esea

An Improved Boosting to Amplify Signal with Isobaric Labeling (iBASIL) Strategy for Precise Quantitative Single-cell Proteomics [Research]

Mass spectrometry (MS)-based proteomics has great potential for overcoming the limitations of antibody-based immunoassays for antibody-independent, comprehensive, and quantitative proteomic analysis of single cells. Indeed, recent advances in nanoscale sample preparation have enabled effective processing of single cells. In particular, the concept of using boosting/carrier channels in isobaric labeling to increase the sensitivity in MS detection has also been increasingly used for quantitative proteomic analysis of small-sized samples including single cells. However, the full potential of such boosting/carrier approaches has not been significantly explored, nor has the resulting quantitation quality been carefully evaluated. Herein, we have further evaluated and optimized our recent boosting to amplify signal with isobaric labeling (BASIL) approach, originally developed for quantifying phosphorylation in small number of cells, for highly effective analysis of proteins in single cells. This improved BASIL (iBASIL) approach enables reliable quantitative single-cell proteomics analysis with greater proteome coverage by carefully controlling the boosting-to-sample ratio (e.g. in general <100x) and optimizing MS automatic gain control (AGC) and ion injection time settings in MS/MS analysis (e.g. 5E5 and 300 ms, respectively, which is significantly higher than that used in typical bulk analysis). By coupling with a nanodroplet-based single cell preparation (nanoPOTS) platform, iBASIL enabled identification of ~2500 proteins and precise quantification of ~1500 proteins in the analysis of 104 FACS-isolated single cells, with the resulting protein profiles robustly clustering the cells from three different acute myeloid leukemia cell lines. This study highlights the importance of carefully evaluating and optimizing the boosting ratios and MS data acquisition conditions for achieving robust, comprehensive proteomic analysis of single cells.




esea

Human Hepatocyte Nuclear Factor 4-{alpha} Encodes Isoforms with Distinct Transcriptional Functions [Research]

HNF4α is a nuclear receptor produced as 12 isoforms from two promoters by alternative splicing. To characterize the transcriptional capacities of all 12 HNF4α isoforms, stable lines expressing each isoform were generated. The entire transcriptome associated with each isoform was analyzed as well as their respective interacting proteome. Major differences were noted in the transcriptional function of these isoforms. The α1 and α2 isoforms were the strongest regulators of gene expression whereas the α3 isoform exhibited significantly reduced activity. The α4, α5, and α6 isoforms, which use an alternative first exon, were characterized for the first time, and showed a greatly reduced transcriptional potential with an inability to recognize the consensus response element of HNF4α. Several transcription factors and coregulators were identified as potential specific partners for certain HNF4α isoforms. An analysis integrating the vast amount of omics data enabled the identification of transcriptional regulatory mechanisms specific to certain HNF4α isoforms, hence demonstrating the importance of considering all isoforms given their seemingly diverse functions.




esea

The Secretome Profiling of a Pediatric Airway Epithelium Infected with hRSV Identified Aberrant Apical/Basolateral Trafficking and Novel Immune Modulating (CXCL6, CXCL16, CSF3) and Antiviral (CEACAM1) Proteins [Research]

The respiratory epithelium comprises polarized cells at the interface between the environment and airway tissues. Polarized apical and basolateral protein secretions are a feature of airway epithelium homeostasis. Human respiratory syncytial virus (hRSV) is a major human pathogen that primarily targets the respiratory epithelium. However, the consequences of hRSV infection on epithelium secretome polarity and content remain poorly understood. To investigate the hRSV-associated apical and basolateral secretomes, a proteomics approach was combined with an ex vivo pediatric human airway epithelial (HAE) model of hRSV infection (data are available via ProteomeXchange and can be accessed at https://www.ebi.ac.uk/pride/ with identifier PXD013661). Following infection, a skewing of apical/basolateral abundance ratios was identified for several individual proteins. Novel modulators of neutrophil and lymphocyte activation (CXCL6, CSF3, SECTM1 or CXCL16), and antiviral proteins (BST2 or CEACAM1) were detected in infected, but not in uninfected cultures. Importantly, CXCL6, CXCL16, CSF3 were also detected in nasopharyngeal aspirates (NPA) from hRSV-infected infants but not healthy controls. Furthermore, the antiviral activity of CEACAM1 against RSV was confirmed in vitro using BEAS-2B cells. hRSV infection disrupted the polarity of the pediatric respiratory epithelial secretome and was associated with immune modulating proteins (CXCL6, CXCL16, CSF3) never linked with this virus before. In addition, the antiviral activity of CEACAM1 against hRSV had also never been previously characterized. This study, therefore, provides novel insights into RSV pathogenesis and endogenous antiviral responses in pediatric airway epithelium.




esea

Decreased Immunoglobulin G Core Fucosylation, A Player in Antibody-dependent Cell-mediated Cytotoxicity, is Associated with Autoimmune Thyroid Diseases [Research]

Autoimmune thyroid diseases (AITD) are the most common group of autoimmune diseases, associated with lymphocyte infiltration and the production of thyroid autoantibodies, like thyroid peroxidase antibodies (TPOAb), in the thyroid gland. Immunoglobulins and cell-surface receptors are glycoproteins with distinctive glycosylation patterns that play a structural role in maintaining and modulating their functions. We investigated associations of total circulating IgG and peripheral blood mononuclear cells glycosylation with AITD and the influence of genetic background in a case-control study with several independent cohorts and over 3,000 individuals in total. The study revealed an inverse association of IgG core fucosylation with TPOAb and AITD, as well as decreased peripheral blood mononuclear cells antennary α1,2 fucosylation in AITD, but no shared genetic variance between AITD and glycosylation. These data suggest that the decreased level of IgG core fucosylation is a risk factor for AITD that promotes antibody-dependent cell-mediated cytotoxicity previously associated with TPOAb levels.




esea

Images in Lipid Research

Stephen G. Young
May 1, 2020; 61:589-590
Editorials




esea

WITHDRAWN: Structural and mechanistic studies of hydroperoxide conversions catalyzed by a CYP74 clan epoxy alcohol synthase from amphioxus (Branchiostoma floridae) [Research Articles]

This manuscript has been withdrawn by the Author.




esea

Metabolic phospholipid labeling of intact bacteria enables a fluorescence assay that detects compromised outer membranes [Research Articles]

Gram-negative bacteria possess an asymmetric outer membrane (OM) composed primarily of lipopolysaccharides (LPS) on the outer leaflet and phospholipids (PLs) on the inner leaflet. Loss of this asymmetry due to mutations in the lipopolysaccharide (LPS) biosynthesis or transport pathways causes externalization of PLs to the outer leaflet of the OM and leads to OM permeability defects. Here, we employed metabolic labeling to detect a compromised OM in intact bacteria. Phosphatidylcholine synthase (Pcs) expression in Escherichia coli allowed for incorporation of exogenous propargylcholine (PCho) into phosphatidyl(propargyl)choline (PPC) and for incorporation of exogenous 1-azidoethyl-choline (AECho) into phosphatidyl(azidoethyl)choline (AEPC) as confirmed by LC-MS analyses. A fluorescent copper-free click reagent poorly labeled AEPC in intact wild-type cells, but readily labeled AEPC from lysed cells. Fluorescence microscopy and flow cytometry analyses confirmed the absence of significant AEPC labeling from intact wild-type E. coli strains, and revealed significant AEPC labeling in an E. coli LPS transport mutant (lptD4213) and an LPS biosynthesis mutant (E. coli lpxC101). Our results suggest that metabolic PL labeling with AECho is a promising tool to detect a compromised bacterial OM, reveal aberrant PL externalization, and identify or characterize novel cell-active inhibitors of LPS biosynthesis or transport.




esea

Characterization of the small molecule ARC39, a direct and specific inhibitor of acid sphingomyelinase in vitro [Research Articles]

Inhibition of acid sphingomyelinase (ASM), a lysosomal enzyme that catalyzes the hydrolysis of sphingomyelin into ceramide and phosphorylcholine, may serve as an investigational tool or a therapeutic intervention to control many diseases. Specific ASM inhibitors are currently not sufficiently characterized. Here, we found that 1-aminodecylidene bis-phosphonic acid (ARC39) specifically and efficiently (>90%) inhibits both lysosomal and secretory ASM in vitro. Results from investigating sphingomyelin phosphodiesterase 1 (SMPD1/Smpd1) mRNA and ASM protein levels suggested that ARC39 directly inhibits ASM’s catalytic activity in cultured cells, a mechanism which differs from that of functional inhibitors of ASM (FIASMAs). We further provide evidence that ARC39 dose- and time-dependently inhibits lysosomal ASM in intact cells, and we show that ARC39 also reduces platelet- and ASMpromoted adhesion of tumor cells. The observed toxicity of ARC39 is low at concentrations relevant for ASM inhibition in vitro, and it does not strongly alter the lysosomal compartment or induce phospholipidosis in vitro. When applied intraperitoneally in vivo, even subtoxic high doses administered short-term induced sphingomyelin accumulation only locally in the peritoneal lavage without significant accumulation in plasma, liver, spleen or brain. These findings require further investigation with other possible chemical modifications. In conclusion, our results indicate that ARC39 potently and selectively inhibits ASM in vitro and highlight the need for developing compounds that can reach tissue concentrations sufficient for ASM inhibition in vivo.




esea

The lncRNA Gm15622 stimulates SREBP-1c expression and hepatic lipid accumulation by sponging the miR-742-3p in mice [Research Articles]

Excessive lipid deposition is a hallmark of nonalcoholic fatty liver disease (NAFLD). Although much has been learned about the enzymes and metabolites involved in NAFLD, few studies have focused on the role of long non-coding RNAs (lncRNAs) in hepatic lipid accumulation. Here, using in vitro and in vivo models of NAFLD, we found that the lncRNA Gm15622 is highly expressed in the liver of obese mice fed a high-fat diet (HFD) and in murine liver (AML-12) cells treated with free fatty acids. Investigating the molecular mechanism in the liver-enriched expression of Gm15622 and its effects on lipid accumulation in hepatocytes and on NAFLD pathogenesis, we found that Gm15622 acts as a sponge for the microRNA miR-742-3p. This sponging activity increased the expression of the transcriptional regulator sterol regulatory element–binding transcription factor 1c (SREBP-1c) and promoted lipid accumulation in the liver of the HFD mice and AML-12 cells. Moreover, further results indicated that metformin suppresses Gm15622 and alleviates NAFLD-associated lipid deposition in mice. In conclusion, we have identified an lncRNA Gm15622–miR-742-3p–SREBP-1c regulatory circuit associated with NAFLD in mice, a finding that significantly advances our insight into how lipid metabolism and accumulation are altered in this metabolic disorder. Our results also suggest that Gm15622 may be a potential therapeutic target for managing NAFLD.




esea

The fatty acids from LPL-mediated processing of triglyceride-rich lipoproteins are taken up rapidly by cardiomyocytes [Images in Lipid Research]




esea

Roles of endogenous ether lipids and associated PUFA in the regulation of ion channels and their relevance for disease [Research Articles]

Ether lipids (ELs) are lipids characterized by the presence of either an ether linkage (alkyl lipids) or a vinyl ether linkage (i.e. plasmalogens [Pls]) at the sn1 position of the glycerol backbone and they are enriched in PUFAs at the sn2 position. In this review, we highlight that ELs have various biological functions, act as a reservoir for second messengers (such as PUFAs), and have roles in many diseases. Some of the biological effects of ELs may be associated with their ability to regulate ion channels that control excitation-contraction/secretion/mobility coupling and therefore cell physiology. These channels are embedded in lipid membranes, and lipids can regulate their activities directly or indirectly as second messengers or by incorporating into membranes. Interestingly, ELs and EL-derived PUFAs have been reported to play a key role in several pathologies, including neurological disorders, cardiovascular diseases, and cancers. Investigations leading to a better understanding of their mechanisms of action in pathologies have opened a new field in cancer research. In summary, newly identified lipid regulators of ion channels, such as ELs and PUFAs, may represent valuable targets to improve disease diagnosis and advance the development of new therapeutic strategies for managing a range of diseases and conditions.




esea

Comparative profiling and comprehensive quantification of stratum corneum ceramides in humans and mice by LC-MS/MS [Research Articles]

Ceramides are the predominant lipids in the stratum corneum (SC) and are crucial components for normal skin barrier function. Although the composition of various ceramide classes in the human SC has been reported, that in mice is still unknown, despite mice being widely used as animal models of skin barrier function. Here, we performed LC–MS/MS analyses using recently available ceramide class standards to measure 25 classes of free ceramides and 5 classes of protein-bound ceramides from the human and mouse SC. Phytosphingosine-type ceramides (P-ceramides) and 6-hydroxy sphingosine-type ceramides (H-ceramides), which both contain an additional hydroxyl group, were abundant in human SC (35% and 45% of total ceramides, respectively). In contrast, in mice, P-ceramides and H-ceramides were present at ~1% and undetectable levels, respectively, and sphingosine-type ceramides accounted for ~90%. In humans, ceramides containing α-hydroxy FA were abundant, whereas ceramides containing β-hydroxy FA (B-ceramides) or -hydroxy FA were abundant in mice. The hydroxylated β-carbon in B-ceramides was in the (R)-configuration. Genetic knockout of β-hydroxy acyl-CoA dehydratases in HAP1 cells increased B-ceramide levels, suggesting that β-hydroxy acyl-CoA, an FA-elongation cycle intermediate in the endoplasmic reticulum, is a substrate for B-ceramide synthesis. We anticipate that our methods and findings will help to elucidate the role of each ceramide class in skin barrier formation and in the pathogenesis of skin disorders.




esea

Skin barrier lipid enzyme activity in Netherton patients is associated with protease activity and ceramide abnormalities [Research Articles]

Individuals with Netherton syndrome (NTS) have increased serine protease activity, which strongly impacts the barrier function of the skin epidermis and leads to skin inflammation. Here, we investigated how serine protease activity in NTS correlates with changes in the stratum corneum ceramides, which are crucial components of the skin barrier. We examined two key enzymes involved in epidermal ceramide biosynthesis, glucocerebrosidase (GBA) and acid-sphingomyelinase (ASM). We compared in situ expression levels and activities of GBA and ASM between NTS patients and controls and correlated the expression and activities with i) stratum corneum ceramide profiles, ii) in situ serine protease activity, and iii) clinical presentation of patients. Using activity-based probe labeling, we visualized and localized active, epidermal GBA, and a newly developed in situ zymography method enabled us to visualize and localize active ASM. Reduction in active GBA in NTS patients coincided with increased ASM activity, particularly in areas with increased serine protease activity. NTS patients with scaly erythroderma exhibited more pronounced anomalies in GBA and ASM activities than patients with ichthyosis linearis circumflexa. They also displayed a stronger increase in stratum corneum ceramides processed via ASM. We conclude that changes in the localization of active GBA and ASM correlate with i) altered stratum corneum ceramide composition in NTS patients, ii) local serine protease activity, and iii) the clinical manifestation of NTS. 




esea

Circulating oxidized LDL increased in patients with acute myocardial infarction is accompanied by heavily modified HDL. [Research Articles]

Oxidized low-density lipoprotein (oxLDL) is a known risk factor for atherogenesis. This study aimed to reveal structural features of oxLDL present in human circulation related to atherosclerosis. When LDL was fractionated on an anion-exchange column, in vivo-oxLDL, detected by the anti-oxidized phosphatidylcholine (oxPC) monoclonal antibody, was recovered in flow-through and electronegative LDL (LDL(-)) fractions. The amount of the electronegative in vivo-oxLDL, namely oxLDL in LDL(-) fraction, present in patients with acute myocardial infarction (AMI) was three-fold higher than that observed in healthy subjects. Surprisingly, LDL(-) fraction contained apoA1 in addition to apoB, and HDL-sized particles were observed with transmission electron microscopy. In LDL(-) fractions, acrolein adducts were identified at all lysine residues in apoA1, with only a small number of acrolein-modified residues were identified in apoB. The amount of oxPC adducts of apoB was higher in LDL(-) than in L1 fraction as determined using western blotting. The electronegative in vivo-oxLDL was immunologically purified from the LDL(-) fraction with an anti-oxPC monoclonal antibody. Majority of PC species was not oxidized, whereas oxPC and lysoPC did not accumulate. Here, we propose that there are two types of in vivo-oxLDL in human circulating plasma and the electronegative in vivo-oxLDL accompanies oxidized HDL.




esea

Dietary plant stanol ester supplementation reduces peripheral symptoms in a mouse model of Niemann-Pick type C1 disease. [Research Articles]

Niemann–Pick type C1 (NPC1) disease is a rare genetic condition in which the function of the lysosomal cholesterol transporter NPC1 protein is impaired. Consequently, sphingolipids and cholesterol accumulate in lysosomes of all tissues, triggering a cascade of pathological events that culminate in severe systemic and neurological symptoms. Lysosomal cholesterol accumulation is also a key-factor in the development of atherosclerosis and non-alcoholic steatohepatitis (NASH). In these two metabolic diseases, the administration of plant stanol esters has been shown to ameliorate cellular cholesterol accumulation and inflammation. Given the overlap of pathological mechanisms among atherosclerosis, NASH and NPC1 disease, we sought to investigate whether dietary supplementation with plant stanol esters improves the peripheral features of NPC1 disease. To this end, we used an NPC1 murine model featuring an Npc1 null allele (Npc1nih), creating a dysfunctional NPC1 protein. Npc1nih mice were fed a two or six percent plant stanol esters–enriched diet over the course of 5 weeks. During this period, hepatic and blood lipid and inflammatory profiles were assessed. Npc1nih mice fed the plant stanol–enriched diet exhibited lower hepatic cholesterol accumulation, damage and inflammation than regular chow–fed Npc1nih mice. Moreover, plant stanol consumption shifted circulating T-cells and monocytes in particular towards an anti-inflammatory profile. Overall, these effects were stronger following dietary supplementation with 6% stanols, suggesting a dose-dependent effect. The findings of our study highlight the potential use of plant stanols as an affordable complementary means to ameliorate disorders in hepatic and blood lipid metabolism and reduce inflammation in NPC1 disease.




esea

LDL subclass lipidomics in atherogenic dyslipidemia:Effect of statin therapy on bioactive lipids and dense LDL [Patient-Oriented and Epidemiological Research]

Atherogenic LDL particles are physicochemically and metabolically heterogeneous. Can bioactive lipid cargo differentiate LDL subclasses, and thus potential atherogenicity?  What is the effect of statin treatment? Obese, hypertriglyceridemic, hypercholesterolemic males (n=12; Lp(a) <10 mg/dL) received pitavastatin calcium (4mg/day) for 180 days in a single-phase, unblinded study. The lipidomic profiles (23 lipid classes) of five LDL subclasses fractionated from baseline and post-statin plasmas were determined by LC-MS. At baseline and on statin treatment, very small dense LDL (LDL5) was preferentially enriched (up to 3-fold) in specific lysophospholipids (lysophosphatidylcholine (LPC); lysophosphatidylinositol (LPI); lyso-platelet activating factor (LPC(O)); 9,0.2 and 0.14 mol/mol apoB respectively; all p<0.001 versus LDL1-4), suggesting  elevated inflammatory potential per particle. In contrast, lysophosphatidylethanolamine was uniformly distributed among LDL subclasses. Statin treatment markedly reduced absolute plasma concentrations of all LDL subclasses (up to 33.5%), including LPC, LPI and LPC(O) contents (up to -52%), consistent with reduction in cardiovascular risk. Despite such reductions, lipotoxic ceramide load per particle in LDL1-5 (1.5 - 3 mol/mol apoB; 3 - 7 mmol/mol phosphatidylcholine) was either conserved or elevated. Bioactive lipids may constitute biomarkers for the cardiometabolic risk associated with specific LDL subclasses in atherogenic dyslipidemia at baseline, and with residual risk on statin therapy.




esea

Dispersed lipid droplets: an intermediate site for lipid transport and metabolism in primary human adipocytes. [Images in Lipid Research]




esea

Ebola virus matrix protein VP40 hijacks the host plasma membrane to form the virus envelope [Images in Lipid Research]




esea

ANGPTL4 inactivates lipoprotein lipase by catalyzing the irreversible unfolding of LPLs hydrolase domain [Images in Lipid Research]




esea

Accessibility of cholesterol at cell surfaces [Images in Lipid Research]




esea

Metabolic regulation of the lysosomal cofactor bis(monoacylglycero)phosphate in mice [Research Articles]

Bis(monoacylglycero)phosphate (BMP), also known as lysobisphosphatidic acid (LBPA), is a phospholipid that promotes lipid sorting in late endosomes/lysosomes by activating lipid hydrolases and lipid transfer proteins. Changes in the cellular BMP content therefore reflect an altered metabolic activity of the endo-lysosomal system. Surprisingly, little is known about the physiological regulation of BMP. In this study, we investigated the effects of nutritional and metabolic factors on BMP profiles of whole tissues and  parenchymal and non-parenchymal cells. Tissue samples were obtained from fed, fasted, two-hours refed, and insulin-treated mice, as well as from mice housed at  5°C, 22°C, or 30°C. These tissues exhibited distinct BMP profiles, which were regulated by the nutritional state in a tissue-specific manner. Insulin treatment was not sufficient to mimic refeeding-induced changes in tissue BMP levels indicating that BMP metabolism is regulated by other hormonal or nutritional factors. Tissue fractionation experiments revealed that fasting drastically elevates BMP levels in hepatocytes and pancreatic cells. Furthermore, we observed that the BMP content in brown adipose tissue strongly depends on housing temperatures. In conclusion, our observations suggest that BMP concentrations adapt to the metabolic state in a tissue-and cell type-specific manner in mice. Drastic changes observed in hepatocytes, pancreatic cells, and brown adipocytes suggest that BMP possesses a role in the functional adaption to nutrient starvation and ambient temperature.




esea

Catalytic residues, substrate specificity, and role in carbon starvation of the 2-hydroxy FA dioxygenase Mpo1 in yeast [Research Articles]

The yeast protein Mpo1 belongs to a protein family that is widely conserved in bacteria, fungi, protozoa, and plants, and is the only protein of this family whose function has so far been elucidated. Mpo1 is an Fe2+-dependent dioxygenase that catalyzes the α-oxidation reaction of 2-hydroxy (2-OH) long-chain FAs produced in the degradation pathway of the long-chain base phytosphingosine. However, several biochemical characteristics of Mpo1, such as its catalytic residues, membrane topology, and substrate specificity, remain unclear. Here, we report that yeast Mpo1 contains two transmembrane domains and that both its N- and C-terminal regions are exposed to the cytosol. Mutational analyses revealed that three histidine residues conserved in the Mpo1 family are especially important for Mpo1 activity, suggesting that they may be responsible for the formation of coordinate bonds with Fe2+. We found that, in addition to activity toward 2-OH long-chain FAs, Mpo1 also exhibits activity toward 2-OH very-long-chain FAs derived from the FA moiety of sphingolipids. These results indicate that Mpo1 is involved in the metabolism of long-chain to very-long-chain 2-OH FAs produced in different pathways. We noted that the growth of mpo1 cells is delayed upon carbon deprivation, suggesting that the Mpo1-mediated conversion of 2-OH FAs to non-hydroxy FAs is important for utilizing 2-OH FAs as a carbon source under carbon starvation. Our findings help to elucidate the as-yet-unknown functions and activities of other Mpo1 family members.




esea

Parenteral lipids shape gut bile acid pools and microbiota profiles in the prevention of cholestasis in preterm pigs [Research Articles]

Multi-component lipid emulsions, rather than soy-oil emulsions, prevent cholestasis by an unknown mechanism. Here, we quantified liver function, bile acid pools, and gut microbial and metabolite profiles in premature, parenterally fed pigs given a soy-oil lipid emulsion, Intralipid (IL); a multi component lipid emulsion, SMOFlipid (SMOF); a novel emulsion with a modified fatty-acid composition (EXP); or a control enteral diet (ENT) for 22 days. We assayed serum cholestasis markers; measured total bile acid levels in plasma, liver, and gut contents; and analyzed colonic bacterial 16S rRNA gene sequences and metabolomic profiles. Serum cholestasis markers (i.e. bilirubin, bile acids, and g-glutamyl transferase) were highest in IL-fed pigs and normalized in those given SMOF, EXP, or ENT. Gut bile acid pools were lowest in the IL treatment and were increased in the SMOF and EXP treatments and comparable to ENT. Multiple bile acids, especially their conjugated forms, were higher in the colon contents of SMOF and EXP than in IL pigs. Colonic microbial communities of SMOF and EXP pigs had lower relative abundance of several Gram-positive anaerobes, including Clostridrium XIVa, and higher abundance of Enterobacteriaceae than those of IL and ENT pigs. Differences in lipid and microbial-derived compounds were also observed in colon metabolite profiles. These results indicate that multi-component lipid emulsions prevent cholestasis and restore enterohepatic bile flow in association with gut microbial and metabolomic changes. We conclude that sustained bile flow induced by multi-component lipid emulsions likely exerts a dominant effect in reducing bile acid–sensitive, Gram-positive bacteria.




esea

Sphingolipids distribution at mitochondria-associated membranes (MAM) upon induction of apoptosis. [Research Articles]

The levels and composition of sphingolipids and related metabolites are altered in aging and common disorders such as diabetes and cancers, as well as in neurodegenerative, cardiovascular, and respiratory diseases. Changes in sphingolipids have been implicated as being an essential step in mitochondria-driven cell death. However, little is known about the precise sphingolipid composition and modulation in mitochondria or related organelles. Here, we used LC–MS/MS to analyze the presence of key components of the ceramide metabolic pathway in vivo and in vitro in purified endoplasmic reticulum (ER), mitochondria-associated membranes (MAM), and mitochondria. Specifically, we analyzed the sphingolipids in the three pathways that generate ceramide: sphinganine in the de novo ceramide pathway, sphingomyelin in the breakdown pathway, and sphingosine in the salvage pathway. We observed sphingolipid profiles in mouse liver, mouse brain, and a human glioma cell line (U251). We analyzed the quantitative and qualitative changes of these sphingolipids during staurosporine (STS)-induced apoptosis in U251 cells. Ceramide, especially C16-ceramide, levels increased during early apoptosis possibly through a conversion from mitochondrial sphinganine and sphingomyelin, but sphingosine and lactosyl- and glucosyl-ceramide levels were unaffected. We also found that ceramide generation is enhanced in mitochondria when sphingomyelin levels are decreased in the MAM. This decrease was associated with an increase in acid sphingomyelinase (ASM) activity in MAM. We conclude that meaningful sphingolipid modifications occur in MAM, the mitochondria, and ER during the early phases of apoptosis.




esea

Mass spectrometry imaging and LC-MS reveal decreased cerebellar phosphoinositides in Niemann-Pick type C1-null mice [Research Articles]

Niemann-Pick disease, type C1 (NPC1) is a lipid storage disorder in which cholesterol and glycosphingolipids accumulate in late endosomal/lysosomal compartments because of mutations in the NPC1 gene. A hallmark of NPC1 is progressive neurodegeneration of the cerebellum as well as visceral organ damage; however, the mechanisms driving this disease pathology are not fully understood. Phosphoinositides are phospholipids that play distinct roles in signal transduction and vesicle trafficking. Here, we utilized consensus spectra analysis of MS imaging datasets and orthogonal LC–MS analyses to evaluate the spatial distribution of phosphoinositides and quantify them in cerebellar tissue from Npc1-null mice. Our results suggest significant depletion of multiple phosphoinositide species, including phosphatidylinositol (PI), phosphatidylinositol monophosphate (PIP), and bisphosphate (PIP2), in the cerebellum of the Npc1-null mice in both whole-tissue lysates and myelin-enriched fractions. Additionally, we observed altered levels of the regulatory enzyme phosphatidylinositol 4-kinase type 2 α (PI4K2A) in Npc1-null mice. In contrast, the levels of related kinases, phosphatases, and transfer proteins were unaltered in the Npc1-null mouse model as observed by Western blot analysis. Our discovery of phosphoinositide lipid biomarkers for NPC1 opens new perspectives on the pathophysiology underlying this fatal neurodegenerative disease.




esea

Lipid sensing tips the balance for a key cholesterol synthesis enzyme [Images in Lipid Research]




esea

2-Chlorofatty acids are biomarkers of sepsis mortality and mediators of barrier dysfunction in rats [Research Articles]

Sepsis is defined as the systemic, dysregulated host immune response to an infection that leads to injury to host organ systems, and, often, death. Complex interactions between pathogens and their hosts elicit microcirculatory dysfunction. Neutrophil myeloperoxidase (MPO) is critical for combating pathogens, but MPO-derived hypochlorous acid (HOCl) can react with host molecular species as well. Plasmalogens are targeted by HOCl, leading to the production of 2-chlorofatty acids (2-CLFAs). 2-CLFAs are associated with human sepsis mortality, decrease in vitroendothelial barrier function, and activate human neutrophil extracellular trap formation. Here, we sought to examine 2-CLFAs in an in vivorat sepsis model. Intraperitoneal cecal slurry sepsis with clinically relevant rescue therapies led to ~73% mortality and evidence of microcirculatory dysfunction. Plasma concentrations of 2-CLFAs assessed 8h after sepsis induction were lower in rats that survived sepsis than in non-survivors. 2-CLFA levels were elevated in kidney, liver, spleen, lung, colon and ileum in septic animals. In vivo, exogenous 2-CLFA treatments increased kidney permeability, and in in vitroexperiments 2-CLFA also increased epithelial surface expression of vascular cell adhesion molecule 1 and decreased epithelial barrier function. Collectively, these studies support a role of free 2-CLFAs as biomarkers of sepsis mortality, potentially mediated, in part, by 2-CLFA-elicited endothelial and epithelial barrier dysfunction.




esea

WITHDRAWN: Quantitative mass spectrometry analysis of PD-L1 protein expression, N-glycosylation and expression stoichiometry with PD-1 and PD-L2 in human melanoma [Research]

This article has been withdrawn by the authors. We discovered an error after this manuscript was published as a Paper in Press. Specifically, we learned that the structures of glycans presented for the PD-L1 peptide were drawn and labeled incorrectly. We wish to withdraw this article and submit a corrected version for review.




esea

Translating Divergent Environmental Stresses into a Common Proteome Response through Hik33 in a Model Cyanobacterium [Research]

The histidine kinase Hik33 plays important roles in mediating cyanobacterial response to divergent types of abiotic stresses including cold, salt, high light (HL), and osmotic stresses. However, how these functions are regulated by Hik33 remains to be addressed. Using a hik33-deficient strain (hik33) of Synechocystis sp. PCC 6803 (Synechocystis) and quantitative proteomics, we found that Hik33 depletion induces differential protein expression highly similar to that induced by divergent types of stresses. This typically includes downregulation of proteins in photosynthesis and carbon assimilation that are necessary for cell propagation, and upregulation of heat shock proteins, chaperons, and proteases that are important for cell survival. This observation indicates that depletion of Hik33 alone mimics divergent types of abiotic stresses, and that Hik33 could be important for preventing abnormal stress response in the normal condition. Moreover, we found the majority of proteins of plasmid origin were significantly upregulated in hik33, though their biological significance remains to be addressed. Together, the systematically characterized Hik33-regulated cyanobacterial proteome, which is largely involved in stress responses, builds the molecular basis for Hik33 as a general regulator of stress responses.




esea

WITHDRAWN: Heralds of parallel MS: Data-independent acquisition surpassing sequential identification of data dependent acquisition in proteomics [Research]

This article has been withdrawn by the authors. This article did not comply with the editorial guidelines of MCP. Specifically, single peptide based protein identifications of 9-19% were included in the analysis and discussed in the results and conclusions. We wish to withdraw this article and resubmit a clarified, corrected manuscript for review.




esea

Selection of features with consistent profiles improves relative protein quantification in mass spectrometry experiments [Research]

In bottom-up mass spectrometry-based proteomics, relative protein quantification is often achieved with data-dependent acquisition (DDA), data-independent acquisition (DIA), or selected reaction monitoring (SRM). These workflows quantify proteins by summarizing the abundances of all the spectral features of the protein (e.g., precursor ions, transitions or fragments) in a single value per protein per run. When abundances of some features are inconsistent with the overall protein profile (for technological reasons such as interferences, or for biological reasons such as post-translational modifications), the protein-level summaries and the downstream conclusions are undermined. We propose a statistical approach that automatically detects spectral features with such inconsistent patterns. The detected features can be separately investigated, and if necessary removed from the dataset. We evaluated the proposed approach on a series of benchmark controlled mixtures and biological investigations with DDA, DIA and SRM data acquisitions. The results demonstrated that it can facilitate and complement manual curation of the data. Moreover, it can improve the estimation accuracy, sensitivity and specificity of detecting differentially abundant proteins, and reproducibility of conclusions across different data processing tools. The approach is implemented as an option in the open-source R-based software MSstats.




esea

Immediate adaptation analysis implicates BCL6 as an EGFR-TKI combination therapy target in NSCLC [Research]

Drug resistance is a major obstacle to curative cancer therapies, and increased understanding of the molecular events contributing to resistance would enable better prediction of therapy response, as well as contribute to new targets for combination therapy. Here we have analyzed the early molecular response to epidermal growth factor receptor (EGFR) inhibition using RNA sequencing data covering 13 486 genes and mass spectrometry data covering 10 138 proteins. This analysis revealed a massive response to EGFR inhibition already within the first 24 hours, including significant regulation of hundreds of genes known to control downstream signaling, such as transcription factors, kinases, phosphatases and ubiquitin E3-ligases. Importantly, this response included upregulation of key genes in multiple oncogenic signaling pathways that promote proliferation and survival, such as ERBB3, FGFR2, JAK3 and BCL6, indicating an early adaptive response to EGFR inhibition. Using a library of more than 500 approved and experimental compounds in a combination therapy screen, we could show that several kinase inhibitors with targets including JAK3 and FGFR2 increased the response to EGFR inhibitors. Further, we investigated the functional impact of BCL6 upregulation in response to EGFR inhibition using siRNA-based silencing of BCL6. Proteomics profiling revealed that BCL6 inhibited transcription of multiple target genes including p53, resulting in reduced apoptosis which implicates BCL6 upregulation as a new EGFR inhibitor treatment escape mechanism. Finally, we demonstrate that combined treatment targeting both EGFR and BCL6 act synergistically in killing lung cancer cells. In conclusion, or data indicates that multiple different adaptive mechanisms may act in concert to blunt the cellular impact of EGFR inhibition, and we suggest BCL6 as a potential target for EGFR inhibitor-based combination therapy.




esea

Proteome and phosphoproteome analysis of brown adipocytes reveals that RICTOR loss dampens global insulin/AKT signaling [Research]

Stimulating brown adipose tissue (BAT) activity represents a promising therapy for overcoming metabolic diseases. mTORC2 is important for regulating BAT metabolism, but its downstream targets have not been fully characterized. In this study, we apply proteomics and phosphoproteomics to investigate the downstream effectors of mTORC2 in brown adipocytes. We compare wild-type controls to isogenic cells with an induced knockout of the mTORC2 subunit RICTOR (Rictor-iKO) by stimulating each with insulin for a 30-minute time course. In Rictor-iKO cells, we identify decreases to the abundance of glycolytic and de novo lipogenesis enzymes, and increases to mitochondrial proteins as well as a set of proteins known to increase upon interferon stimulation. We also observe significant differences to basal phosphorylation due to chronic RICTOR loss including decreased phosphorylation of the lipid droplet protein perilipin-1 in Rictor-iKO cells, suggesting that RICTOR could be involved with regulating basal lipolysis or droplet dynamics. Finally, we observe mild dampening of acute insulin signaling response in Rictor-iKO cells, and a subset of AKT substrates exhibiting statistically significant dependence on RICTOR.




esea

Investigation of inter- and intra-tumoral heterogeneity of glioblastoma using TOF-SIMS [Research]

Glioblastoma (GBM) is one of the most aggressive human cancers with a median survival of less than two years. A distinguishing pathological feature of GBM is a high degree of inter- and intratumoral heterogeneity. Intertumoral heterogeneity of GBM has been extensively investigated on genomic, methylomic, transcriptomic, proteomic and metabolomics levels, however only a few studies describe intratumoral heterogeneity due to the lack of methods allowing to analyze GBM samples with high spatial resolution. Here, we applied TOF-SIMS (Time-of-flight secondary ion mass spectrometry) for the analysis of single cells and clinical samples such as paraffin and frozen tumor sections obtained from 57 patients. We developed a technique that allows us to simultaneously detect the distribution of proteins and metabolites in glioma tissue with 800 nm spatial resolution. Our results demonstrate that according to TOF-SIMS data glioma samples can be subdivided into clinically relevant groups and distinguished from the normal brain tissue. In addition, TOF-SIMS was able to elucidate differences between morphologically distinct regions of GBM within the same tumor. By staining GBM sections with gold-conjugated antibodies against Caveolin-1 we could visualize border between zones of necrotic and cellular tumor and subdivide glioma samples into groups characterized by different survival of the patients. Finally, we demonstrated that GBM contains cells that are characterized by high levels of Caveolin-1 protein and cholesterol. This population may partly represent a glioma stem cells. Collectively, our results show that the technique described here allows to analyze glioma tissues with a spatial resolution beyond reach of most of other omics approaches and the obtained data may be used to predict clinical behavior of the tumor.




esea

Characterization of signaling pathways associated with pancreatic {beta}-cell adaptive flexibility in compensation of obesity-linked diabetes in db/db mice [Research]

The onset of obesity-linked type 2 diabetes (T2D) is marked by an eventual failure in pancreatic β-cell function and mass that is no longer able to compensate for the inherent insulin resistance and increased metabolic load intrinsic to obesity. However, in a commonly used model of T2D, the db/db mouse, β-cells have an inbuilt adaptive flexibility enabling them to effectively adjust insulin production rates relative to the metabolic demand. Pancreatic β-cells from these animals have markedly reduced intracellular insulin stores, yet high rates of (pro)insulin secretion, together with a substantial increase in proinsulin biosynthesis highlighted by expanded rough endoplasmic reticulum and Golgi apparatus. However, when the metabolic overload and/or hyperglycemia is normalized, β-cells from db/db mice quickly restore their insulin stores and normalize secretory function. This demonstrates the β-cell’s adaptive flexibility and indicates that therapeutic approaches applied to encourage β-cell rest are capable of restoring endogenous β-cell function. However, mechanisms that regulate β-cell adaptive flexibility are essentially unknown. To gain deeper mechanistic insight into the molecular events underlying β-cell adaptive flexibility in db/db β-cells, we conducted a combined proteomic and post-translational modification specific proteomic (PTMomics) approach on islets from db/db mice and wild-type controls (WT) with or without prior exposure to normal glucose levels. We identified differential modifications of proteins involved in redox homeostasis, protein refolding, K48-linked deubiquitination, mRNA/protein export, focal adhesion, ERK1/2 signaling, and renin-angiotensin-aldosterone signaling, as well as sialyltransferase activity, associated with β-cell adaptive flexibility. These proteins are all related to proinsulin biosynthesis and processing, maturation of insulin secretory granules, and vesicular trafficking—core pathways involved in the adaptation of insulin production to meet metabolic demand. Collectively, this study outlines a novel and comprehensive global PTMome signaling map that highlights important molecular mechanisms related to the adaptive flexibility of β-cell function, providing improved insight into disease pathogenesis of T2D.




esea

Modulation of natural HLA-B*27:05 ligandome by ankylosing spondylitis-associated endoplasmic reticulum aminopeptidase 2 (ERAP2) [Research]

The human leucocyte antigen (HLA)-B*27:05 allele and the endoplasmic reticulum-resident aminopeptidases are strongly associated with ankylosing spondylitis (AS), a chronic inflammatory spondyloarthropathy. This study examined the effect of endoplasmic reticulum aminopeptidase 2 (ERAP2) in the generation of the natural HLA-B*27:05 ligandome in live cells. Complexes of HLA-B*27:05-bound peptide pools were isolated from human ERAP2-edited cell clones and the peptides were identified using high throughput mass spectrometry analyses. The relative abundance of thousand ligands was established by quantitative tandem mass spectrometry and bioinformatics analysis. The residue frequencies at different peptide position, identified in presence or absence of ERAP2, determined structural features of ligands and their interactions with specific pockets of antigen binding site of HLA-B*27:05 molecule. Sequence alignment of ligands identified with species of bacteria associated with HLA-B*27-dependent reactive arthritis was performed. In the absence of ERAP2, peptides with N-terminal basic residues, and minority canonical P2 residues are enriched in the natural ligandome. Further, alterations of residue frequencies and hydrophobicity profile at P3, P7, and P positions were detected. In addition, several ERAP2-dependent cellular peptides were highly similar to protein sequences of arthritogenic bacteria, including one human HLA-B*27:05 ligand fully conserved in a protein from Campylobacter jejuni. These findings highlight the pathogenic role of this aminopeptidase in the triggering of AS autoimmune disease.




esea

Characterization of Prenylated C-terminal Peptides Using a Thiopropyl-based Capture Technique and LC-MS/MS [Research]

Post-translational modifications play a critical and diverse role in regulating cellular activities. Despite their fundamentally important role in cellular function, there has been no report to date of an effective generalized approach to the targeting, extraction and characterization of the critical c-terminal regions of natively prenylated proteins. Various chemical modification and metabolic labelling strategies in cell culture have been reported. However, their applicability is limited to cell culture systems and does not allow for analysis of tissue samples. The chemical characteristics (hydrophobicity, low abundance, highly basic charge) of many of the c-terminal regions of prenylated proteins have impaired the use of standard proteomic workflows. In this context, we sought a direct approach to the problem in order to examine these proteins in tissue without the use of labelling.  Here we demonstrate that prenylated proteins can be captured on chromatographic resins functionalized with mixed disulfide functions. Protease treatment of resin-bound proteins using chymotryptic digestion revealed peptides from many known prenylated proteins. Exposure of the protease-treated resin to reducing agents and hydro organic mixtures released c-terminal peptides with intact prenyl groups along with other enzymatic modifications expected in this protein family. Database and search parameters were selected to allow for c-terminal modifications unique to these molecules such as CAAX box processing and c-terminal methylation. In summary, we present a direct approach to enrich and obtain information at a molecular level of detail about prenylation of proteins from tissue and cell extracts using high performance LCMS without the need for metabolic labeling and derivatization.




esea

Quantitative proteomics of human heart samples collected in vivo reveal the remodeled protein landscape of dilated left atrium without atrial fibrillation [Research]

Genetic and genomic research has greatly advanced our understanding of heart disease. Yet, comprehensive, in-depth, quantitative maps of protein expression in hearts of living humans are still lacking. Using samples obtained during valve replacement surgery in patients with mitral valve prolapse (MVP), we set out to define inter-chamber differences, the intersect of proteomic data with genetic or genomic datasets, and the impact of left atrial dilation on the proteome of patients with no history of atrial fibrillation (AF).  We collected biopsies from right atria (RA), left atria (LA) and left ventricle (LV) of seven male patients with mitral valve regurgitation with dilated LA but no history of AF. Biopsy samples were analyzed by high-resolution mass spectrometry (MS), where peptides were pre-fractionated by reverse phase high-pressure liquid chromatography prior to MS measurement on a Q-Exactive-HF Orbitrap instrument. We identified 7,314 proteins based on 130,728 peptides. Results were confirmed in an independent set of biopsies collected from three additional individuals. Comparative analysis against data from post-mortem samples showed enhanced quantitative power and confidence level in samples collected from living hearts. Our analysis, combined with data from genome wide association studies suggested candidate gene associations to MVP, identified higher abundance in ventricle for proteins associated with cardiomyopathies and revealed the dilated LA proteome, demonstrating differential representation of molecules previously associated with AF, in non-AF hearts. This is the largest dataset of cardiac protein expression from human samples collected in vivo. It provides a comprehensive resource that allows insight into molecular fingerprints of MVP and facilitates novel inferences between genomic data and disease mechanisms. We propose that over-representation of proteins in ventricle is consequent not to redundancy but to functional need, and conclude that changes in abundance of proteins known to associate with AF are not sufficient for arrhythmogenesis.




esea

Dysregulation of Exosome Cargo by Mutant Tau Expressed in Human-Induced Pluripotent Stem Cell (iPSC) Neurons Revealed by Proteomics Analyses [Research]

Accumulation and propagation of hyperphosphorylated tau (p-tau) is a common neuropathological hallmark associated with neurodegeneration of Alzheimer's disease (AD), frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17), and related tauopathies. Extracellular vesicles, specifically exosomes, have recently been demonstrated to participate in mediating tau propagation in brain. Exosomes produced by human induced pluripotent stem cell (iPSC)-derived neurons expressing mutant Tau (mTau), containing the P301L and V337M Tau mutations of FTDP-17, possess the ability to propagate p-tau pathology after injection into mouse brain.  To gain an understanding of the mTau exosome cargo involved in tau pathogenesis, these pathogenic exosomes were analyzed by proteomics and bioinformatics. The data showed that mTau expression dysregulates the exosome proteome to result in (1) proteins uniquely present only in mTau, and not control exosomes, (2) the absence of proteins in mTau exosomes, uniquely present in control exosomes, and (3) shared proteins which were significantly up-regulated or down-regulated in mTau compared to control exosomes. Notably, mTau exosomes (not control exosomes) contain ANP32A (also known as I1PP2A), an endogenous inhibitor of the PP2A phosphatase which regulates the phosphorylation state of p-tau.  Several of the mTau exosome-specific proteins have been shown to participate in AD mechanisms involving lysosomes, inflammation, secretases, and related processes.  Furthermore, the mTau exosomes lacked a substantial portion of proteins present in control exosomes involved in pathways of localization, vesicle transport, and protein binding functions. The shared proteins present in both mTau and control exosomes represented exosome functions of vesicle-mediated transport, exocytosis, and secretion processes. These data illustrate mTau as a dynamic regulator of the biogenesis of exosomes to result in acquisition, deletion, and up- or down-regulation of protein cargo to result in pathogenic mTau exosomes capable of in vivo propagation of p-tau neuropathology in mouse brain. 




esea

Proteaphagy in mammalian cells can function independent of ATG5/ATG7 [Research]

The degradation of intra- and extracellular proteins is essential in all cell types and mediated by two systems, the ubiquitin-proteasome system (UPS) and the autophagy-lysosome pathway. This study investigates the changes in autophagosomal and lysosomal proteomes upon inhibition of proteasomes by bortezomib (BTZ) or MG132. We find an increased abundance of more than 50 proteins in lysosomes of cells in which the proteasome is inhibited. Among those are dihydrofolate reductase (DHFR), ß-Catenin and 3-hydroxy-3-methylglutaryl-coenzym-A (HMGCoA)-reductase. Since these proteins are known to be degraded by the proteasome they seem to be compensatorily delivered to the autophagosomal pathway when the proteasome is inactivated. Surprisingly, most of the proteins which show increased amounts in the lysosomes of BTZ or MG132 treated cells are proteasomal subunits. Thus an inactivated, non-functional proteasome is delivered to the autophagic pathway. Native gel electrophoresis shows that the proteasome reaches the lysosome intact and not disassembled. Adaptor proteins, which target proteasomes to autophagy, have been described in Arabidopsis, Saccharomyces and upon starvation in mammalians. However, in cell lines deficient of these proteins or their mammalian orthologues, respectively, the transfer of proteasomes to the lysosome is not impaired. Obviously, these proteins do not play a role as autophagy adaptor proteins in mammalian cells. We can also show that chaperone-mediated autophagy (CMA) does not participate in the proteasome delivery to the lysosomes. In autophagy-related (ATG)-5 and ATG7 deficient cells the delivery of inactivated proteasomes to the autophagic pathway was only partially blocked, indicating the existence of at least two different pathways by which inactivated proteasomes can be delivered to the lysosome in mammalian cells.




esea

Seminal Plasma Proteome as an Indicator of Sperm Dysfunction and Low Sperm Motility [Research]

Molecular mechanisms underlying sperm motility have not been fully explained, particularly in chickens. The objective was to identify seminal plasma proteins associated with chicken sperm motility by comparing the seminal plasma proteomic profile of roosters with low sperm motility (LSM, n = 4) and high sperm motility (HSM, n = 4). Using a label-free MS-based method, a total of 522 seminal plasma proteins were identified, including 386 (~74%) previously reported and 136 novel ones. A total of 70 differentially abundant proteins were defined, including 48 more-abundant, 15 less-abundant, and seven proteins unique to the LSM group (specific proteins). Key secretory proteins like less-abundant ADGRG2 and more-abundant SPINK2 in the LSM suggested that the corresponding secretory tissues played a crucial role in maintaining sperm motility. Majority (80%) of the more-abundant and five specific proteins were annotated to the cytoplasmic domain which might be a result of higher plasma membrane damage and acrosome dysfunction in LSM. Additionally, more-abundant mitochondrial proteins were detected in LSM seminal plasma associated with lower spermatozoa mitochondrial membrane potential (m) and ATP concentrations. Further studies showed that the spermatozoa might be suffering from oxidative stress, as the amount of spermatozoa reactive oxygen species (ROS) were largely enhanced, seminal malondialdehyde (MDA) concentrations were increased, and the seminal plasma total antioxidant capacity (T-AOC) were decreased. Our study provides an additional catalog of chicken seminal plasma proteome and supports the idea that seminal plasma could be as an indicator of spermatozoa physiology. More-abundant of acrosome, mitochondria and sperm cytoskeleton proteins in the seminal plasma could be a marker of sperm dysfunction and loss of motility. The degeneration of spermatozoa caused the reduced seminal T-AOC and enhanced oxidative stress might be potential determinants of low sperm motility. These results could extend our understanding of sperm motility and sperm physiology regulation.




esea

HIGD2A is required for assembly of the COX3 module of human mitochondrial complex IV [Research]

Assembly factors play a critical role in the biogenesis of mitochondrial respiratory chain complexes I-IV where they assist in the membrane insertion of subunits, attachment of co-factors, and stabilization of assembly intermediates. The major fraction of complexes I, III and IV are present together in large molecular structures known as respiratory chain supercomplexes. A number of assembly factors have been proposed as required for supercomplex assembly, including the hypoxia inducible gene 1 domain family member HIGD2A. Using gene-edited human cell lines and extensive steady state, translation and affinity enrichment proteomics techniques we show that loss of HIGD2A leads to defects in the de novo biogenesis of mtDNA-encoded COX3, subsequent accumulation of complex IV intermediates and turnover of COX3 partner proteins. Deletion of HIGD2A also leads to defective complex IV activity. The impact of HIGD2A loss on complex IV was not altered by growth under hypoxic conditions, consistent with its role being in basal complex IV assembly. While in the absence of HIGD2A we show that mitochondria do contain an altered supercomplex assembly, we demonstrate it to harbor a crippled complex IV lacking COX3. Our results redefine HIGD2A as a classical assembly factor required for building the COX3 module of complex IV.




esea

Robust summarization and inference in proteome-wide label-free quantification [Research]

Label-Free Quantitative mass spectrometry based workflows for differential expression (DE) analysis of proteins impose important challenges on the data analysis due to peptide-specific effects and context dependent missingness of peptide intensities. Peptide-based workflows, like MSqRob, test for DE directly from peptide intensities and outperform summarization methods which first aggregate MS1 peptide intensities to protein intensities before DE analysis. However, these methods are computationally expensive, often hard to understand for the non-specialised end-user, and do not provide protein summaries, which are important for visualisation or downstream processing. In this work, we therefore evaluate state-of-the-art summarization strategies using a benchmark spike-in dataset and discuss why and when these fail compared to the state-of-the-art peptide based model, MSqRob. Based on this evaluation, we propose a novel summarization strategy, MSqRobSum, which estimates MSqRob’s model parameters in a two-stage procedure circumventing the drawbacks of peptide-based workflows. MSqRobSum maintains MSqRob’s superior performance, while providing useful protein expression summaries for plotting and downstream analysis. Summarising peptide to protein intensities considerably reduces the computational complexity, the memory footprint and the model complexity, and makes it easier to disseminate DE inferred on protein summaries. Moreover, MSqRobSum provides a highly modular analysis framework, which provides researchers with full flexibility to develop data analysis workflows tailored towards their specific applications.




esea

Flow-induced reorganization of laminin-integrin networks within the endothelial basement membrane uncovered by proteomics [Research]

The vessel wall is continuously exposed to hemodynamic forces generated by blood flow. Endothelial mechanosensors perceive and translate mechanical signals via cellular signaling pathways into biological processes that control endothelial development, phenotype and function. To assess the hemodynamic effects on the endothelium on a system-wide level, we applied a quantitative mass spectrometry approach combined with cell surface chemical footprinting. SILAC-labeled endothelial cells were subjected to flow-induced shear stress for 0, 24 or 48 hours, followed by chemical labeling of surface proteins using a non-membrane permeable biotin label, and analysis of the whole proteome and the cell surface proteome by LC-MS/MS analysis. These studies revealed that of the >5000 quantified proteins 104 were altered, which were highly enriched for extracellular matrix proteins and proteins involved in cell-matrix adhesion. Cell surface proteomics indicated that LAMA4 was proteolytically processed upon flow-exposure, which corresponded to the decreased LAMA4 mass observed on immunoblot. Immunofluorescence microscopy studies highlighted that the endothelial basement membrane was drastically remodeled upon flow exposure. We observed a network-like pattern of LAMA4 and LAMA5, which corresponded to the localization of laminin-adhesion molecules ITGA6 and ITGB4. Furthermore, the adaptation to flow-exposure did not affect the inflammatory response to tumor necrosis factor α, indicating that inflammation and flow trigger fundamentally distinct endothelial signaling pathways with limited reciprocity and synergy. Taken together, this study uncovers the blood flow-induced remodeling of the basement membrane and stresses the importance of the subendothelial basement membrane in vascular homeostasis.




esea

A cross-linking mass spectrometry approach defines protein interactions in yeast mitochondria [Research]

Protein cross-linking and the analysis of cross-linked peptides by mass spectrometry is currently receiving much attention. Not only is this approach applied to isolated complexes to provide information about spatial arrangements of proteins but it is also increasingly applied to entire cells and their organelles. As in quantitative proteomics, the application of isotopic labelling further makes it possible to monitor quantitative changes in the protein-protein interactions between different states of a system. Here, we cross-linked mitochondria from Saccharomyces cerevisiae grown on either glycerol- or glucose-containing medium to monitor protein-protein interactions under non-fermentative and fermentative conditions. We investigated qualitatively the protein-protein interactions of the 400 most abundant proteins applying stringent data-filtering criteria, i.e. a minimum of two cross-linked peptide spectrum matches and a cut-off in the spectrum scoring of the used search engine. The cross-linker BS3 proved to be equally suited for connecting proteins in all compartments of mitochondria when compared with its water-insoluble but membrane-permeable derivative DSS. We also applied quantitative cross-linking to mitochondria of both the growth conditions using stable-isotope labelled BS3. Significant differences of cross-linked proteins under glycerol and glucose conditions were detected, however, mainly due to the different copy numbers of these proteins in mitochondria under both the conditions. Results obtained from the glycerol condition indicate that the internal NADH:ubiquinone oxidoreductase Ndi1 is part of an electron transport chain supercomplex. We have also detected several hitherto uncharacterized proteins and identified their interaction partners. Among those, Min8 was found to be associated with cytochrome c oxidase. BN-PAGE analyses of min8 mitochondria suggest that Min8 promotes the incorporation of Cox12 into cytochrome c oxidase.




esea

The DNA sensor cGAS is decorated by acetylation and phosphorylation modifications in the context of immune signaling [Research]

The cyclic GMP-AMP synthase (cGAS) protein is a pattern-recognition receptor of the mammalian innate immune system that is recognized as a main cytosolic sensor of pathogenic or damaged DNA. cGAS DNA binding initiates catalytic production of the second messenger, cyclic GMP-AMP, which activates the STING-TBK1-IRF3 signaling axis to induce cytokine expression. Post-translational modification (PTM) has started to be recognized as a critical component of cGAS regulation, yet the extent of these modifications remains unclear. Here, we report the identification and functional analysis of cGAS phosphorylations and acetylations in several cell types under basal and immune-stimulated conditions. cGAS was enriched by immunoaffinity purification from human primary fibroblasts prior to and after infection with herpes simplex virus type 1 (HSV-1), as well as from immune-stimulated STING-HEK293T cells. Six phosphorylations and eight acetylations were detected, of which eight PTMs were not previously documented. PTMs were validated by parallel reaction monitoring (PRM) mass spectrometry in fibroblasts, HEK293T cells, and THP-1 macrophage-like cells. Primary sequence and structural analysis of cGAS highlighted a subset of PTM sites with elevated surface accessibility and high evolutionary sequence conservation. To assess the functional relevance of each PTM, we generated a series of single-point cGAS mutations. Stable cell lines were constructed to express cGAS with amino acid substitutions that prevented phosphorylation (Ser-to-Ala) and acetylation (Lys-to-Arg) or that mimicked the modification state (Ser-to-Asp and Lys-to-Gln). cGAS-dependent apoptotic and immune signaling activities were then assessed for each mutation. Our results show that acetyl-mimic mutations at Lys384 and Lys414 inhibit the ability of cGAS to induce apoptosis. In contrast, the Lys198 acetyl-mimic mutation increased cGAS-dependent interferon signaling when compared to the unmodified charge-mimic. Moreover, targeted PRM quantification showed that Lys198 acetylation is decreased upon infections with two herpesviruses—HSV-1 and human cytomegalovirus (HCMV), highlighting this residue as a regulatory point during virus infection.




esea

Proteomics of Campylobacter jejuni growth in deoxycholate reveals Cj0025c as a cystine transport protein required for wild-type human infection phenotypes [Research]

Campylobacter jejuni is a major cause of food-borne gastroenteritis. Proteomics by label-based two-dimensional liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) identified proteins associated with growth in 0.1% sodium deoxycholate (DOC, a component of gut bile salts), and system-wide validation was performed by data-independent acquisition (DIA-SWATH-MS). LC-MS/MS quantified 1326 proteins (~82% of the predicted C. jejuni proteome), of which 1104 were validated in additional biological replicates by DIA-SWATH-MS. DOC resulted in a profound proteome shift with 512 proteins showing significantly altered abundance. Induced proteins were associated with flagellar motility and antibiotic resistance; and these correlated with increased DOC motility and resistance to polymyxin B and ciprofloxacin. DOC also increased human Caco-2 cell adherence and invasion. Abundances of proteins involved in nutrient transport were altered by DOC and aligned with intracellular changes to their respective carbon sources. DOC increased intracellular levels of sulfur-containing amino acids (cysteine and methionine) and the dipeptide cystine (Cys-Cys), which also correlated with reduced resistance to oxidative stress. A DOC induced transport protein was Cj0025c, which has sequence similarity to bacterial Cys-Cys transporters. Deletion of cj0025c (cj0025c) resulted in proteome changes consistent with sulfur starvation, as well as attenuated invasion, reduced motility, atypical morphology, increased antimicrobial susceptibility and poor biofilm formation. Targeted metabolomics showed cj0025c was capable of utilizing known C. jejuni amino and organic acid substrates commensurate with wild-type. Medium Cys-Cys levels however, were maintained in cj0025c relative to wild-type. A toxic Cys-Cys mimic (selenocystine) inhibited wild-type growth, but not cj0025c. Provision of an alternate sulfur source (2 mM thiosulfate) restored cj0025c motility. Our data confirm that Cj0025c is a Cys-Cys transporter that we have named TcyP consistent with the nomenclature of homologous proteins in other species.




esea

Perlecan knockdown significantly alters extracellular matrix composition and organization during cartilage development [Research]

Perlecan is a critical proteoglycan found in the extracellular matrix (ECM) of cartilage. In healthy cartilage, perlecan regulates cartilage biomechanics and we previously demonstrated perlecan deficiency leads to reduced cellular and ECM stiffness in vivo. This change in mechanics may lead to the early onset osteoarthritis seen in disorders resulting from perlecan knockdown such as Schwartz-Jampel syndrome (SJS). To identify how perlecan knockdown affects the material properties of developing cartilage, we used imaging and liquid chromatography–tandem mass spectrometry (LC-MS/MS) to study the ECM in a murine model of SJS, Hspg2C1532Y-Neo. Perlecan knockdown led to defective pericellular matrix formation, whereas the abundance of bulk ECM proteins, including many collagens, increased. Post-translational modifications and ultrastructure of collagens were not significantly different; however, LC-MS/MS analysis showed more protein was secreted by Hspg2C1532Y-Neo cartilage in vitro, suggesting that the incorporation of newly synthesized ECM was impaired. In addition, glycosaminoglycan deposition was atypical, which may explain the previously observed decrease in mechanics. Overall, these findings provide insight into the influence of perlecan on functional cartilage assembly and the progression of osteoarthritis in SJS.




esea

Metallopeptidase Stp1 activates the transcription factor Sre1 in the carotenogenic yeast Xanthophyllomyces dendrorhous [Research Articles]

Xanthophyllomyces dendrorhous is a basidiomycete yeast known as a natural producer of astaxanthin, a carotenoid of commercial interest because of its antioxidant properties. Recent studies indicated that X. dendrorhous has a functional SREBP pathway involved in the regulation of isoprenoid compound biosynthesis, which includes ergosterol and carotenoids. SREBP is a major regulator of sterol metabolism and homeostasis in mammals; characterization in fungi also provides information about its role in the hypoxia adaptation response and virulence. SREBP protease processing is required to activate SREBP pathway functions in fungi. Here, we identified and described the STP1 gene, which encodes a metallopeptidase of the M50 family involved in the proteolytic activation of the transcription factor Sre1 of the SREBP pathway, in X. dendrorhous. We assessed STP1 function in stp1 strains derived from the wild-type and a mutant of ergosterol biosynthesis that overproduces carotenoids and sterols. Bioinformatic analysis of the deduced protein predicted the presence of characteristic features identified in homologs from mammals and fungi. The stp1 mutation decreased yeast growth in the presence of azole drugs and reduced transcript levels of Sre1-dependent genes. This mutation also negatively affected the carotenoid- and sterol-overproducing phenotype. Western blot analysis demonstrated that Sre1 was activated in the yeast ergosterol biosynthesis mutant and that the stp1 mutation introduced in this strain prevented Sre1 proteolytic activation. Overall, our results demonstrate that STP1 encodes a metallopeptidase involved in proteolytic activation of Sre1 in X. dendrorhous, contributing to our understanding of fungal SREBP pathways.




esea

Effects of omega-O-acylceramide structures and concentrations in healthy and diseased skin barrier lipid membrane models [Research Articles]

Ceramides (Cers) with ultralong (~32-carbon) chains and -esterified linoleic acid, composing a subclass called omega-O-acylceramides (acylCers), are indispensable components of the skin barrier. Normal barriers typically contain acylCer concentrations of ~10 mol%; diminished concentrations, along with altered or missing long periodicity lamellar phase (LPP), and increased permeability accompany an array of skin disorders, including atopic dermatitis, psoriasis, and ichthyoses. We developed model membranes to investigate the effects of the acylCer structure and concentration on skin lipid organization and permeability. The model membrane systems contained six to nine Cer subclasses as well as fatty acids, cholesterol, and cholesterol sulfate; acylCer content—namely, acylCers containing sphingosine (Cer EOS), dihydrosphingosine (Cer EOdS), and phytosphingosine (Cer EOP) ranged from zero to 30 mol%. Systems with normal physiologic concentrations of acylCer mixture mimicked the permeability and nanostructure of human skin lipids (with regard to LPP, chain order, and lateral packing). The models also showed that the sphingoid base in acylCer significantly affects the membrane architecture and permeability and that Cer EOP, notably, is a weaker barrier component than Cer EOS and Cer EOdS. Membranes with diminished or missing acylCers displayed some of the hallmarks of diseased skin lipid barriers (i.e., lack of LPP, less ordered lipids, less orthorhombic chain packing, and increased permeability). These results could inform the rational design of new and improved strategies for the barrier-targeted treatment of skin diseases.