phy Your decision-making ability is a superpower physics can't explain By www.newscientist.com Published On :: Wed, 12 Feb 2020 06:00:00 +0000 In a universe that unthinkingly follows the rules, human agency is an anomaly. Can physics ever make sense of our power to change the physical world at will? Full Article
phy Until the End of Time tries to use physics to find the meaning of life By www.newscientist.com Published On :: Tue, 18 Feb 2020 18:05:08 +0000 Brian Greene's new book argues that life is rare and extraordinary, probably transient, and that in the search for purpose, the only significant answers are ones we create Full Article
phy Antimatter looks just like matter – which is a big problem for physics By www.newscientist.com Published On :: Wed, 19 Feb 2020 16:00:00 +0000 A difference in the properties of matter and antimatter could help explain our universe – but a property called the Lamb shift is similar in particles of both Full Article
phy Jim Al-Khalili's The World According to Physics is a thrilling ride By www.newscientist.com Published On :: Wed, 25 Mar 2020 18:00:00 +0000 A new book from Jim Al-Khalili makes cutting-edge physics easily understandable and makes it clear why he fell in love with the subject as a teenager Full Article
phy Photography: heating up the climate campaign By www.newscientist.com Published On :: Thu, 20 Sep 2018 18:40:52 +0000 At Unseen Amsterdam, striking images of a melting glacier are stirring visitors to action Full Article
phy Your decision-making ability is a superpower physics can't explain By www.newscientist.com Published On :: Wed, 12 Feb 2020 06:00:00 +0000 In a universe that unthinkingly follows the rules, human agency is an anomaly. Can physics ever make sense of our power to change the physical world at will? Full Article
phy Volunteer Physicians Procure PPE, Build Largest Platform By www.webmd.com Published On :: Thu, 07 May 2020 10:49:57 EST When pleas for protective equipment failed to produce results, individuals decided to take matters in their own hands and set up a distribution channel, now the most centralized platform in the US. Full Article
phy Therapeutic and Prophylactic Antitumor Activity of an Oral Inhibitor of Fucosylation in Spontaneous Mammary Cancers By mct.aacrjournals.org Published On :: 2020-05-04T05:39:42-07:00 2-fluorofucose (2FF) inhibits protein and cellular fucosylation. Afucosylation of IgG antibodies enhances antibody-dependent cell-mediated cytotoxicity by modulating antibody affinity for FcRIIIa, which can impact secondary T-cell activation. Immune responses toward most common solid tumors are dominated by a humoral immune response rather than the presence of tumor-infiltrating cytotoxic T cells. IgG antibodies directed against numerous tumor-associated proteins are found in the sera of both patients with breast cancer and transgenic mice bearing mammary cancer. We questioned whether 2FF would have antitumor activity in two genetically distinct transgenic models; TgMMTV-neu (luminal B) and C3(1)-Tag (basal) mammary cancer. 2FF treatment significantly improved overall survival. The TgMMTV-neu doubled survival time compared with controls [P < 0.0001; HR, 7.04; 95% confidence interval (CI), 3.31–15.0], and survival was significantly improved in C3(1)-Tag (P = 0.0013; HR, 3.36; 95% CI, 1.58–7.14). 2FF treated mice, not controls, developed delayed-type hypersensitivity and T-cell responses specific for syngeneic tumor lysates (P < 0.0001). Serum IgG from 2FF-treated mice enhanced tumor lysis more efficiently than control sera (P = 0.004). Administration of 2FF for prophylaxis, at two different doses, significantly delayed tumor onset in both TgMMTV-neu; 20 mmol/L (P = 0.0004; HR, 3.55; 95% CI, 1.60–7.88) and 50 mmol/L (P = 0.0002; HR: 3.89; 95% CI, 1.71–8.86) and C3(1)-Tag; 20 mmol/L (P = 0.0020; HR, 2.51; 95% CI, 1.22–5.18), and 50 mmol/L (P = 0.0012; HR, 3.36; 95% CI, 1.57–7.18). Mammary cancer was prevented in 33% of TgMMTV-neu and 26% of C3(1)-Tag. 2FF has potent antitumor effects in mammary cancer models. The agent shows preclinical efficacy for both cancer treatment and prevention. Full Article
phy Nanodomains can persist at physiologic temperature in plasma membrane vesicles and be modulated by altering cell lipids [Research Articles] By www.jlr.org Published On :: 2020-05-01T00:05:27-07:00 The formation and properties of liquid-ordered (Lo) lipid domains (rafts) in the plasma membrane are still poorly understood. This limits our ability to manipulate ordered lipid domain-dependent biological functions. Giant plasma membrane vesicles (GPMVs) undergo large-scale phase separations into coexisting Lo and liquid-disordered lipid domains. However, large-scale phase separation in GPMVs detected by light microscopy is observed only at low temperatures. Comparing Förster resonance energy transfer-detected versus light microscopy-detected domain formation, we found that nanodomains, domains of nanometer size, persist at temperatures up to 20°C higher than large-scale phases, up to physiologic temperature. The persistence of nanodomains at higher temperatures is consistent with previously reported theoretical calculations. To investigate the sensitivity of nanodomains to lipid composition, GPMVs were prepared from mammalian cells in which sterol, phospholipid, or sphingolipid composition in the plasma membrane outer leaflet had been altered by cyclodextrin-catalyzed lipid exchange. Lipid substitutions that stabilize or destabilize ordered domain formation in artificial lipid vesicles had a similar effect on the thermal stability of nanodomains and large-scale phase separation in GPMVs, with nanodomains persisting at higher temperatures than large-scale phases for a wide range of lipid compositions. This indicates that it is likely that plasma membrane nanodomains can form under physiologic conditions more readily than large-scale phase separation. We also conclude that membrane lipid substitutions carried out in intact cells are able to modulate the propensity of plasma membranes to form ordered domains. This implies lipid substitutions can be used to alter biological processes dependent upon ordered domains. Full Article
phy Schnyder corneal dystrophy-associated UBIAD1 is defective in MK-4 synthesis and resists autophagy-mediated degradation [Research Articles] By www.jlr.org Published On :: 2020-05-01T00:05:27-07:00 The autosomal dominant disorder Schnyder corneal dystrophy (SCD) is caused by mutations in UbiA prenyltransferase domain-containing protein-1 (UBIAD1), which uses geranylgeranyl pyrophosphate (GGpp) to synthesize the vitamin K2 subtype menaquinone-4 (MK-4). SCD is characterized by opacification of the cornea, owing to aberrant build-up of cholesterol in the tissue. We previously discovered that sterols stimulate association of UBIAD1 with ER-localized HMG-CoA reductase, which catalyzes a rate-limiting step in the synthesis of cholesterol and nonsterol isoprenoids, including GGpp. Binding to UBIAD1 inhibits sterol-accelerated ER-associated degradation (ERAD) of reductase and permits continued synthesis of GGpp in cholesterol-replete cells. GGpp disrupts UBIAD1-reductase binding and thereby allows for maximal ERAD of reductase as well as ER-to-Golgi translocation of UBIAD1. SCD-associated UBIAD1 is refractory to GGpp-mediated dissociation from reductase and remains sequestered in the ER to inhibit ERAD. Here, we report development of a biochemical assay for UBIAD1-mediated synthesis of MK-4 in isolated membranes and intact cells. Using this assay, we compared enzymatic activity of WT UBIAD1 with that of SCD-associated variants. Our studies revealed that SCD-associated UBIAD1 exhibited reduced MK-4 synthetic activity, which may result from its reduced affinity for GGpp. Sequestration in the ER protects SCD-associated UBIAD1 from autophagy and allows intracellular accumulation of the mutant protein, which amplifies the inhibitory effect on reductase ERAD. These findings have important implications not only for the understanding of SCD etiology but also for the efficacy of cholesterol-lowering statin therapy, which becomes limited, in part, because of UBIAD1-mediated inhibition of reductase ERAD. Full Article
phy Lipid rafts and neurodegeneration: structural and functional roles in physiologic aging and neurodegenerative diseases [Thematic Reviews] By www.jlr.org Published On :: 2020-05-01T00:05:27-07:00 Lipid rafts are small, dynamic membrane areas characterized by the clustering of selected membrane lipids as the result of the spontaneous separation of glycolipids, sphingolipids, and cholesterol in a liquid-ordered phase. The exact dynamics underlying phase separation of membrane lipids in the complex biological membranes are still not fully understood. Nevertheless, alterations in the membrane lipid composition affect the lateral organization of molecules belonging to lipid rafts. Neural lipid rafts are found in brain cells, including neurons, astrocytes, and microglia, and are characterized by a high enrichment of specific lipids depending on the cell type. These lipid rafts seem to organize and determine the function of multiprotein complexes involved in several aspects of signal transduction, thus regulating the homeostasis of the brain. The progressive decline of brain performance along with physiological aging is at least in part associated with alterations in the composition and structure of neural lipid rafts. In addition, neurodegenerative conditions, such as lysosomal storage disorders, multiple sclerosis, and Parkinson’s, Huntington’s, and Alzheimer’s diseases, are frequently characterized by dysregulated lipid metabolism, which in turn affects the structure of lipid rafts. Several events underlying the pathogenesis of these diseases appear to depend on the altered composition of lipid rafts. Thus, the structure and function of lipid rafts play a central role in the pathogenesis of many common neurodegenerative diseases. Full Article
phy Targeting Hidden Pathogens: Cell-Penetrating Enzybiotics Eradicate Intracellular Drug-Resistant Staphylococcus aureus By mbio.asm.org Published On :: 2020-04-14T01:31:22-07:00 ABSTRACT Staphylococcus aureus is a major concern in human health care, mostly due to the increasing prevalence of antibiotic resistance. Intracellular localization of S. aureus plays a key role in recurrent infections by protecting the pathogens from antibiotics and immune responses. Peptidoglycan hydrolases (PGHs) are highly specific bactericidal enzymes active against both drug-sensitive and -resistant bacteria. However, PGHs able to effectively target intracellular S. aureus are not yet available. To overcome this limitation, we first screened 322 recombineered PGHs for staphylolytic activity under conditions found inside eukaryotic intracellular compartments. The most active constructs were modified by fusion to different cell-penetrating peptides (CPPs), resulting in increased uptake and enhanced intracellular killing (reduction by up to 4.5 log units) of various S. aureus strains (including methicillin-resistant S. aureus [MRSA]) in different tissue culture infection models. The combined application of synergistic PGH-CPP constructs further enhanced their intracellular efficacy. Finally, synergistically active PGH-CPP cocktails reduced the total S. aureus by more than 2.2 log units in a murine abscess model after peripheral injection. Significantly more intracellular bacteria were killed by the PGH-CPPs than by the PGHs alone. Collectively, our findings show that CPP-fused PGHs are effective novel protein therapeutics against both intracellular and drug-resistant S. aureus. IMPORTANCE The increasing prevalence of antibiotic-resistant bacteria is one of the most urgent problems of our time. Staphylococcus aureus is an important human pathogen that has acquired several mechanisms to evade antibiotic treatment. In addition, S. aureus is able to invade and persist within human cells, hiding from the immune response and antibiotic therapies. For these reasons, novel antibacterial strategies against these pathogens are needed. Here, we developed lytic enzymes which are able to effectively target drug-resistant and intracellular S. aureus. Fusion of these so-called enzybiotics to cell-penetrating peptides enhanced their uptake and intracellular bactericidal activity in cell culture and in an abscess mouse model. Our results suggest that cell-penetrating enzybiotics are a promising new class of therapeutics against staphylococcal infections. Full Article
phy Processing, Export, and Identification of Novel Linear Peptides from Staphylococcus aureus By mbio.asm.org Published On :: 2020-04-14T01:31:22-07:00 ABSTRACT Staphylococcus aureus can colonize the human host and cause a variety of superficial and invasive infections. The success of S. aureus as a pathogen derives from its ability to modulate its virulence through the release, sensing of and response to cyclic signaling peptides. Here we provide, for the first time, evidence that S. aureus processes and secretes small linear peptides through a specialized pathway that converts a lipoprotein leader into an extracellular peptide signal. We have identified and confirmed the machinery for each step and demonstrate that the putative membrane metalloprotease Eep and the EcsAB transporter are required to complete the processing and secretion of the peptides. In addition, we have identified several linear peptides, including the interspecies signaling molecule staph-cAM373, that are dependent on this processing and secretion pathway. These findings are particularly important because multiple Gram-positive bacteria rely on small linear peptides to control bacterial gene expression and virulence. IMPORTANCE Here, we provide evidence indicating that S. aureus secretes small linear peptides into the environment via a novel processing and secretion pathway. The discovery of a specialized pathway for the production of small linear peptides and the identification of these peptides leads to several important questions regarding their role in S. aureus biology, most interestingly, their potential to act as signaling molecules. The observations in this study provide a foundation for further in-depth studies into the biological activity of small linear peptides in S. aureus. Full Article
phy Coping with COVID: How a Research Team Learned To Stay Engaged in This Time of Physical Distancing By mbio.asm.org Published On :: 2020-04-17T14:59:27-07:00 ABSTRACT Physical distancing imposed by the COVID-19 pandemic has led to alterations in routines and new responsibilities for much of the research community. We provide some tips for how research teams can cope with physical distancing, some of which require a change in how we define productivity. Importantly, we need to maintain and strengthen social connections in this time when we can’t be physically together. Full Article
phy Conductance Mechanisms of Rapidly Desensitizing Cation Channelrhodopsins from Cryptophyte Algae By mbio.asm.org Published On :: 2020-04-21T01:31:26-07:00 ABSTRACT Channelrhodopsins guide algal phototaxis and are widely used as optogenetic probes for control of membrane potential with light. "Bacteriorhodopsin-like" cation channelrhodopsins (BCCRs) from cryptophytes differ in primary structure from other CCRs, lacking usual residues important for their cation conductance. Instead, the sequences of BCCR match more closely those of rhodopsin proton pumps, containing residues responsible for critical proton transfer reactions. We report 19 new BCCRs which, together with the earlier 6 known members of this family, form three branches (subfamilies) of a phylogenetic tree. Here, we show that the conductance mechanisms in two subfamilies differ with respect to involvement of the homolog of the proton donor in rhodopsin pumps. Two BCCRs from the genus Rhodomonas generate photocurrents that rapidly desensitize under continuous illumination. Using a combination of patch clamp electrophysiology, absorption, Raman spectroscopy, and flash photolysis, we found that the desensitization is due to rapid accumulation of a long-lived nonconducting intermediate of the photocycle with unusually blue-shifted absorption with a maximum at 330 nm. These observations reveal diversity within the BCCR family and contribute to deeper understanding of their independently evolved cation channel function. IMPORTANCE Cation channelrhodopsins, light-gated channels from flagellate green algae, are extensively used as optogenetic photoactivators of neurons in research and recently have progressed to clinical trials for vision restoration. However, the molecular mechanisms of their photoactivation remain poorly understood. We recently identified cryptophyte cation channelrhodopsins, structurally different from those of green algae, which have separately evolved to converge on light-gated cation conductance. This study reveals diversity within this new protein family and describes a subclade with unusually rapid desensitization that results in short transient photocurrents in continuous light. Such transient currents have not been observed in the green algae channelrhodopsins and are potentially useful in optogenetic protocols. Kinetic UV-visible (UV-vis) spectroscopy and photoelectrophysiology reveal that the desensitization is caused by rapid accumulation of a nonconductive photointermediate in the photochemical reaction cycle. The absorption maximum of the intermediate is 330 nm, the shortest wavelength reported in any rhodopsin, indicating a novel chromophore structure. Full Article
phy Historical Geography and Health Equity: An Exploratory View of North Carolina Slavery and Sociohealth Factors By www.ncmedicaljournal.com Published On :: 2020-05-04T06:50:30-07:00 Current health inequities are rooted in more than simple systems failures and inefficiencies. Historical legacy has corrupted health outcomes, and resolution requires both acknowledgment and intention. Full Article
phy Moving Upstream to Impact Health: Building a Physician Workforce that Understands Social Determinants By www.ncmedicaljournal.com Published On :: 2020-05-04T06:50:30-07:00 Decades of rallying cries from professional societies, medical education and training programs, and government stakeholders have distilled the conversation of social determinants of health (SDOH) from theoretical proposals into practical solutions [1-3]. No longer standing on the precipice of change, we are now in the trenches. The nation's health care system recognizes SDOH as important drivers of health and is taking steps to address them in the practice environment. More widespread action and attention by the health care system drives the need to train the next generation of physicians in the concepts and actions related to SDOH. This includes SDOH as a core part of the medical curriculum, offering clinical and research experiences and service in the community [4-5]. Unfortunately, to date only a handful of programs have brought this vision to fruition. Across the country, most programs offer educational content that is largely didactic and provided in short or one-time sessions [6]. Though a start, such approaches are insufficient to prepare the next generation of physicians for their important work ahead. In New Orleans, the NOLA Hotspotters are an interdisciplinary group of medical, public health, nursing, and pharmacy students inspired by the work out of Camden, New Jersey, to "hot spot" patients with high utilization, which is often related to social needs [7]. While the results of the Camden program have been widely discussed following publication of their work, we argue the benefit of such a program exists beyond reduced emergency department visits or health care spending [8]. The... Full Article
phy Investing in Whole Person Health: Working Toward an Integration of Physical, Behavioral, and Social Health By www.ncmedicaljournal.com Published On :: 2020-05-04T06:50:30-07:00 North Carolina is developing a unique and innovative infrastructure to support integrated physical, behavioral, and social health care. Efforts by the North Carolina Department of Health and Human Services, the Foundation for Health Leadership & Innovation, Cone Health, Atrium Health, and the One Charlotte Health Alliance advance our understanding of how to best operationalize the design and payment of integrated services. Best practices such as the collaborative care and primary care behavioral health models reduce inefficiencies and disparities by bringing together teams of primary care and behavioral health care providers. Full Article
phy ONE-HELIX PROTEIN1 and 2 Form Heterodimers to Bind Chlorophyll in Photosystem II Biogenesis By www.plantphysiol.org Published On :: 2020-05-08T08:30:48-07:00 Members of the light-harvesting complex protein family participate in multiple processes connected with light sensing, light absorption, and pigment binding within the thylakoid membrane. Amino acid residues of the light-harvesting chlorophyll a/b-binding proteins involved in pigment binding have been precisely identified through x-ray crystallography experiments. In vitro pigment-binding studies have been performed with LIGHT-HARVESTING-LIKE3 proteins, and the pigment-binding ability of cyanobacterial high-light-inducible proteins has been studied in detail. However, analysis of pigment binding by plant high-light-inducible protein homologs, called ONE-HELIX PROTEINS (OHPs), is lacking. Here, we report on successful in vitro reconstitution of Arabidopsis (Arabidopsis thaliana) OHPs with chlorophylls and carotenoids and show that pigment binding depends on the formation of OHP1/OHP2 heterodimers. Pigment-binding capacity was completely lost in each of the OHPs when residues of the light-harvesting complex chlorophyll-binding motif required for chlorophyll binding were mutated. Moreover, the mutated OHP variants failed to rescue the respective knockout (T-DNA insertion) mutants, indicating that pigment-binding ability is essential for OHP function in vivo. The scaffold protein HIGH CHLOROPHYLL FLUORESCENCE244 (HCF244) is tethered to the thylakoid membrane by the OHP heterodimer. We show that HCF244 stability depends on OHP heterodimer formation and introduce the concept of a functional unit consisting of OHP1, OHP2, and HCF244, in which each protein requires the others. Because of their pigment-binding capacity, we suggest that OHPs function in the delivery of pigments to the D1 subunit of PSII. Full Article
phy Overcoming Algal Vitamin B12 Auxotrophy by Experimental Evolution By www.plantphysiol.org Published On :: 2020-05-08T08:30:48-07:00 Full Article
phy Toward an Evolutionarily Appropriate Null Model: Jointly Inferring Demography and Purifying Selection [Population and Evolutionary Genetics] By www.genetics.org Published On :: 2020-05-05T06:43:41-07:00 The question of the relative evolutionary roles of adaptive and nonadaptive processes has been a central debate in population genetics for nearly a century. While advances have been made in the theoretical development of the underlying models, and statistical methods for estimating their parameters from large-scale genomic data, a framework for an appropriate null model remains elusive. A model incorporating evolutionary processes known to be in constant operation, genetic drift (as modulated by the demographic history of the population) and purifying selection, is lacking. Without such a null model, the role of adaptive processes in shaping within- and between-population variation may not be accurately assessed. Here, we investigate how population size changes and the strength of purifying selection affect patterns of variation at "neutral" sites near functional genomic components. We propose a novel statistical framework for jointly inferring the contribution of the relevant selective and demographic parameters. By means of extensive performance analyses, we quantify the utility of the approach, identify the most important statistics for parameter estimation, and compare the results with existing methods. Finally, we reanalyze genome-wide population-level data from a Zambian population of Drosophila melanogaster, and find that it has experienced a much slower rate of population growth than was inferred when the effects of purifying selection were neglected. Our approach represents an appropriate null model, against which the effects of positive selection can be assessed. Full Article
phy Staphylococcus aureus Fibronectin Binding Protein A Mediates Biofilm Development and Infection [Bacterial Infections] By iai.asm.org Published On :: 2020-04-20T08:00:39-07:00 Implanted medical device-associated infections pose significant health risks, as they are often the result of bacterial biofilm formation. Staphylococcus aureus is a leading cause of biofilm-associated infections which persist due to mechanisms of device surface adhesion, biofilm accumulation, and reprogramming of host innate immune responses. We found that the S. aureus fibronectin binding protein A (FnBPA) is required for normal biofilm development in mammalian serum and that the SaeRS two-component system is required for functional FnBPA activity in serum. Furthermore, serum-developed biofilms deficient in FnBPA were more susceptible to macrophage invasion, and in a model of biofilm-associated implant infection, we found that FnBPA is crucial for the establishment of infection. Together, these findings show that S. aureus FnBPA plays an important role in physical biofilm development and represents a potential therapeutic target for the prevention and treatment of device-associated infections. Full Article
phy De Novo Purine Biosynthesis Is Required for Intracellular Growth of Staphylococcus aureus and for the Hypervirulence Phenotype of a purR Mutant [Cellular Microbiology: Pathogen-Host Cell Molecular Interactions] By iai.asm.org Published On :: 2020-04-20T08:00:39-07:00 Staphylococcus aureus is a noted human and animal pathogen. Despite decades of research on this important bacterium, there are still many unanswered questions regarding the pathogenic mechanisms it uses to infect the mammalian host. This can be attributed to it possessing a plethora of virulence factors and complex virulence factor and metabolic regulation. PurR, the purine biosynthesis regulator, was recently also shown to regulate virulence factors in S. aureus, and mutations in purR result in derepression of fibronectin binding proteins (FnBPs) and extracellular toxins, required for a so-called hypervirulent phenotype. Here, we show that hypervirulent strains containing purR mutations can be attenuated with the addition of purine biosynthesis mutations, implicating the necessity for de novo purine biosynthesis in this phenotype and indicating that S. aureus in the mammalian host experiences purine limitation. Using cell culture, we showed that while purR mutants are not altered in epithelial cell binding, compared to that of wild-type (WT) S. aureus, purR mutants have enhanced invasion of these nonprofessional phagocytes, consistent with the requirement of FnBPs for invasion of these cells. This correlates with purR mutants having increased transcription of fnb genes, resulting in higher levels of surface-exposed FnBPs to promote invasion. These data provide important contributions to our understanding of how the pathogenesis of S. aureus is affected by sensing of purine levels during infection of the mammalian host. Full Article
phy Porphyromonas gingivalis Cell Wall Components Induce Programmed Death Ligand 1 (PD-L1) Expression on Human Oral Carcinoma Cells by a Receptor-Interacting Protein Kinase 2 (RIP2)-Dependent Mechanism [Cellular Microbiology: Pathogen-Host Cell Molecular Inte By iai.asm.org Published On :: 2020-04-20T08:00:38-07:00 Programmed death-ligand 1 (PD-L1/B7-H1) serves as a cosignaling molecule in cell-mediated immune responses and contributes to chronicity of inflammation and the escape of tumor cells from immunosurveillance. Here, we investigated the molecular mechanisms leading to PD-L1 upregulation in human oral carcinoma cells and in primary human gingival keratinocytes in response to infection with Porphyromonas gingivalis (P. gingivalis), a keystone pathogen for the development of periodontitis. The bacterial cell wall component peptidoglycan uses bacterial outer membrane vesicles to be taken up by cells. Internalized peptidoglycan triggers cytosolic receptors to induce PD-L1 expression in a myeloid differentiation primary response 88 (Myd88)-independent and receptor-interacting serine/threonine-protein kinase 2 (RIP2)-dependent fashion. Interference with the kinase activity of RIP2 or mitogen-activated protein (MAP) kinases interferes with inducible PD-L1 expression. Full Article
phy Identification and Characterization of Staphylococcus delphini Internalization Pathway in Nonprofessional Phagocytic Cells [Cellular Microbiology: Pathogen-Host Cell Molecular Interactions] By iai.asm.org Published On :: 2020-04-20T08:00:38-07:00 The intracellular lifestyle of bacteria is widely acknowledged to be an important mechanism in chronic and recurring infection. Among the Staphylococcus genus, only Staphylococcus aureus and Staphylococcus pseudintermedius have been clearly identified as intracellular in nonprofessional phagocytic cells (NPPCs), for which the mechanism is mainly fibronectin-binding dependent. Here, we used bioinformatics tools to search for possible new fibronectin-binding proteins (FnBP-like) in other Staphylococcus species. We found a protein in Staphylococcus delphini called Staphylococcus delphini surface protein Y (SdsY). This protein shares 68% identity with the Staphylococcus pseudintermedius surface protein D (SpsD), 36% identity with S. aureus FnBPA, and 39% identity with S. aureus FnBPB. The SdsY protein possesses the typical structure of FnBP-like proteins, including an N-terminal signal sequence, an A domain, a characteristic repeated pattern, and an LPXTG cell wall anchor motif. The level of adhesion to immobilized fibronectin was significantly higher in all S. delphini strains tested than in the fibronectin-binding-deficient S. aureus DU5883 strain. By using a model of human osteoblast infection, the level of internalization of all strains tested was significantly higher than with the invasive-incompetent S. aureus DU5883. These findings were confirmed by phenotype restoration after transformation of DU5883 by a plasmid expression vector encoding the SdsY repeats. Additionally, using fibronectin-depleted serum and murine osteoblast cell lines deficient for the β1 integrin, the involvement of fibronectin and β1 integrin was demonstrated in S. delphini internalization. The present study demonstrates that additional staphylococcal species are able to invade NPPCs and proposes a method to identify FnBP-like proteins. Full Article
phy Single-cell O2 exchange imaging shows that cytoplasmic diffusion is a dominant barrier to efficient gas transport in red blood cells [Physiology] By www.pnas.org Published On :: 2020-05-05T10:31:24-07:00 Disorders of oxygen transport are commonly attributed to inadequate carrying capacity (anemia) but may also relate to inefficient gas exchange by red blood cells (RBCs), a process that is poorly characterized yet assumed to be rapid. Without direct measurements of gas exchange at the single-cell level, the barriers to O2... Full Article
phy Extent of Fermi-surface reconstruction in the high-temperature superconductor HgBa2CuO4+{delta} [Physics] By www.pnas.org Published On :: 2020-05-05T10:31:24-07:00 High magnetic fields have revealed a surprisingly small Fermi surface in underdoped cuprates, possibly resulting from Fermi-surface reconstruction due to an order parameter that breaks translational symmetry of the crystal lattice. A crucial issue concerns the doping extent of such a state and its relationship to the principal pseudogap and... Full Article
phy Detecting electronic coherences by time-domain high-harmonic spectroscopy [Physics] By www.pnas.org Published On :: 2020-05-05T10:31:24-07:00 Ultrafast spectroscopy is capable of monitoring electronic and vibrational states. For electronic states a few eV apart, an X-ray laser source is required. We propose an alternative method based on the time-domain high-order harmonic spectroscopy where a coherent superposition of the electronic states is first prepared by the strong optical... Full Article
phy Development of a therapeutic anti-HtrA1 antibody and the identification of DKK3 as a pharmacodynamic biomarker in geographic atrophy [Medical Sciences] By www.pnas.org Published On :: 2020-05-05T10:31:24-07:00 Genetic polymorphisms in the region of the trimeric serine hydrolase high-temperature requirement 1 (HTRA1) are associated with increased risk of age-related macular degeneration (AMD) and disease progression, but the precise biological function of HtrA1 in the eye and its contribution to disease etiologies remain undefined. In this study, we have... Full Article
phy Emergence of self-organized multivortex states in flocks of active rollers [Applied Physical Sciences] By www.pnas.org Published On :: 2020-05-05T10:31:24-07:00 Active matter, both synthetic and biological, demonstrates complex spatiotemporal self-organization and the emergence of collective behavior. A coherent rotational motion, the vortex phase, is of great interest because of its ability to orchestrate well-organized motion of self-propelled particles over large distances. However, its generation without geometrical confinement has been a... Full Article
phy Mimicry of a biophysical pathway leads to diverse pollen-like surface patterns [Applied Physical Sciences] By www.pnas.org Published On :: 2020-05-05T10:31:24-07:00 A ubiquitous structural feature in biological systems is texture in extracellular matrix that gains functions when hardened, for example, cell walls, insect scales, and diatom tests. Here, we develop patterned liquid crystal elastomer (LCE) particles by recapitulating the biophysical patterning mechanism that forms pollen grain surfaces. In pollen grains, a... Full Article
phy Turning up the heat in turbulent thermal convection [Applied Physical Sciences] By www.pnas.org Published On :: 2020-05-05T10:31:24-07:00 Convection is buoyancy-driven flow resulting from unstable density stratification in the presence of a gravitational field. Beyond convection’s central role in myriad engineering heat transfer applications, it underlies many of nature’s dynamical designs on larger-than-human scales. For example, solar heating of Earth’s surface generates buoyancy forces that cause the winds... Full Article
phy Addressing Needs of Transgender Patients: The Role of Family Physicians By www.jabfm.org Published On :: 2020-03-16T09:31:37-07:00 There are approximately 1 million transgender and gender-diverse adults in the United States. Despite increased awareness and acceptance, they frequently encounter medical settings that are not welcoming and/or health care providers who are not knowledgeable about their health needs. Use of correct terminology, following best practices for name and pronoun use, and knowledge of gender-affirming interventions can create office environments that are welcoming to transgender clients. Health disparities faced by transgender patients that impact access to care include higher rates of mental health issues, substance use disorders, violence, and poverty. Transgender women are at greater risk for HIV acquisition and are less likely to achieve viral suppression compared with cisgender (nontransgender) individuals. Medical providers can facilitate HIV prevention efforts by offering pre- and postexposure prophylaxis to transgender patients at risk for HIV infection. Improving health outcomes requires attention to cultural competency and an understanding of lived experiences and priorities of transgender people. Full Article
phy Despite Adequate Training, Only Half of Family Physicians Provide Womens Health Care Services By www.jabfm.org Published On :: 2020-03-16T09:31:37-07:00 Access to services related to reproductive and sexual health is critical to the health of women but has been threatened in recent years. Family physicians are trained to provide a range of women’s health care services and are an essential part of the health care workforce in rural and underserved areas, where access to these services may be limited. Full Article
phy Trained and Ready, but Not Serving?--Family Physicians Role in Reproductive Health Care By www.jabfm.org Published On :: 2020-03-16T09:31:37-07:00 Full Article
phy Physiological responses of wild zebra finches (Taeniopygia guttata) to heatwaves [RESEARCH ARTICLE] By jeb.biologists.org Published On :: 2020-05-06T07:21:49-07:00 Christine Elizabeth Cooper, Laura Leilani Hurley, Pierre Deviche, and Simon Charles GriffithDesert birds inhabit hot, dry environments that are becoming hotter and drier as a consequence of climate change. Extreme weather such as heatwaves can cause mass-mortality events that may significantly impact populations and species. There are currently insufficient data concerning physiological plasticity to inform models of species’ response to extreme events and develop mitigation strategies. Consequently, we examine here the physiological plasticity of a small desert bird in response to hot (mean maximum ambient temperature=42.7°C) and cooler (mean maximum ambient temperature=31.4°C) periods during a single Austral summer. We measured body mass, metabolic rate, evaporative water loss, and body temperature, along with blood parameters (corticosterone, glucose, and uric acid) of wild zebra finches (Taeniopygia guttata; Gould 1837) to assess their physiological state and determine the mechanisms by which they respond to heatwaves. Hot days were not significant stressors; they did not result in modification of baseline blood parameters or an inability to maintain body mass, provided drinking water was available. During heatwaves, finches shifted their thermoneutral zone to higher temperatures. They reduced metabolic heat production, evaporative water loss and wet thermal conductance, and increased hyperthermia, especially when exposed to high ambient temperature. A consideration of the significant physiological plasticity that we have demonstrated to achieve more favourable heat and water balance is essential for effectively modelling and planning for the impacts of climate change on biodiversity. Full Article
phy Physiological Responses During Field Walking Tests in Adults with Bronchiectasis By rc.rcjournal.com Published On :: 2020-04-28T00:42:49-07:00 BACKGROUND:Field walking tests are commonly used in patients with chronic pulmonary diseases for assessment of functional capacity. However, the physiological demands and magnitude of desaturation on 6-min walk test (6MWT), incremental shuttle walk test (ISWT), and endurance shuttle walk test (ESWT) have not been investigated in patients with bronchiectasis. The objective of this study was to compare the physiological responses and the magnitude of desaturation of subjects with bronchiectasis when performing the 6MWT, ISWT, and ESWT.METHODS:Thirty-two subjects underwent the 6MWT, ISWT, and ESWT on 3 different days. Pulmonary gas exchange, heart rate, and SpO2 were measured in all tests.RESULTS:There were no differences in the peak rate of oxygen uptake, ventilation, dyspnea, and leg fatigue between the tests. Equivalent cardiac demand (ie, heart rate at peak) was observed with the 6MWT (137 ± 21 beats/min) and the ESWT (142 ± 21 beats/min), but this was lower in the ISWT (135 ± 19 beats/min) compared to ESWT (P < .05). Most subjects achieved a vigorous exercise intensity (heart rate of 70–90% of predicted) in all tests. There was no difference in desaturation among the tests (6MWT: −6.8 ± 6.6%, ISWT: −6.1 ± 6.0%, and ESWT: −7.0 ± 5.4%).CONCLUSIONS:The 6MWT, ISWT, and ESWT induced similar physiological responses at the peak of exercise, eliciting a vigorous exercise intensity. The magnitude of desaturation was similar across tests. This means these tests can be used interchangeably for evaluation of exercise-induced desaturation. Full Article
phy Distribution of Ventilation Measured by Electrical Impedance Tomography in Critically Ill Children By rc.rcjournal.com Published On :: 2020-04-28T00:42:49-07:00 BACKGROUND:Electrical impedance tomography (EIT) is a noninvasive, portable lung imaging technique that provides functional distribution of ventilation. We aimed to describe the relationship between the distribution of ventilation by mode of ventilation and level of oxygenation impairment in children who are critically ill. We also aimed to describe the safety of EIT application.METHODS:A prospective observational study of EIT images obtained from subjects in the pediatric ICU. Images were categorized by whether the subjects were on intermittent mandatory ventilation (IMV), continuous spontaneous ventilation, or no positive-pressure ventilation. Images were categorized by the level of oxygenation impairment when using SpO2/FIO2. Distribution of ventilation is described by the center of ventilation.RESULTS:Sixty-four images were obtained from 25 subjects. Forty-two images obtained during IMV with a mean ± SD center of ventilation of 55 ± 6%, 14 images during continuous spontaneous ventilation with a mean ± SD center of ventilation of 48.1 ± 11%, and 8 images during no positive-pressure ventilation with a mean ± SD center of ventilation of 47.5 ± 10%. Seventeen images obtained from subjects with moderate oxygenation impairment with a mean ± SD center of ventilation of 59.3 ± 1.9%, 12 with mild oxygenation impairment with a mean ± SD center of ventilation of 52.6 ± 2.3%, and 4 without oxygenation impairment with a mean ± SD center of ventilation of 48.3 ± 4%. There was more ventral distribution of ventilation with IMV versus continuous spontaneous ventilation (P = .009), with IMV versus no positive-pressure ventilation (P = .01) cohorts, and with moderate oxygenation impairment versus cohorts without oxygenation impairment (P = .009). There were no adverse events related to the placement and use of EIT in our study.CONCLUSIONS:Children who had worse oxygen impairment or who received controlled modes of ventilation had more ventral distribution of ventilation than those without oxygen impairment or the subjects who were spontaneously breathing. The ability of EIT to detect changes in the distribution of ventilation in real time may allow for distribution-targeted mechanical ventilation strategies to be deployed proactively; however, future studies are needed to determine the effectiveness of such a strategy. Full Article
phy PEEP Titration to Minimize Driving Pressure in Subjects With ARDS: A Prospective Physiological Study By rc.rcjournal.com Published On :: 2020-04-28T00:42:49-07:00 BACKGROUND:Observational studies report that lower driving pressure (ie, the difference between plateau pressure and PEEP) is associated with improved survival in patients with ARDS and may be a key mediator of lung-protective ventilation strategies. The primary objective of this study was to characterize reductions in driving pressure that could be achieved through changes in PEEP.METHODS:In this prospective physiological pilot study, 10 subjects with ARDS were placed on PEEP according to the ARDS Network Lower PEEP/FIO2 Table. PEEP was adjusted in small increments and decrements above and below this initial PEEP, and driving pressure was measured at each PEEP level. Subsequently, PEEP was set at the level resulting in the lowest driving pressure, and driving pressure was measured after 1, 5, 15, and 30 min to assess stability over time at constant PEEP.RESULTS:All subjects had ARDS with a median (interquartile range [IQR]) PaO2/FIO2 of 116 (98–132) at enrollment. Median (IQR) driving pressure at baseline was 14 (13–17) cm H2O. After PEEP titration, median driving pressure decreased to 13 (12–14) cm H2O. The largest reduction in driving pressure was 4 cm H2O. Two subjects had no change in driving pressure at multiple PEEP levels. To achieve the lowest driving pressure, final PEEP was increased in 6 subjects and decreased in 4 subjects from the baseline PEEP prescribed by the ARDS Network Lower PEEP/FIO2 Table. Driving pressure reached equilibrium within 1–5 min and remained stable for 30 min following PEEP titration.CONCLUSIONS:PEEP titration had a variable effect in changing driving pressure across this small sample of ARDS subjects. In some subjects, PEEP was decreased from values given in the ARDS Network Lower PEEP/FIO2 Table to minimize driving pressure. Changes in driving pressure stabilized within a few minutes of PEEP titration. Full Article
phy Theophylline Acetaldehyde as the Initial Product in Doxophylline Metabolism in Human Liver [Articles] By dmd.aspetjournals.org Published On :: 2020-04-09T08:02:00-07:00 Doxophylline (DOXO) and theophylline are widely used as bronchodilators for treating asthma and chronic obstructive pulmonary disease, and DOXO has a better safety profile than theophylline. How DOXO’s metabolism and disposition affect its antiasthmatic efficacy and safety remains to be explored. In this study, the metabolites of DOXO were characterized. A total of nine metabolites of DOXO were identified in vitro using liver microsomes from human and four other animal species. Among them, six metabolites were reported for the first time. The top three metabolites were theophylline acetaldehyde (M1), theophylline-7-acetic acid (M2), and etophylline (M4). A comparative analysis of DOXO metabolism in human using liver microsomes, S9 fraction, and plasma samples demonstrated the following: 1) The metabolism of DOXO began with a cytochrome P450 (P450)–mediated, rate-limiting step at the C ring and produced M1, the most abundant metabolite in human liver microsomes. However, in human plasma, the M1 production was rather low. 2) M1 was further converted to M2 and M4, the end products of DOXO metabolism in vivo, by non-P450 dismutase in the cytosol. This dismutation process also relied on the ratio of NADP+/NADPH in the cell. These findings for the first time elucidated the metabolic sites and routes of DOXO metabolism in human. SIGNIFICANCE STATEMENT We systematically characterized doxophylline metabolism using in vitro and in vivo assays. Our findings evolved the understandings of metabolic sites and pathways for methylxanthine derivatives with the aldehyde functional group. Full Article
phy Spectral and photochemical diversity of tandem cysteine cyanobacterial phytochromes [Plant Biology] By www.jbc.org Published On :: 2020-05-08T03:41:14-07:00 The atypical trichromatic cyanobacterial phytochrome NpTP1 from Nostoc punctiforme ATCC 29133 is a linear tetrapyrrole (bilin)-binding photoreceptor protein that possesses tandem-cysteine residues responsible for shifting its light-sensing maximum to the violet spectral region. Using bioinformatics and phylogenetic analyses, here we established that tandem-cysteine cyanobacterial phytochromes (TCCPs) compose a well-supported monophyletic phytochrome lineage distinct from prototypical red/far-red cyanobacterial phytochromes. To investigate the light-sensing diversity of this family, we compared the spectroscopic properties of NpTP1 (here renamed NpTCCP) with those of three phylogenetically diverged TCCPs identified in the draft genomes of Tolypothrix sp. PCC7910, Scytonema sp. PCC10023, and Gloeocapsa sp. PCC7513. Recombinant photosensory core modules of ToTCCP, ScTCCP, and GlTCCP exhibited violet-blue–absorbing dark-states consistent with dual thioether-linked phycocyanobilin (PCB) chromophores. Photoexcitation generated singly-linked photoproduct mixtures with variable ratios of yellow-orange and red-absorbing species. The photoproduct ratio was strongly influenced by pH and by mutagenesis of TCCP- and phytochrome-specific signature residues. Our experiments support the conclusion that both photoproduct species possess protonated 15E bilin chromophores, but differ in the ionization state of the noncanonical “second” cysteine sulfhydryl group. We found that the ionization state of this and other residues influences subsequent conformational change and downstream signal transmission. We also show that tandem-cysteine phytochromes present in eukaryotes possess similar amino acid substitutions within their chromophore-binding pocket, which tune their spectral properties in an analogous fashion. Taken together, our findings provide a roadmap for tailoring the wavelength specificity of plant phytochromes to optimize plant performance in diverse natural and artificial light environments. Full Article
phy Templated folding of intrinsically disordered proteins [Molecular Biophysics] By www.jbc.org Published On :: 2020-05-08T03:41:14-07:00 Much of our current knowledge of biological chemistry is founded in the structure-function relationship, whereby sequence determines structure that determines function. Thus, the discovery that a large fraction of the proteome is intrinsically disordered, while being functional, has revolutionized our understanding of proteins and raised new and interesting questions. Many intrinsically disordered proteins (IDPs) have been determined to undergo a disorder-to-order transition when recognizing their physiological partners, suggesting that their mechanisms of folding are intrinsically different from those observed in globular proteins. However, IDPs also follow some of the classic paradigms established for globular proteins, pointing to important similarities in their behavior. In this review, we compare and contrast the folding mechanisms of globular proteins with the emerging features of binding-induced folding of intrinsically disordered proteins. Specifically, whereas disorder-to-order transitions of intrinsically disordered proteins appear to follow rules of globular protein folding, such as the cooperative nature of the reaction, their folding pathways are remarkably more malleable, due to the heterogeneous nature of their folding nuclei, as probed by analysis of linear free-energy relationship plots. These insights have led to a new model for the disorder-to-order transition in IDPs termed “templated folding,” whereby the binding partner dictates distinct structural transitions en route to product, while ensuring a cooperative folding. Full Article
phy Crystallographic and kinetic analyses of the FdsBG subcomplex of the cytosolic formate dehydrogenase FdsABG from Cupriavidus necator [Molecular Biophysics] By www.jbc.org Published On :: 2020-05-08T03:41:14-07:00 Formate oxidation to carbon dioxide is a key reaction in one-carbon compound metabolism, and its reverse reaction represents the first step in carbon assimilation in the acetogenic and methanogenic branches of many anaerobic organisms. The molybdenum-containing dehydrogenase FdsABG is a soluble NAD+-dependent formate dehydrogenase and a member of the NADH dehydrogenase superfamily. Here, we present the first structure of the FdsBG subcomplex of the cytosolic FdsABG formate dehydrogenase from the hydrogen-oxidizing bacterium Cupriavidus necator H16 both with and without bound NADH. The structures revealed that the two iron-sulfur clusters, Fe4S4 in FdsB and Fe2S2 in FdsG, are closer to the FMN than they are in other NADH dehydrogenases. Rapid kinetic studies and EPR measurements of rapid freeze-quenched samples of the NADH reduction of FdsBG identified a neutral flavin semiquinone, FMNH•, not previously observed to participate in NADH-mediated reduction of the FdsABG holoenzyme. We found that this semiquinone forms through the transfer of one electron from the fully reduced FMNH−, initially formed via NADH-mediated reduction, to the Fe2S2 cluster. This Fe2S2 cluster is not part of the on-path chain of iron-sulfur clusters connecting the FMN of FdsB with the active-site molybdenum center of FdsA. According to the NADH-bound structure, the nicotinamide ring stacks onto the re-face of the FMN. However, NADH binding significantly reduced the electron density for the isoalloxazine ring of FMN and induced a conformational change in residues of the FMN-binding pocket that display peptide-bond flipping upon NAD+ binding in proper NADH dehydrogenases. Full Article
phy The short variant of optic atrophy 1 (OPA1) improves cell survival under oxidative stress [Bioenergetics] By www.jbc.org Published On :: 2020-05-08T03:41:14-07:00 Optic atrophy 1 (OPA1) is a dynamin protein that mediates mitochondrial fusion at the inner membrane. OPA1 is also necessary for maintaining the cristae and thus essential for supporting cellular energetics. OPA1 exists as membrane-anchored long form (L-OPA1) and short form (S-OPA1) that lacks the transmembrane region and is generated by cleavage of L-OPA1. Mitochondrial dysfunction and cellular stresses activate the inner membrane–associated zinc metallopeptidase OMA1 that cleaves L-OPA1, causing S-OPA1 accumulation. The prevailing notion has been that L-OPA1 is the functional form, whereas S-OPA1 is an inactive cleavage product in mammals, and that stress-induced OPA1 cleavage causes mitochondrial fragmentation and sensitizes cells to death. However, S-OPA1 contains all functional domains of dynamin proteins, suggesting that it has a physiological role. Indeed, we recently demonstrated that S-OPA1 can maintain cristae and energetics through its GTPase activity, despite lacking fusion activity. Here, applying oxidant insult that induces OPA1 cleavage, we show that cells unable to generate S-OPA1 are more sensitive to this stress under obligatory respiratory conditions, leading to necrotic death. These findings indicate that L-OPA1 and S-OPA1 differ in maintaining mitochondrial function. Mechanistically, we found that cells that exclusively express L-OPA1 generate more superoxide and are more sensitive to Ca2+-induced mitochondrial permeability transition, suggesting that S-OPA1, and not L-OPA1, protects against cellular stress. Importantly, silencing of OMA1 expression increased oxidant-induced cell death, indicating that stress-induced OPA1 cleavage supports cell survival. Our findings suggest that S-OPA1 generation by OPA1 cleavage is a survival mechanism in stressed cells. Full Article
phy Quantification of the affinities of CRISPR-Cas9 nucleases for cognate protospacer adȷacent motif (PAM) sequences [Molecular Biophysics] By www.jbc.org Published On :: 2020-05-08T03:41:14-07:00 The CRISPR/Cas9 nucleases have been widely applied for genome editing in various organisms. Cas9 nucleases complexed with a guide RNA (Cas9–gRNA) find their targets by scanning and interrogating the genomic DNA for sequences complementary to the gRNA. Recognition of the DNA target sequence requires a short protospacer adjacent motif (PAM) located outside this sequence. Given that the efficiency of target location may depend on the strength of interactions that promote target recognition, here we sought to compare affinities of different Cas9 nucleases for their cognate PAM sequences. To this end, we measured affinities of Cas9 nucleases from Streptococcus pyogenes, Staphylococcus aureus, and Francisella novicida complexed with guide RNAs (gRNAs) (SpCas9–gRNA, SaCas9–gRNA, and FnCas9–gRNA, respectively) and of three engineered SpCas9–gRNA variants with altered PAM specificities for short, PAM-containing DNA probes. We used a “beacon” assay that measures the relative affinities of DNA probes by determining their ability to competitively affect the rate of Cas9–gRNA binding to fluorescently labeled target DNA derivatives called “Cas9 beacons.” We observed significant differences in the affinities for cognate PAM sequences among the studied Cas9 enzymes. The relative affinities of SpCas9–gRNA and its engineered variants for canonical and suboptimal PAMs correlated with previous findings on the efficiency of these PAM sequences in genome editing. These findings suggest that high affinity of a Cas9 nuclease for its cognate PAM promotes higher genome-editing efficiency. Full Article
phy A neuroglobin-based high-affinity ligand trap reverses carbon monoxide-induced mitochondrial poisoning [Molecular Biophysics] By www.jbc.org Published On :: 2020-05-08T03:41:14-07:00 Carbon monoxide (CO) remains the most common cause of human poisoning. The consequences of CO poisoning include cardiac dysfunction, brain injury, and death. CO causes toxicity by binding to hemoglobin and by inhibiting mitochondrial cytochrome c oxidase (CcO), thereby decreasing oxygen delivery and inhibiting oxidative phosphorylation. We have recently developed a CO antidote based on human neuroglobin (Ngb-H64Q-CCC). This molecule enhances clearance of CO from red blood cells in vitro and in vivo. Herein, we tested whether Ngb-H64Q-CCC can also scavenge CO from CcO and attenuate CO-induced inhibition of mitochondrial respiration. Heart tissue from mice exposed to 3% CO exhibited a 42 ± 19% reduction in tissue respiration rate and a 33 ± 38% reduction in CcO activity compared with unexposed mice. Intravenous infusion of Ngb-H64Q-CCC restored respiration rates to that of control mice correlating with higher electron transport chain CcO activity in Ngb-H64Q-CCC–treated compared with PBS-treated, CO-poisoned mice. Further, using a Clark-type oxygen electrode, we measured isolated rat liver mitochondrial respiration in the presence and absence of saturating solutions of CO (160 μm) and nitric oxide (100 μm). Both CO and NO inhibited respiration, and treatment with Ngb-H64Q-CCC (100 and 50 μm, respectively) significantly reversed this inhibition. These results suggest that Ngb-H64Q-CCC mitigates CO toxicity by scavenging CO from carboxyhemoglobin, improving systemic oxygen delivery and reversing the inhibitory effects of CO on mitochondria. We conclude that Ngb-H64Q-CCC or other CO scavengers demonstrate potential as antidotes that reverse the clinical and molecular effects of CO poisoning. Full Article
phy Thioredoxin regulates human mercaptopyruvate sulfurtransferase at physiologically-relevant concentrations [Enzymology] By www.jbc.org Published On :: 2020-05-08T03:41:14-07:00 3-Mercaptopyruvate sulfur transferase (MPST) catalyzes the desulfuration of 3-mercaptopyruvate (3-MP) and transfers sulfane sulfur from an enzyme-bound persulfide intermediate to thiophilic acceptors such as thioredoxin and cysteine. Hydrogen sulfide (H2S), a signaling molecule implicated in many physiological processes, can be released from the persulfide product of the MPST reaction. Two splice variants of MPST, differing by 20 amino acids at the N terminus, give rise to the cytosolic MPST1 and mitochondrial MPST2 isoforms. Here, we characterized the poorly-studied MPST1 variant and demonstrated that substitutions in its Ser–His–Asp triad, proposed to serve a general acid–base role, minimally affect catalytic activity. We estimated the 3-MP concentration in murine liver, kidney, and brain tissues, finding that it ranges from 0.4 μmol·kg−1 in brain to 1.4 μmol·kg−1 in kidney. We also show that N-acetylcysteine, a widely-used antioxidant, is a poor substrate for MPST and is unlikely to function as a thiophilic acceptor. Thioredoxin exhibits substrate inhibition, increasing the KM for 3-MP ∼15-fold compared with other sulfur acceptors. Kinetic simulations at physiologically-relevant substrate concentrations predicted that the proportion of sulfur transfer to thioredoxin increases ∼3.5-fold as its concentration decreases from 10 to 1 μm, whereas the total MPST reaction rate increases ∼7-fold. The simulations also predicted that cysteine is a quantitatively-significant sulfane sulfur acceptor, revealing MPST's potential to generate low-molecular-weight persulfides. We conclude that the MPST1 and MPST2 isoforms are kinetically indistinguishable and that thioredoxin modulates the MPST-catalyzed reaction in a physiologically-relevant concentration range. Full Article
phy High-resolution carbon isotope stratigraphy of the Lower and Middle Ordovician succession of the Yangtze Platform, China: implications for global correlation By jgs.lyellcollection.org Published On :: 2020-05-04T02:10:48-07:00 The Lower and Middle Ordovician of the Yangtze Platform, China, is characterized by a sedimentary succession dominated by carbonate rocks. Three sections spanning the Nantsinkuan/Lunshan, Fenhsiang, Hunghuayuan, and Dawan/Zitai formations, corresponding to the Tremadocian–Dapingian in age, have been sampled for high-resolution 13C chemostratigraphy (542 samples in total). Our new 13C data reveal five tie-points with the potential for global correlation: (1) a positive 13C excursion in the lower Nantsinkuan Formation within the Tremadocian Rossodus manitouensis Zone; (2) an excursion with two peaks roughly within the late Tremadocian Paltodus ‘deltifer’ Zone; (3) a positive 13C shift in the lower Hunghuayuan Formation, within the early Floian Serratognathus diversus Zone; (4) a gradual positive 13C shift in the late Floian, ranging from the uppermost S. diversus Zone to the basal Oepikodus evae Zone; (5) a minor negative shift in the lower Dawan/Zitai Formation, within the early Dapingian Baltoniodus triangularis Zone. These excursions are herein used for correlation of the Yangtze Platform strata with successions from South China, North China, the Argentine Precordillera, North America and Baltica. From a palaeogeographical perspective the Gudongkou, Xiangshuidong and Daling sections represent depositional environments along an inner to outer ramp profile. 13C data from these sections show successively heavier (higher) 13C values with increasing depositional depth. This is interpreted as due to remineralization of organic carbon within the carbonate rocks. Supplementary material: Carbon and oxygen isotope data are available at: https://doi.org/10.6084/m9.figshare.c.4767080 Full Article
phy The identification and mitigation of geohazards using shallow airborne engineering geophysics and land-based geophysics for brown- and greenfield road investigations By qjegh.lyellcollection.org Published On :: 2020-05-01T00:46:18-07:00 South Africa is a mineral-rich country with a diverse geology and a long history of mining. The rich history of mining activities includes the extraction of coal from the Ecca Group Sediments of the Karoo Supergroup (250 Ma), gold and uranium from the Witwatersrand Supergroup (2900 Ma), as well as platinum, uranium, tin and lead from the layered Bushveld Igneous Complex (BIC) (2150 Ma). The extraction of gold, copper, tin, lead and rare earth minerals also took place in the Archean rocks of Swazium age (3500–3000 Ma). The historical mining records have either not been accurately recorded or have been lost over time. This has resulted in significant geohazard risk during infrastructure development, especially in and around historical mining towns, such as Johannesburg and Ermelo. These geohazard risks require careful appraisal and quantification prior to any infrastructure design or construction. This case study aims to set out the development aspects of the Multi-Faceted Geophysical Modelling Systems approach, which was used by the South African National Roads Agency SOC Ltd (SANRAL) during an investigation of undermined ground for the historical coal-mining town of Ermelo in South Africa. The N11/N2 ring road was planned to go around Ermelo to ensure mobility between major routes, whilst still maintaining town access. The systems approach used a combination of airborne geophysics (Versatile Time Domain Electromagnetic System (VTEMTM) and magnetics), generally used in mining exploration, land-based and borehole geophysics, borehole water testing, and ground-truthing. The approach was continuous and iterative, building on the data at hand and reducing unnecessary investigations while eliminating the possibility of anomalies being missed, as in the case of conventional discrete drilling. The investigation ensured that 100% of the route was comprehensively investigated with a high confidence in the geological and geophysical data, and concomitant mitigation of infrastructure risk. The Multi-Faceted Geophysical Modelling Systems approach was successfully used to identify a previously unknown 1 x 1 m mining stope cavity at 90 m depth and a 3 x 5 m access tunnel at 24 m depth in a timely and cost-effective manner. Seven reverse-circulation percussion boreholes confirmed the structural integrity of these underground cavities, as well as the structural geology along the centreline. Based on the great success achieved in identifying shallow anomalies, this Multi-Faceted Geophysical Modelling Systems approach is now being considered for field trails on the dolomitic formations and the Wild Coast greenfields road project where there are large historical slumps and many fault lines. Thematic collection: This article is part of the Ground-related risk to transportation infrastructure collection available at https://www.lyellcollection.org/cc/Ground-related-risk-to-transportation-infrastructure Full Article