding electrodes.




o

Cutting insert, cutting tool, and method of manufacturing machined product using them

A cutting insert includes an upper surface; a lower surface; a side surface which is connected to each of the upper surface and the lower surface and includes a first side surface, a second side surface and a third side surface being adjacent to each other in order; an upper cutting edge including an upper major cutting edge located at an intersection of the upper surface and the first side surface, and an upper flat cutting edge located closer to the upper major cutting edge in an intersection of the upper surface and the second side surface; and a lower cutting edge including a lower major cutting edge located at an intersection of the lower surface and the third side surface, and a lower flat cutting edge located closer to the lower major cutting edge in an intersection of the lower surface and the second side surface. The second side surface comprises an upper flank surface connected to the upper flat cutting edge, and a lower flank surface connected to the lower flat cutting edge. As going from the upper surface to the lower surface, the upper flank surface is closer to a central axis extending between the upper surface and the lower surface and the lower flank surface is separated from the central axis in a side sectional view. A cutting tool including the cutting insert, and a method of manufacturing a machined product by using the cutting tool are also provided.




o

Cutting tool, an arrangement and a method for chip removing machining with spring members for biasing a clamping body

In a cutting tool for chip removing machining a holder for a cutter has a body received therein and movable with surfaces to bear against the cutter for defining the position of the cutter in the direction of an intended axis of rotation of the holder as well as a screw which may be screwed in a threaded bore in the holder. Spring members are arranged to act between the holder and the body for biasing the body against said screw portions.




o

Cutting insert, cutting tool, and method of manufacturing machined product using the same

A cutting insert having excellent chip discharge performance is provided. The cutting insert (1) according to an embodiment of the present invention includes an upper surface (2), a lower surface (3), a side surface (4) connected to the upper surface (2) and the lower surface (3), and a cutting edge (5) which is located at an intersection of the upper surface (2) and the side surface (4), and includes a major cutting edge (51) and a flat cutting edge (52). The major cutting edge (51) includes a major cutting section (512) which has a concave shape and is inclined downward as a straight line connecting both ends thereof is away from the flat cutting edge (52) in a side view. A cutting tool (11) according to an embodiment of the present invention includes the cutting insert (1) and a holder (10) configured to attach the cutting insert (1) thereto.




o

Cutting insert and cutting tool

An upper surface of a cutting insert includes a first rake face and a second seating surface. A lower surface of the cutting insert includes a second rake face and a first seating surface. The cutting edge includes a first cutting edge portion formed at a crossing edge line portion between the first rake face and a flank face and a second cutting edge portion formed at a crossing edge line portion between the second rake face and the flank face. The first cutting edge portion and the crossing edge line portion between the first seating surface and the flank face are positioned opposite each other. The second cutting edge portion and the crossing edge line portion between the second seating surface and the flank face are positioned opposite each other.




o

Cutting tool

A cutting tool includes a cutting insert and a tool holder. The tool holder includes: a base for supporting a bottom surface of the cutting insert; a clamping arm for pressing a top surface of the cutting insert; an insert receiving space formed between the bottom surface of the clamping arm and the base; and a supporting surface which defines an end of the insert receiving space and supports an end of the cutting insert. The cutting insert includes: a first pressing region on the front portion of the top surface which is oriented in a vertically upward direction; and a second pressing region on the rear portion of the top surface which is oriented at an angle in the front direction.




o

Cutting insert, cutting tool, and method of manufacturing machined product using the same

A cutting insert according to an embodiment of the present invention includes an upper surface; a lower surface; a side surface located between the upper surface and the lower surface; at least one concave part extending in a thickness direction in the side surface, and having one end thereof located at the upper surface; and a cutting edge which is located at an intersection region of the upper surface and the side surface, and is divided into a plurality of divided cutting edges with the at least one concave part interposed therebetween. The upper surface includes a first raised part located inwardly of the at least one concave part, and a plurality of second raised parts respectively located inwardly of the plurality of divided cutting edges. The plurality of the second raised parts are located inward compared to one end of the first raised part close to the cutting edge in a top view. A cutting tool including the cutting insert, and a method of manufacturing a machined product using the cutting tool are also provided.




o

Cutting insert, cutting tool, and method of manufacturing machined product using them

A cutting insert according to an embodiment of the invention includes: an upper surface; a lower surface; a side surface which is connected to each of the upper surface and the lower surface, and includes a first side surface and a second side surface adjacent to each other; and a cutting edge including a major cutting edge located at an intersection of the upper surface and the first side surface, and a minor cutting edge located at an intersection of the upper surface and the second side surface. The upper surface includes a rake surface which is located along the major cutting edge, and is inclined downward as the upper surface separates from the major cutting edge. The second side surface includes a second upper constraining surface and a second lower constraining surface in order as the second side surface goes from the upper surface to the lower surface. The second upper constraining surface is inclined inward at an inclination angle α1 with reference to a central axis extending between the upper surface and the lower surface. The second lower constraining surface is continuous with the second upper constraining surface, and is inclined outward at an inclination angle α2 with reference to the central axis. A cutting tool with the cutting inserts, and a method of manufacturing a machined product by using the cutting tool are also provided.




o

Rotary cutting tool with effective chip evacuation

A rotary cutting tool, such as a milling cutter (10) includes a central hub (12), a cutting rim (14) and a plurality of spokes (22) connecting the central hub (12) to the cutting rim (14). Each spoke (22) is separated by an opening (32) and polygonal in cross-sectional shape formed by two side walls (22a, 22b), two front walls (22c, 22d) and a rear wall (22e). One of the side walls (22a) of each spoke (22) is formed at a pitch angle (42) with respect to a central axis (11) of the cutting tool (10) that is sufficient to cause lift of chips through the opening (32), thereby providing effective chip evacuation during a material removal operation.




o

Family of rotating cutting tools

A family of rotating cutting tools includes at least two toolholders having different diameters, each toolholder including a first side and a second side, the first side and the second side being substantially perpendicular to an axis of rotation of the toolholder, and at least one insert abutment surface on each of the first side and the second side. For each toolholder, the insert abutment surfaces on the first and second sides define an angle with a plane perpendicular to the axis of rotation of the toolholder, and the angle defined by the insert abutment surfaces and the plane perpendicular to the axis of rotation of the toolholder is different for the at least two toolholders having different diameters.




o

Milling cutter as well as a milling insert therefor

A milling cutter for chip removing machining, including a basic body rotatable in a predetermined direction around a center axis and having a front end surface and an envelope surface that extends axially backward from the front end surface and is concentric with the center axis. A number of indexable milling inserts are mounted in respective peripherally spaced-apart seats having a mutually fixed pitch, each milling insert including an upper side, an under side and at least one clearance surface, the clearance surface together with the upper side delimiting at least two alternately active cutting edges that are uniform in their extension between first and second end points. The cutting edges of each milling insert are situated on different levels in relation to the under side of the milling insert to alter the effective pitch between the active cutting edges of the milling inserts by indexing of at least one of the milling inserts.




o

Double-sided cutting inserts with anti-rotation features

A double-sided cutting insert may generally comprise a top surface, a bottom surface, at least one side surface interconnecting the top surface and the bottom surface and forming at least one cutting edge, a through hole extending between the top surface and bottom surface, wherein each of the top surface and bottom surface comprise at least one anti-rotation element. The cutting insert may comprise a single anti-rotation element on the top surface and a single anti-rotation element on the bottom surface. The anti-rotation element may be proximate to the through hole. A cutting tool using the cutting inserts, as well as methods of making and using the same are also described.




o

Cutting insert and cutting tool

A cutting insert is provided with a plurality of cutting portions formed at the intersection portion of each end surface and a peripheral surface. Each cutting portion includes first and second cutting edges. First corners and second corners which differ in their internal angles are alternately formed in each end surface. An internal angle of the first corner is smaller than an internal angle of the second corner. Each first cutting edge has a portion extending to approach the median plane as a distance from a corresponding first corner increases. A first side surface portion extending on the peripheral surface from each first cutting edge forms an insert internal obtuse angle, and a second side surface portion extending on the peripheral surface from each second cutting edge forms an insert internal acute angle.




o

Surface-coated WC-based cemented carbide insert

Provided is a surface-coated cemented carbide insert obtained by containing at least WC powder and Co powder as raw materials, including a WC-based cemented carbide obtained by forming and sintering mixed raw materials containing at least any of (a) Zr compound powder, Nb compound powder, and Ta compound powder, (b) complex compound powder of Nb and Ta, and Zr compound powder, (c) complex compound powder of Nb, Ta, and Zr, (d) complex compound powder of Nb, Zr, and Ta compound powder, and (e) complex compound powder of Ta and Zr, and Nb compound powder, as essential powder components, as a substrate, and forming a hard coating layer on the substrate by vapor deposition, in which a Co enrichment surface region is formed in a substrate surface, Co content in the Co enrichment surface region satisfies to be between 1.30 and 2.10 (mass ratio) of Co content in cemented carbide.




o

Roughing end mill and insert for a roughing end mill

A roughing end mill comprises an end mill body and plural inserts which are placed on an outer circumference of the end mill body with a predetermined distance apart from each other in the axial direction of the end mill body, wherein the plural inserts form plural insert rows which are provided in a circumferential direction of the end mill body, where the inserts are offset in the axial direction from each other between the different insert rows which are adjacent in the circumferential direction. The inserts have waveform cutting edges which face towards an outer circumferential side of the end mill body. One insert of one insert row and an insert of another insert row are positioned such that the waveform cutting edges of each of these inserts make up a waveform cutting edge row whose phase is continuous on a rotation trajectory around the axis.




o

Cutting insert, cutting body and clamping mechanism of a cutting tool assembly for chip removal

A cutting insert (14) is formed with an insert aperture (32) opening out to insert top and bottom surfaces (14A, 14B) of the cutting insert (14). In a plan view of the insert top surface (14A), the cutting insert (14) and the insert aperture (32) both have oblong shapes which are elongated along a common insert longitudinal axis (AIL). The aperture (32) includes first and second side surfaces (32A1, 32A2) which each extend along the insert longitudinal axis (AIL), and aperture first and second end surfaces (32B1, 32B2) which each extend transverse relative to the insert longitudinal axis (AIL). At least one of the aperture first and second end surfaces (32B1, 32B2) is formed with a clamping lip (32C1, 32C2).




o

Cutting insert having curved ramps for insertion into a tool holder, cutting tool and method of assembly

A cutting tool used for grooving and turning operations where a cutting insert is resiliently securable in a holder blade. The cutting insert includes an insert central lower surface located between, and recessed with respect to, two insert lower component surfaces, each having an insert lower abutment surface. At least one of the two insert lower component surfaces includes an insert inner curved ramp extending from its insert lower abutment surface to the adjacent insert lower intermediate surface and at least the other of the two insert lower component surfaces includes an insert outer curved ramp extending from its insert lower abutment surface to an adjacent end surface.




o

Indexable, double-sided cutting insert and cutting tool including such an insert

A cutting insert includes a first surface having a first rake surface, a second surface having a second rake surface, a central axis of the insert extending between the first and second surfaces, four side surfaces extending between the first surface and the second surface, and four cutting edges. Each cutting edge has a first cutting edge component and a second cutting edge component and being associated with a respective one of the first and second surfaces and with two respective ones of the side surfaces. The first rake surface is identical to the second rake surface and the first rake surface and the second rake surface are oriented at a 90° angle to each other about the central axis of the insert.




o

Hybrid digital and channel microfluidic devices and methods of use thereof

The present invention provides a hybrid digital and channel microfluidic device in the form of an integrated structure in which a droplet may be transported by a digital microfluidic array and transferred to a microfluidic channel. In one aspect of the invention, a hybrid device comprises a first substrate having a digital microfluidic array capable of transporting a droplet to a transfer location, and a second substrate having a microfluidic channel. The first and second substrates are affixed to form a hybrid device in which an opening in the microfluidic channel is positioned adjacent to the transfer location, so that a droplet transported to the transfer location contacts the channel opening and may enter the channel. The invention also provides methods of performing separations using a hybrid digital and channel microfluidic device and methods of assembling a hybrid digital microfluidic device.




o

Analyte monitoring devices and methods therefor

Method and apparatus for performing a discrete glucose testing and bolus dosage determination including a glucose meter with bolus calculation function are provided.




o

MEMS sensors with closed nodal anchors for operation in an in-plane contour mode

A MEMS sensor includes at least one closed nodal anchor along a predetermined closed nodal path on at least one surface of a resonant mass. The resonant mass may be configured to resonate substantially in an in-plane contour mode. Drive and/or sense electrodes may be disposed within a cavity formed at least in part by the resonant mass, the closed nodal anchor, and a substrate.




o

Method and apparatus for dispensing diagnostic test strips

An apparatus for storing and dispensing a test strip includes a container configured to store a stack of test strips. The container maintains appropriate environmental conditions, such as humidity, for storing the test strips. An engaging member is disposed in the container and is adapted to contact one test strip of the stack of test strips. An actuator actuates the engaging member to dispense the one test strip from the container. Since one test strip is dispensed at a time, the remaining test strips are not handled by the user. Accordingly, the unused test strips remain free of contaminants such as naturally occurring oils on the user's hand.




o

Low-carbon, material consumption-free air cleaner

A low-carbon, material consumption-free air cleaner includes a rectangular box body, a fan, a negative ion generator unit and a dielectric barrier discharge actuator respectively arranged at upper part, middle part and lower part of the rectangular box body, an air input port disposed at the bottom side of the dielectric barrier discharge actuator, and air output port disposed at the top side of the rectangular box body.




o

Apparatus and method of reacting polymers passing through metal ion chelated resin matrix to produce injectable medical devices

The present disclosure relates to an apparatus and process for forming medical devices from an injectable composition. The apparatus includes a supply assembly configured to maintain and selective dispense a first precursor and a second precursor, a mixing assembly configured to mix the first and second precursors, and at least one catalyzing element including a transition metal ion to aid in the polymerization of the first and second precursors. The process includes dispensing a volume of the first precursor and a volume of the second precursor into a mixing assembly and mixing the first and second precursors. The first and second precursors each possess a core and at least one functional group known to have click reactivity with each other. The mixed precursors are contacted with a transition metal catalyst to produce a flowable composition for use as a medical device.




o

Slurry bubble column reactor

A slurry bubble column reactor with a gas distribution arrangement comprising an upper sparger, a lower sparger, and an open-ended tube. Gas from the lower sparger enters the tube and lowers the density of slurry in the tube. The difference in slurry density causes the slurry in the tube to rise, causing slurry outside the tube to move down, maintaining circulation and flushing catalyst from the vessel wall.




o

Exhaust gas purification apparatus of an internal combustion engine

A laminated body composed of a holding member and an inner cylinder is arranged between a heat generation element, which is electrically energized to generate heat, and a case which covers the heat generation element, and the inner cylinder has an upstream side end portion extended to a more upstream side than an upstream side end face of said heat generation element and an upstream side end face of said holding member to form an extension portion, which is formed with a protruding portion protruding to an inner side in a diametrical direction. A flow of an exhaust gas, which flows backwards after colliding with the heat generation element, will be obstructed by said protruding portion. As a result, the backflow exhaust gas stops flowing into a gap between the case and the inner cylinder.