o

Service method of gas appliances

A service method of gas appliances includes: Detecting the gas appliances at the client ends to generate detecting signals. Transmitting the detecting signals to a service end. Identifying which client end the detecting signals come from. Examining the detecting signals to find whether the gas appliance has an abnormal condition; and informing the client end when the abnormal condition is found. After all, the service end may monitor the gas appliances at the client end, and inform the client for repair when the gas appliance has detected an abnormal signal or has damaged parts.




o

Signal conditioner for use in a burner control system

A signal conditioner for use with a controller and a burner receives an input signal from the controller. A conversion circuit generates a primary output signal corresponding to the input signal to control the burner. The signal conditioner also includes a delay circuit. The delay circuit overrides the primary output signal generated by the conversion circuit and substitutes a delay signal to the burner at a predetermined level for a predetermined time. The signal conditioner may also include a temperature override circuit, which receives a temperature of air from the burner. If the temperature is above or below established limits, the temperature override circuit substitutes a temperature override signal to the burner.




o

Multi-gas burner head with sucked or blown air

The finding concerns a multi-gas burner head with sucked or blown air, from which the mixture of fuel gas and comburent air comes out and the combustion occurs. Such a head is made from a metallic sheet in which there is at least one row of aligned slits (2), substantially rectangular-shaped; such a sheet is folded so as to have a series of flat flaps (3) in succession, each of the slits being arranged so as to be closed like a “sandwich” between two flat portions of the sheet, once the flaps of the structure are mutually compressed. The gas mixture is intended to pass from the bottom (5) of the flaps and then through the slits and finally to come out at two side by side crests (6) of the structure where the combustion occurs.




o

Engine and combustion system

One embodiment of the present invention is an engine. Another embodiment is a unique combustion system. Other embodiments include apparatuses, systems, devices, hardware, methods, and combinations for engines and combustion systems. Further embodiments, forms, features, aspects, benefits, and advantages of the present application will become apparent from the description and figures provided herewith.




o

Exhaust aftertreatment burner with preheated combustion air

A burner for an exhaust aftertreatment system may include a housing assembly and an ignition device. The housing assembly may include an inner shell surrounded by intermediate and outer shells. The inner shell may at least partially define a combustion chamber. The housing assembly may include an airflow passage having an opening extending through the outer shell. The airflow passage may extend between the outer shell and the intermediate shell as well as between the intermediate shell and the inner shell. The airflow passage may provide fluid communication between the opening and the combustion chamber. The ignition device may be at least partially disposed within the housing assembly and may ignite fuel received from a fuel source and air received from the airflow passage to produce a flame in the combustion chamber. The airflow passage may be in a heat transfer relationship with the flame in the combustion chamber.




o

Ion sensor with decoking heater

An exhaust treatment system may include a burner, a flame sensor assembly and a control module. The flame sensor assembly may be at least partially disposed within the burner and may include an insulator and an electric heating element in heat transfer relation with the insulator. The control module may be in communication with the flame sensor assembly. The control module may determine whether a flame is present in a combustion chamber based on feedback from the flame sensor assembly. The control module may detect contamination on the insulator based on feedback from the flame sensor assembly. The control module may operate the heating element in a first mode in response to detection of a contamination in which the control module causes electrical power to be applied to the heating element to raise a temperature of the heating element to burn contamination off of the insulator.




o

Automated setup process for metered combustion control systems

A method is provided for the automated setup of a metered combustion control system for controlling operation of a boiler combustion system. The automated setup process includes both commissioning and controller tuning, rather than tuning the carbon monoxide and/or oxygen trim controller after the commissioning process has been completed. The oxygen trim controller or the carbon monoxide trim controller is used to identify the air/fuel ratio.




o

Combustion chamber and method for damping pulsations

A combustion chamber is provided and includes a combustion device and a supply circuit arranged to feed fuel at a plurality of locations of the combustion device. The supply circuit includes manifolds collecting fuel to be distributed among at least some of the locations, ducts extending from the manifolds and feeding the locations. Some of the ducts carry valves having a plurality of predetermined working positions, each working position corresponding to a different fuel flow through the valve.




o

Systems and methods for detecting combustor casing flame holding in a gas turbine engine

In a gas turbine engine that includes a compressor and a combustor, wherein the combustor includes a primary fuel injector within a fuel nozzle and a secondary fuel injector that is upstream of the fuel nozzle and configured to inject fuel into a flow annulus of the combustor, a method for detecting a flame holding condition about a fuel injector. The method may include the steps of: detecting an upstream pressure upstream of the secondary fuel injector; detecting a downstream pressure downstream of the secondary fuel injector; determining a measured pressure difference between the upstream pressure and the downstream pressure; and comparing the measured pressure difference to an expected pressure difference.




o

Combustor

A combustor includes a casing that surrounds at least a portion of the combustor and includes an end cover at one end of the combustor. An end cap axially separated from the end cover is configured to extend radially across at least a portion of the combustor and includes an upstream surface axially separated from a downstream surface. A plurality of tubes extends from the upstream surface through the downstream surface to provide fluid communication through the end cap. A cap shield extends axially from the end cover and circumferentially surrounds and supports the end cap.




o

Flue gas recirculation method and system for combustion systems

A method and system for improving high excess air combustion system efficiency, including induration furnaces, using a re-routing of flue gas within the system by gas recirculation. Flue gas is drawn from hot system zones including zones near the stack, for re-introduction into the process whereby the heat recovery partially replaces fuel input. At least one pre-combustion drying zone, at least one combustion zone, and at least a first cooling zone exist in these furnaces. At least one exhaust gas outlet is provided to each pre-combustion drying and combustion zone. At least part of the gaseous flow from each system zone exhaust outlet is selectively delivered to an overall system exhaust, the remaining flow being selectively delivered via recirculation to cooling zones. Recirculation flow is adjusted to meet required system temperatures and pressures. The method and system provide efficiency improvements, reducing fuel requirements and greenhouse gas emissions.




o

Candle having a planar wick and method of and equipment for making same

A candle having a body of a meltable fuel and a planar wick. When lit, the candle provides a unique flame formation, usable in a variety of decorative applications. The wick can be configured to evenly deplete the meltable fuel, while allowing for candles having relatively large and unique body configurations. The body of candle and/or the wick may include scented oil to promote the release of fragrance upon heating. The wick preferably is formed of wood, thereby providing an acoustic contribution to ambiance and improved combustion that generates less soot than conventional cotton wick candles.




o

Combustible fluid cutting safety system

Embodiments of the present invention provide components and a system for providing a safer environment for using a cutting torch. The system includes a cutting torch and a control box. There is communication from the user to the control box to allow fluids to flow to the torch. The control box includes closed biased valve(s) such that if there is a condition where there is no instruction from the torch to the control box and/or power is lost, the valves will shut, preventing fluid from flowing into the torch.




o

Method of foil transfer employing foil transferring face forming toner and image forming method

A method of transferring a foil comprising: forming a foil transferring face on a photoreceptor employing a foil transferring face forming toner; transferring the foil transferring face onto a base substance, followed by fixing the foil transferring face; supplying a transfer foil having at least a foil and an adhesive layer on the base substance having the fixed foil transferring face, heating the transfer foil and the foil transferring face while the adhesive layer of the transfer foil is in contact with the foil transferring face to adhere the foil onto the foil transferring face; removing the transfer foil from the base substance while leaving the foil adhered onto the foil transferring face, wherein the foil transferring face forming toner comprises at least a binder resin, wherein the binder resin comprises a polymer formed by using a vinyl monomer comprising at least a carboxyl group.




o

***WITHDRAWN PATENT AS PER THE LATEST USPTO WITHDRAWN LIST***Method of producing gallium phthalocyanine crystal and method of producing electrophotographic photosensitive member using the method of producing gallium phthalocyanine crystal

Provided is a method of producing an electrophotographic photosensitive member having improved sensitivity and capable of outputting an image having less image defects due to a ghost phenomenon not only under a normal-temperature, normal-humidity environment but also under a low-temperature, low-humidity environment as a particularly severe condition. The method of producing a gallium phthalocyanine crystal includes subjecting a gallium phthalocyanine and a specific amine compound, which are added to a solvent, to a milling treatment to perform crystal transformation of the gallium phthalocyanine. In addition, the gallium phthalocyanine crystal is used in the photosensitive layer of the electrophotographic photosensitive member.




o

Method for producing liquid developer

A method for producing a liquid developer containing toner particles containing a resin containing a polyester and a pigment, and an insulating liquid, wherein the toner particles are dispersed in the insulating liquid, including: step 1: melt-kneading the resin and the pigment, and pulverizing a melt-kneaded mixture to provide toner particles; step 2: dispersing the toner particles obtained in the step 1 in the insulating liquid in the presence of a basic dispersant to provide a dispersion of toner particles; and step 3: wet-milling the dispersion of toner particles obtained in the step 2 to provide a liquid developer, wherein the basic dispersant is an amide compound obtained by a reaction between a polyethyleneimine and a polyester (D) obtained by self-condensation of 12-hydroxystearic acid. The liquid developer obtained by the method of the present invention can be suitably used in development of latent images formed in, for example, an electrophotographic method, an electrostatic recording method, an electrostatic printing method, or the like.




o

Compound and method of producing the same, acid generator, resist composition and method of forming resist pattern

A resist composition including a base component (A) which exhibits changed solubility in an alkali developing solution under action of acid and an acid-generator component (B) which generates acid upon exposure, the acid-generator component (B) including an acid generator (B1) consisting of a compound represented by general formula (b1-1) shown below: wherein RX represents a hydrocarbon group which may have a substituent exclusive of a nitrogen atom; each of Q2 and Q3 independently represents a single bond or a divalent linkage group; Y1 represents an alkylene group or fluorinated alkyl group of 1 to 4 carbon atoms; and Z+ represents an organic cation exclusive of an ion represented by general formula (w-1).




o

Chemically amplified positive photoresist composition

A photoresist composition. The composition has the following: (a) one or more resin binders that include one or more acid sensitive groups and that are substantially free of phenolic groups protected by acetal or ketal groups; (b) one or more photo acid generators, that, upon exposure to a source of high energy, decompose and generate a photoacid strong enough to remove the one or more acid sensitive groups; (c) one or more ionic non-photosensitive additives including an iminium salt; and (d) one or more solvents. There is also a process for patterning relief structures on a substrate employing the photoresist composition.




o

Actinic-ray- or radiation-sensitive resin composition, actinic-ray- or radiation-sensitive film and method of forming pattern

Provided is an actinic-ray- or radiation-sensitive resin composition including (A) a compound that when exposed to actinic rays or radiation, generates an acid, (B) a resin that when acted on by an acid, increases its rate of dissolution in an alkali developer, and (C) a hydrophobic resin, wherein the hydrophobic resin (C) contains a repeating unit derived from any of monomers of general formula (1) below.




o

Negative resist composition and pattern forming method using the same

A negative resist composition, includes: (A) an alkali-soluble polymer containing a specific repeating unit as defined in the specification; (B) a crosslinking agent capable of crosslinking with the alkali soluble polymer (A) under an action of an acid; (C) a compound capable of generating an acid upon irradiation with actinic rays or radiation; (D) a specific quaternary ammonium salt as defined in the specification; and (E) an organic carboxylic acid, and a pattern forming method uses the composition.




o

Photosensitive composition comprising an acrylate compound

The present invention relates to a photosensitive composition including an acrylate-based compound having an adamantyl structure. It is possible to manufacture an organic thin film that is easily stripped without decreasing the strength of the thin film by using the photosensitive composition.




o

Pattern improvement in multiprocess patterning

Improved fidelity to an integrated circuit pattern design in a semiconductor structure ultimately produced is achieved by modeling material removal and deposition processes in regard to materials, reactant, feature size, feature density, process parameters and the like as well as the effects of such parameters on etch and material deposition bias due to microloading and RIE lag (including inverse RIE lag) and using the models to work backward through the intended manufacturing method steps, including hard mask pattern decomposition, to morphologically develop feature patterns for use in most or all process steps which will result in the desired feature sizes and shapes at the completion of the overall process. Modeling of processes may be simplified through use of process assist features to locally adjust rates of material deposition and removal.




o

Micro-truss structures having in-plane structural members

An enhanced self-writing method for generating in-plane (horizontally-oriented) polymer lightguides that includes disposing one or more light deflecting structures in or on the upper surface of a uncured layer that deflect incident collimated light beams in a transverse direction (i.e., parallel to the uncured layer top layer surface), whereby the deflected collimated light beam polymerizes a corresponding elongated portion of the uncured material in a self-propagating manner to form in-plane polymer lightguides. When used in the fabrication of micro-truss structures, the in-plane polymer lightguides are linked to diagonal polymer lightguides to form superior truss configurations, such as that of the ideal octet-truss structure. Non-polymerized portions of the uncured layer are removed to expose the micro-truss structure for further processing.




o

Reader fabrication method employing developable bottom anti-reflective coating

Disclosed are methods for making read sensors using developable bottom anti-reflective coating and amorphous carbon (a-C) layers as junction milling masks. The methods described herein provide an excellent chemical mechanical polishing or planarization (CMP) stop, and improve control in reader critical physical parameters, shield to shield spacing (SSS) and free layer track width (FLTW).




o

Method of fabricating substrate for organic light-emitting device

A substrate for an organic light-emitting device which can improve the light extraction efficiency of an organic light-emitting device while realizing an intended level of transmittance, a method of fabricating the same, and an organic light-emitting device having the same. Light emitted from the OLED is emitted outward through the substrate. The substrate includes a substrate body and a number of crystallized particles disposed inside the substrate body, the number of crystallized particles forming a pattern inside the substrate body.




o

Resin composition for forming optical waveguide and optical waveguide using the composition

A resin composition for forming an optical waveguide brings together excellent bending resistance, a low refractive index, and low tackiness suitable for a roll-to-roll (R-to-R) process as a material for forming an optical waveguide, in particular, a material for forming a clad layer. The resin composition for forming an optical waveguide to be used in formation of an optical waveguide includes a polyvinyl acetal compound having a structural unit represented by the following general formula (1) as a main component: in the formula (1), R represents an alkyl group having 1 to 3 carbon atoms, and k, m, and n represent ratios of respective repeating units in a main chain and each represent an integer of 1 or more.




o

Method for manufacturing liquid crystal display device, and liquid crystal display device

Provided is a method for manufacturing a liquid crystal display device that includes a photoalignment film. The photoalignment film is formed from a liquid crystal alignment agent, and aligns liquid crystal molecules horizontally to the main face of the at least one of the substrates. The liquid crystal alignment agent contains a solvent and at least two kinds of polyamic acids or their derivatives obtained by reacting diamine and tetracarboxylic dianhydride. At least two of the diamines and at least one of the tetracarboxylic dianhydrides are compounds represented by predetermined formulas. The method includes the steps of: (1) forming the film of the liquid crystal alignment agent; (2) pre-baking the film; (3) irradiating the pre-baked film with light; and (4) post-baking the irradiated film, the step (4) including an operation of post-baking the film multiple times at temperatures ranging from low to high temperatures.




o

Liquid deposition photolithography

Systems and methods for liquid deposition photolithography are described. In particular, some embodiments relate to systems and methods for using photolithography to control the 2D structure of a thin layer of material (e.g., photopolymer) using various masks, projection optics and materials. In one or more embodiments, this thin layer can be manipulated by micro-fluidic techniques such that it can be formed, patterned and post-processed in a liquid environment, vastly simplifying the creation of multi-layer structures. Multiple layers are rapidly built up to create thick structures of possibly multiple materials that are currently challenging to fabricate by existing methods.




o

Extreme ultraviolet lithography process and mask

An extreme ultraviolet lithography (EUVL) process is performed on a target, such as a semiconductor wafer, having a photosensitive layer. The method includes providing a one-dimensional patterned mask along a first direction. The patterned mask includes a substrate including a first region and a second region, a multilayer mirror above the first and second regions, an absorption layer above the multilayer mirror in the second region, and a defect in the first region. The method further includes exposing the patterned mask by an illuminator and setting the patterned mask and the target in relative motion along the first direction while exposing the patterned mask. As a result, an accumulated exposure dose received by the target is an optimized exposure dose.




o

Methods of forming patterns

Some embodiments include methods of forming patterns of openings. The methods may include forming spaced features over a substrate. The features may have tops and may have sidewalls extending downwardly from the tops. A first material may be formed along the tops and sidewalls of the features. The first material may be formed by spin-casting a conformal layer of the first material across the features, or by selective deposition along the features relative to the substrate. After the first material is formed, fill material may be provided between the features while leaving regions of the first material exposed. The exposed regions of the first material may then be selectively removed relative to both the fill material and the features to create the pattern of openings.




o

Foil transferring apparatus and image forming system using the same

In a first thermal transfer portion of upstream side, a negative toner image forming portion forms on a photosensitive drum a desired negative toner image which reverses a desired positive toner image selected from all the toner images. The negative toner image forming portion then forms the desired negative toner image on a belt member. The first thermal transfer portion transfers a desired negative foil image from a foil sheet to the belt member so that a desired positive foil image remains on the foil sheet. A second transfer portion transfers the desired positive foil image thus remained on the desired positive toner image formed on the sheet of paper. A cleaning portion removes the desired negative toner image and the desired negative foil image from the belt member.




o

Method for producing cleaning blade

In a method for producing a cleaning blade, a first composition obtained by causing a reaction of diphenylmethane diisocyanate and a first aliphatic polyester polyol which has a number-average molecular weight of 2000 to 3500 and is used in an amount of 20 to 40 mol % relative to the diphenylmethane diisocyanate and a second composition containing a urethane rubber-synthesizing catalyst and a second aliphatic polyester polyol which has a number-average molecular weight of 2000 to 3500 and is the same as or different from the first aliphatic polyester polyol are mixed so that a relationship between a number of moles (MNCO [mol]) of an NCO group in the first composition and a number of moles (MOH [mol]) of an OH group in the second composition satisfies 0.05≦MOH/MNCO≦0.20.




o

Mask and method of manufacturing a substrate using the mask

A mask includes a substantially transparent portion. The mask further includes a halftone portion abutting the substantially transparent portion, a light transmittance of the halftone portion being greater than 0% and less than 100%. The mask further includes a blocking portion abutting the halftone portion, a light transmittance of the blocking portion being less than the light transmittance of the halftone portion.




o

Endpoint detection for photolithography mask repair

A method includes scanning a lithography mask with a repair process, and measuring back-scattered electron signals of back-scattered electrons generated from the scanning. An endpoint is determined from the back-scattered electron signals. A stop point is calculated from the endpoint. The step of scanning is stopped when the calculated stop point is reached.




o

Positive photosensitive resin composition, photosensitive resin film prepared by using the same, and semiconductor device including the photosensitive resin film

Disclosed is a positive photosensitive resin composition that includes (A) an alkali soluble resin prepared by a phosphorous-containing diamine represented by the following Chemical Formula 1, (B) a photosensitive diazoquinone compound, and (C) a solvent. A photosensitive resin film prepared using the same and a semiconductor device including the photosensitive resin film are also disclosed. In Chemical Formula 1, each substituent is the same as defined in the detailed description.




o

Electrophotographic photosensitive member, process cartridge and electrophotographic apparatus, and method of manufacturing electrophotographic photosensitive member

Provided are an electrophotographic photosensitive member in which leakage doesn't easily occur, a process cartridge and an electrophotographic apparatus each including the electrophotographic photosensitive member, and a method of manufacturing the electrophotographic photosensitive member. The electrophotographic photosensitive member includes a conductive layer including titanium oxide particle coated with tin oxide doped with a hetero element. When an absolute value of a maximum current amount flowing through the conductive layer in a case of performing a test of applying −1.0 kV including DC voltage to the conductive layer is defined as Ia, and an absolute value of a current amount flowing through the conductive layer in a case where a decrease ratio of a current amount per minute reaches 1% or less for the first time is defined as Ib, the relations of Ia≦6000 and 10≦Ib are satisfied. A volume resistivity of the conductive layer before the test is 1.0×108 Ω·cm to 5.0×1012 Ω·cm.




o

Amine compound, electrophotographic photoconductor, image forming method, image forming apparatus, and process cartridge

To provide an amine compound, represented by General Formula (I) below: [In General Formula (I), R1 and R2 represent a substituted or unsubstituted alkyl group, a substituted or unsubstituted aralkyl group, or a substituted or unsubstituted aromatic hydrocarbon group, which may be identical or different; m and n are an integer of 1 or 0; Ar1 represents a substituted or unsubstituted aromatic hydrocarbon group; Ar2 and Ar3 represent a substituted or unsubstituted alkyl group, a substituted or unsubstituted aralkyl group, or a substituted or unsubstituted aromatic hydrocarbon group; and Ar1 and Ar2 or Ar2 and Ar3 may bind to each other to form a substituted or unsubstituted heterocyclic group including a nitrogen atom.]




o

Toner

Provided is a toner satisfying low-temperature fixing performance and long-term storage stability of fixed images. Further, provided is a toner capable of obtaining toner images excellent in long-term storage stability irrespective of use environments even in the case where images are formed by a high-speed fixing system having low internal pressure of a fixing nip of a fixing device and a high printing speed. The toner includes toner particles containing a binder resin having a resin A and B, and a coloring agent, in which the resin A includes a resin including a moiety capable of forming a crystalline structure; the resin B includes a resin free of a moiety capable of forming a crystalline structure; and ΔHhigh and ΔHlow satisfy the expressions: 2≦ΔHhigh≦45 3[%]≦{(ΔHlow−ΔHhigh)/ΔHlow}×100≦70[%] where ΔHhigh and ΔHlow represent a heat of melting derived from the binder resin measured at a temperature increase speed of 100° C./min and 10° C./min, respectively.




o

Carrier, two-component developer using the same, and image-forming apparatus using said developer

The present invention provides a carrier for a two-component electrophotographic developer, comprising a core particle and a thermoset silicone resin layer coated thereon, wherein said layer comprises a charge control agent and is formed by heat-treatment at a temperature below the melting point of said charge control agent.




o

Solution of gallium phthalocyanine method for preparing the same method for producing gallium phthalocyanine crystal method for purifying composition containing gallium phthalocyanine and method for producing electrophotographic photosensitive member

A solution of a gallium phthalocyanine contains a compound of formula (1) and a gallium phthalocyanine of formula (2), H2N—CH2—R1—CH2—NH2 (1) wherein R1 represents a single bond, or a substituted or unsubstituted alkylene group having 1 to 10 main-chain carbon atoms, a substituent of the substituted alkylene group is an alkyl group having 1 to 3 carbon atoms, an alkyl group having 1 to 3 carbon atoms and being substituted with an amino group, or a hydroxy group, one of the carbon atoms in the main chain of the alkylene group may be replaced with an oxygen atom, a sulfur atom, or a bivalent group represented by the formula —NR2—, and R2 represents a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, or an alkyl group having 1 to 3 carbon atoms and being substituted with an amino group, and wherein X1 represents a chlorine atom or hydroxy group.




o

Compound and method of producing the same, acid generator, resist composition and method of forming resist pattern

A resist composition including a base component which exhibits changed solubility in an alkali developing solution under action of acid and an acid-generator component which generates acid upon exposure, the acid-generator including an acid generator consisting of a compound represented by general formula (b1-1) shown below: In which RX represents a hydrocarbon group which may have a substituent exclusive of a nitrogen atom; each of Q2 and Q3 independently represents a single bond or a divalent linkage group; Y1 represents an alkylene group or fluorinated alkyl group of 1 to 4 carbon atoms; and Z+ represents an organic cation exclusive of an ion represented by general formula (w-1).




o

Radiation-sensitive resin composition, method for forming resist pattern, and polymer and compound

A radiation-sensitive resin composition that provides a resist coating film in a liquid immersion lithography process is provided, the radiation-sensitive resin composition being capable of exhibiting a great dynamic contact angle during exposure, whereby the surface of the resist coating film can exhibit a superior water draining property, and the radiation-sensitive resin composition being capable of leading to a significant decrease in the dynamic contact angle during development, whereby generation of development defects can be inhibited, and further shortening of a time period required for change in a dynamic contact angle is enabled. A radiation-sensitive resin composition including (A) a fluorine-containing polymer having a structural unit (I) that includes a group represented by the following formula (1), and (B) a radiation-sensitive acid generator.




o

Polymerizable tertiary ester compound, polymer, resist composition, and patterning process

The present invention provides a polymerizable tertiary ester compound represented by the following general formula (1a) or (1b). There is provided a polymerizable ester compound useful as a monomer for a base resin of a resist composition having a high resolution and a reduced pattern edge roughness in photolithography using a high-energy beam such as an ArF excimer laser light as a light source, especially in immersion lithography, a polymer containing a polymer of the ester compound, a resist composition containing the polymer as a base resin, and a patterning process using the resist composition.




o

Resist composition, patterning process and polymer

An additive polymer comprising recurring styrene units having an ester group bonded to a CF3—C(OR2)—R3 group (wherein R2 is H, acyl or acid labile group, R3 is H, CH3 or CF3) such as 1,1,1,3,3,3-hexafluoro-2-propanol is added to a polymer capable of increasing alkali solubility under the action of acid to formulate a resist composition. The resist composition can minimize outgassing from a resist film during the EUV lithography and form a resist film having a hydrophilic surface sufficient to prevent formation of blob defects on the film after development.




o

Resist composition, method of forming resist pattern and compound

A resist composition which generates acid upon exposure and exhibits changed solubility in a developing solution under action of acid, including a base component (A) which exhibits changed solubility in a developing solution under action of acid, and a photo-decomposable quencher (D0) containing a compound represented by general formula (d0) shown below. In the formula, R1 represents a hydrocarbon group of 4 to 20 carbon atoms which may have a substituent; Y1 represents a single bond or a divalent linking group; R2 and R3 each independently represents a substituent of 0 to 20 carbon atoms other than a fluorine atom; one of R2 and R3 may form a ring with Y1; Mm+ represents an organic cation having a valency of m; and m represents an integer of 1 or more.




o

Developable bottom antireflective coating composition and pattern forming method using thereof

The present invention relates to a developable bottom antireflective coating (BARC) composition and a pattern forming method using the BARC composition. The BARC composition includes a first polymer having a first carboxylic acid moiety, a hydroxy-containing alicyclic moiety, and a first chromophore moiety; a second polymer having a second carboxylic acid moiety, a hydroxy-containing acyclic moiety, and a second chromophore moiety; a crosslinking agent; and a radiation sensitive acid generator. The first and second chromophore moieties each absorb light at a wavelength from 100 nm to 400 nm. In the patterning forming method, a photoresist layer is formed over a BARC layer of the BARC composition. After exposure, unexposed regions of the photoresist layer and the BARC layer are selectively removed by a developer to form a patterned structure in the photoresist layer. The BARC composition and the pattern forming method are especially useful for implanting levels.




o

Method of improving print performance in flexographic printing plates

A method of tailoring the shape of a plurality of relief printing dots created in a photosensitive printing blank during a platemaking process including the steps of: (a) selectively exposing at least one photocurable layer to a source of actinic radiation to selectively crosslink and cure the at least one photocurable layer; and (b) developing the exposed at least one photocurable layer to reveal the relief image therein, said relief image comprising the plurality of relief printing dots. The source of actinic radiation comprises a source of UV light in the UV-A range and a source of light in the UV-C range. The at least one photocurable layer is simultaneously exposed to the source of UV light in the UV-A range and the source of UV light in the UV-C range to produce printing dots having at least one desired geometric characteristic.




o

Microstructure manufacturing method

A microstructure manufacturing method includes forming a layer of a photosensitive resin on a substrate surface having an electrical conductivity, forming a structure of the photosensitive resin by exposing the layer of the photosensitive resin to light and developing the layer of the photosensitive resin to expose a part of the substrate surface, forming a first plated layer on the exposed part of the substrate surface by soaking the structure of the photosensitive resin in a first plating solution, curing the structure of the photosensitive resin after forming the first plated layer, removing at least part of the first plated layer after curing the structure of the photosensitive resin, and forming a second plated layer on a part where the first plated layer is removed, by soaking the structure of the photosensitive resin in a second plating solution different from the first plating solution.




o

Method for forming patterns of semiconductor device by using mixed assist feature system

A method for forming patterns of a semiconductor device includes providing a photomask that includes an array of contact holes in an active region, a plurality of first dummy contact holes for restricting pattern distortion of the contact holes in an area outside of the array of the contact holes, a plurality of first assist features for restricting pattern distortion of the first dummy contact holes disposed inside a corresponding one of the first dummy contact holes, and an array of second assist features for additionally restricting pattern distortion of the first dummy contact holes. The array of second assist features is disposed outside of the first dummy contact holes. The method also includes forming an array of contact holes and first dummy contact holes on a wafer by using the photomask as an exposure mask.




o

Maskless process for pre-tilting liquid crystal molecules

A method of tilting liquid crystal molecules is presented. The method entails providing a substrate including a photoalignment layer on top of a layer of liquid crystal molecules. The photoalignment layer is exposed to patterned light that is incident on the substrate at a substantially normal angle. The patterned light is polarized in a polarization direction that is non-parallel to an incident surface of the substrate.