esea Researchers discover an abrupt change in quantum behavior that defies current theories of superconductivity By www.princeton.edu Published On :: Fri, 19 Jan 2024 11:59:45 -0500 New paper from Princeton team challenges the conventional wisdom of superconducting quantum transitions. Full Article
esea Princeton creates Office of Innovation to enhance ecosystem for research, start-ups, tech transfer and industry collaboration By www.princeton.edu Published On :: Fri, 04 Oct 2024 14:31:00 -0400 Craig B. Arnold has been named Princeton’s first University Innovation Officer and heads the new office. Full Article
esea Fifteen scholars named Presidential Postdoctoral Research Fellows By www.princeton.edu Published On :: Thu, 10 Oct 2024 09:57:00 -0400 The program, now in its fifth year, recognizes and supports outstanding scholars primed to make important contributions in their fields. The 2024 cohort includes disciplines spanning the humanities, engineering, the sciences and the social sciences. Full Article
esea Endowment continues to provide foundation for Princeton’s groundbreaking research, innovative scholarship and national leadership on college affordability By www.princeton.edu Published On :: Thu, 24 Oct 2024 12:00:00 -0400 In the Class of 2028, 71.5% of students qualify for financial aid and 21.7% of the class are lower-income students eligible for federal Pell grants. Full Article
esea Internet researchers reach beyond academia to close major security loophole By www.princeton.edu Published On :: Thu, 24 Oct 2024 15:41:09 -0400 Princeton engineers and industry leaders have squelched a threat that had lurked for years in the internet’s encryption system. Full Article
esea Celebrate Princeton Innovation spotlights researchers who are patenting discoveries, creating start-ups and exploring other ventures By www.princeton.edu Published On :: Fri, 08 Nov 2024 10:51:00 -0500 Full Article
esea Writing Seminar Research Clinic Fall 2024 By www.princeton.edu Published On :: Sun, 17 Nov 2024 14:00:00 -0500 Register for our "Writing Seminar Research Clinic" to be held in the Firestone Library Tea Room on Sunday November 17 between 2:00 p.m. and 8:00 p.m. Consult with Writing Center Fellows and Librarians to move your Research Paper to the next level while munching on movie theater style popcorn, cookies, and sipping caffeinated beverages! Please register for a time slot here: 2:00pm-2:30pm 2:30pm-3:00pm 3:00pm-3:30pm 3:30pm-4:00pm 4:00pm-4:30pm 4:30pm-5:00pm 5:00pm-5:30pm 5:30pm-6:00pm 6:00pm-6:30pm 6:30pm-7:00pm 7:00pm-7:30pm 7:30pm-8:00pm If you need research help and none of these time slots work for you, feel free to sign up for a consultation with your seminar librarian. Full Article
esea How magpies outwitted researchers in Australia By www.pbs.org Published On :: Mon, 14 Mar 2022 21:38:00 +0000 During a recent study, a group of magpies removed their GPS trackers, astounding their observers. But were the birds actually trying to help each other? Full Article
esea Ice Age cave paintings decoded by amateur researcher By www.pbs.org Published On :: Wed, 25 Jan 2023 18:10:00 +0000 Patterns of lines and dots associated with specific animal species in cave art may point to an early writing system. Full Article
esea How Animal Research Can Inspire Elementary Students’ Writing By www.edutopia.org Published On :: Mon, 03 Jul 2023 09:49:08 EDT Teachers can assess young students’ literacy skills and knowledge by encouraging them to produce books based on animal facts. Full Article
esea Nuclear-powered aircraft carriers would give China's growing navy new reach, and researchers say it's working on the reactor to power one By www.businessinsider.com Published On :: Tue, 12 Nov 2024 18:40:30 +0000 A nuclear-powered aircraft carrier, like American carriers, would be a major jump for China, giving its navy a global reach. Full Article Military & Defense defense satellite-images china nuclear-power aircraft-carrier
esea The biggest risk to stocks after Trump's victory is China's reaction to a trade war, research firm says By markets.businessinsider.com Published On :: Tue, 12 Nov 2024 19:53:19 +0000 If Trump's proposed 60% tariff against China is enacted and the country responds aggressively, it could pressure some of America's largest companies. Full Article Markets mi-exclusive stock-market-outlook china-tariffs trade-war sp-500 donald-trump
esea Nearly 216,000 job seekers had their personal data left unsecured on a tech recruiter's database, a security researcher says By www.businessinsider.com Published On :: Tue, 12 Nov 2024 23:52:29 +0000 A tech recruiting firm left a database unsecured that exposed emails, passport numbers and partial SSNs of job seekers, a security researcher says. Full Article Tech Careers data-breach tech-recruiting job-search recruiter careers tech-careers data-security
esea Beyond Labels and Agendas: Research Teachers need to Know about Phonics and Phonological Awareness By www.readingrockets.org Published On :: Tue, 10 Jan 2023 16:16:51 EST This article describes the current findings on phonics and phonological awareness instruction. It uses a question & answer format to explore 10 common questions that teachers ask about teaching phonics and phonemic awareness. Here are a few key questions addressed in the article: What are phonics and phonemic awareness? Should phonemic awareness be paired with print and taught together? Should phonological awareness be coordinated with phonics instruction? What is the best sequence for teaching phonics? Full Article
esea AI labs – a club for #AI research and a chance to gain hands-on experience with AI By www.opengardensblog.futuretext.com Published On :: Wed, 07 Nov 2018 06:35:22 +0000 We have been working on this idea over the summer and have now launched the next stage of the AI labs in London Here are some more details. Think of AI labs – as a club for AI research AI labs addresses three problems a) Today, even if you are working on Machine Learning [...] Full Article BIG DATA FEATURED POSTS LATEST POSTS
esea Google DeepMind opens AlphaFold 3 up to researchers worldwide By readwrite.com Published On :: Tue, 12 Nov 2024 16:08:53 +0000 Google DeepMind’s AlphaFold 3 is available to access by researchers around the world via open-source. Google DeepMind, the tech giant’s… Continue reading Google DeepMind opens AlphaFold 3 up to researchers worldwide The post Google DeepMind opens AlphaFold 3 up to researchers worldwide appeared first on ReadWrite. Full Article AI Google Google DeepMind
esea In conversation with James Manyika, Senior Vice President of Research, Technology and Society at Google By www.chathamhouse.org Published On :: Tue, 29 Oct 2024 11:57:14 +0000 In conversation with James Manyika, Senior Vice President of Research, Technology and Society at Google 12 December 2024 — 11:15AM TO 12:45PM Anonymous (not verified) 29 October 2024 Chatham House and Online A conversation on AI’s global, societal and economic impacts. 2024 has been a landmark year for Artificial Intelligence (AI) development, deployment and use, with significant progress in AI-driven science, governance and cooperation. Looking ahead, AI continues to demonstrate economic promise and potential to expand on scientific breakthroughs in areas such as climate and health. This wave of innovation is occurring against a backdrop of geopolitical uncertainty and not all countries are fully able to participate. Heading into 2025, there are urgent questions about how best to maximise shared opportunities when it comes to AI and to advance global cooperation.James Manyika, Senior Vice President of Research, Technology & Society at Google, will unpack what 2025 will bring for AI in science, economics, global governance and international cooperation. Key questions include:What will be AI’s global societal and economic impact in 2025 and beyond? What are the ways AI could help increase economic growth and economy-wide productivity? What factors must be in place for this to happen?How best can we maximise shared opportunities and advance global cooperation when it comes to AI? Where can public-private partnerships unlock scientific breakthroughs for societal progress, combatting shared global challenges such as climate change and global health issues? What are the principles of safe, responsible AI, and how should companies remain responsive to their evolution and integrate them into technology design and implementation? What is the current – and ideal – role of technology companies in emerging mechanisms for global cooperation and national governance on AI?This event is being held in partnership with Google.You will receive notice by 13:00 on Wednesday 11 December if you have been successful in securing an in-person place.The institute occupies a position of respect and trust, and is committed to fostering inclusive dialogue at all events. Event attendees are expected to uphold this by adhering to our code of conduct. Full Article
esea Chatham House appoints Tim Benton as Research Director for Energy, Environment and Resources By www.chathamhouse.org Published On :: Thu, 30 May 2019 08:44:55 +0000 Chatham House appoints Tim Benton as Research Director for Energy, Environment and Resources News Release sysadmin 30 May 2019 Chatham House is pleased to announce that Professor Tim Benton has been appointed as research director of the Energy, Environment and Resources Department. Full Article
esea Using Math to Support Cancer Research By www.ams.org Published On :: Thu, 29 Dec 2022 2:39:14 -0400 Stacey Finley from University of Southern California discusses how mathematical models support the research of cancer biology. Cancer research is a crucial job, but a difficult one. Tumors growing inside the human body are affected by all kinds of factors. These conditions are difficult (if not impossible) to recreate in the lab, and using real patients as subjects can be painful and invasive. Mathematical models give cancer researchers the ability to run experiments virtually, testing the effects of any number of factors on tumor growth and other processes — all with far less money and time than an experiment on human subjects or in the lab would use. Full Article
esea 46 Receive AMS-Simons Research Enhancement Grants for PUI Faculty By www.ams.org Published On :: Mon, 28 Oct 2024 00:00:00 EST Forty-six mathematical scientists have been named recipients of AMS-Simons Research Enhancement Grants for Primarily Undergraduate Institution (PUI) Faculty. Each awardee will receive $3,000 per year for three years. The grants foster and support research collaboration by full-time mid-career mathematicians at US institutions that do not offer a mathematics doctoral degree. This year’s grant recipients hail from 42 institutions across 21 US states. The grants will support their research in several different areas, from number theory to applied mathematics. This is the grant program’s second cohort, said Sarah Bryant, associate vice president of programs. “Over the first two years, we’ve worked with faculty from 75 different institutions, including 19 minority-serving institutions, which shows just how much this program is expanding and making an impact,” Bryant said. She noted that “in the first year, the grants supported 87 trips, helped produce 70 publications and preprints, and gave awardees the resources needed to collaborate and advance their work.” The grant allows for any activities that will further the awardee’s research program. Expenses include but are not limited to conference participation, institute visits, collaboration travel (awardee or collaborator), computer equipment or software, family-care expenses, and teaching assistants. Administration of the award by the grantee’s institution is required; annual discretionary funds for a grantee’s department and administrative funds for a grantee's institution will be available at the end of each grant year. The grants are made possible through funding from the Simons Foundation and the American Mathematical Society (AMS), as well as Eve, Kirsten, Lenore, and Ada of the Menger family. Applications for the next cohort are anticipated to open on MathPrograms.org on January 9, 2025. Visit the AMS website to view an informational PowerPoint or sign up to receive email updates about the program. Faculty who applied for but did not receive the 2023 or 2024 awards are encouraged to reapply if they are still eligible for the grant. Full Article
esea WITHDRAWN: Structural and mechanistic studies of hydroperoxide conversions catalyzed by a CYP74 clan epoxy alcohol synthase from amphioxus (Branchiostoma floridae) [Research Articles] By www.jlr.org Published On :: 2014-03-04T09:59:12-08:00 This manuscript has been withdrawn by the Author. Full Article
esea Dietary sphinganine is selectively assimilated by members of the mammalian gut microbiome [Research Articles] By www.jlr.org Published On :: 2020-07-09T14:33:39-07:00 Functions of the gut microbiome have a growing number of implications for host metabolic health, with diet being one of the most significant influences on microbiome composition. Compelling links between diet and the gut microbiome suggest key roles for various macronutrients, including lipids, yet how individual classes of dietary lipids interact with the microbiome remains largely unknown. Sphingolipids are bioactive components of most foods and are also produced by prominent gut microbes. This makes sphingolipids intriguing candidates for shaping diet–microbiome interactions. Here, we used a click chemistry–based approach to track the incorporation of bioorthogonal dietary omega-alkynyl sphinganine (sphinganine alkyne [SAA]) into the murine gut microbial community (Bioorthogonal labeling). We identified microbial and SAA-specific metabolic products through fluorescence-based sorting of SAA-containing microbes (Sort), 16S rRNA gene sequencing to identify the sphingolipid-interacting microbes (Seq), and comparative metabolomics to identify products of SAA assimilation by the microbiome (Spec). Together, this approach, termed Bioorthogonal labeling-Sort-Seq-Spec (BOSSS), revealed that SAA assimilation is nearly exclusively performed by gut Bacteroides, indicating that sphingolipid-producing bacteria play a major role in processing dietary sphinganine. Comparative metabolomics of cecal microbiota from SAA-treated mice revealed conversion of SAA to a suite of dihydroceramides, consistent with metabolic activities of Bacteroides and Bifidobacterium. Additionally, other sphingolipid-interacting microbes were identified with a focus on an uncharacterized ability of Bacteroides and Bifidobacterium to metabolize dietary sphingolipids. We conclude that BOSSS provides a platform to study the flux of virtually any alkyne-labeled metabolite in diet–microbiome interactions. Full Article
esea Hepatic Deletion of Mboat7 (Lpiat1) Causes Activation of SREBP-1c and Fatty Liver [Research Articles] By www.jlr.org Published On :: 2020-08-28T09:33:17-07:00 Genetic variants that increase the risk of fatty liver disease (FLD) and cirrhosis have recently been identified in the proximity of membrane bound O-acyltransferase domain-containing 7 (MBOAT7). To elucidate the link between these variants and FLD we characterized Mboat7 liver-specific knock-out mice (Mboat7-LSKO). Chow-fed Mboat7-LSKO mice developed fatty livers and associated liver injury. Lipidomic analysis of liver using mass spectrometry revealed a pronounced reduction in 20-carbon polyunsaturated fatty acid content in phosphatidylinositols (PIs), but not in other phospholipids. The change in fatty acid composition of PIs in these mice was associated with a marked increase in de novo lipogenesis due to activation of SREBP-1c, a transcription factor that coordinates the activation of genes encoding enzymes in the fatty acid biosynthesis pathway. Hepatic removal of both SREBP cleavage activating protein (Scap) and Mboat7 normalized hepatic triglycerides relative to Scap only hepatic knock-out showing increased SREBP-1c processing is required for Mboat7 induced steatosis. This study reveals a clear relationship between PI fatty acid composition and regulation of hepatic fat synthesis and delineates the mechanism by which mutations in MBOAT7 cause hepatic steatosis. Full Article
esea Lipid and Metabolic Syndrome Traits in Coronary Artery Disease: A Mendelian Randomization Study [Patient-Oriented and Epidemiological Research] By www.jlr.org Published On :: 2020-09-09T12:33:17-07:00 Mendelian randomization (MR) of lipid traits in coronary artery disease (CAD) has provided evidence for causal associations of low-density lipoprotein cholesterol (LDL-C) and triglycerides (TG) in CAD, but many lipid trait genetic variants have pleiotropic effects on other cardiovascular risk factors that may bias MR associations. The goal of this study was to evaluate pleiotropic effects of lipid trait genetic variants and to account for these effects in MR of lipid traits in CAD. We performed multivariable MR using inverse variance-weighted (IVW) and MR-Egger methods in large (n ≥ 300,000) GWAS datasets. We found that 30% of lipid trait genetic variants have effects on metabolic syndrome traits, including body mass index (BMI), type 2 diabetes (T2D), and systolic blood pressure (SBP). Nonetheless, in multivariable MR analysis, LDL-C, high-density lipoprotein cholesterol (HDL-C), TG, BMI, T2D, and SBP are independently associated with CAD, and each of these associations is robust to adjustment for directional pleiotropy. MR at loci linked to direct effects on HDL-C and TG suggests locus- and mechanism-specific causal effects of these factors on CAD. Full Article
esea High-density lipoprotein-associated miRNA is increased following Roux-en-Y gastric bypass surgery for severe obesity [Research Articles] By www.jlr.org Published On :: 2020-10-22T06:30:32-07:00 Roux-en-Y gastric bypass (RYGB) is one of the most commonly performed weight-loss procedures, but how severe obesity and RYGB affects circulating HDL-associated microRNAs (miRNAs) remains unclear. Here, we aim to investigate how HDL-associated miRNAs are regulated in severe obesity and how weight loss after RYGB surgery affects HDL-miRNAs. Plasma HDL were isolated from patients with severe obesity (n=53) before, 6 and 12 months after RYGB by immunoprecipitation using goat anti-human apoA-I microbeads. HDL were also isolated from 18 healthy participants. miRNAs were extracted from isolated HDL and levels of miR-24, miR-126, miR-222 and miR-223 were determined by TaqMan miRNA assays. We found that HDL-associated miR-126, miR-222 and miR-223 levels, but not miR-24 levels, were significantly higher in patients with severe obesity when compared with healthy controls. There were significant increases in HDL-associated miR-24, miR-222 and miR-223 at 12 months after RYGB. Additionally, cholesterol efflux capacity and paraoxonase (PON1) activity were increased and intracellular adhesion molecule-1 (ICAM-1) levels decreased. The increases in HDL-associated miR-24 and miR-223 were positively correlated with increase in cholesterol efflux capacity (r=0.326, P=0.027 and r=0.349, P=0.017 respectively). An inverse correlation was observed between HDL-associated miR-223 and ICAM-1 at baseline. Together, these findings show that HDL-associated miRNAs are differentially regulated in healthy versus patients with severe obesity and are altered after RYGB. These findings provide insights into how miRNAs are regulated in obesity before and after weight reduction, and may lead to the development of novel treatment strategies for obesity and related metabolic disorders. Full Article
esea Adiponectin forms a complex with atherogenic LDL and inhibits its downstream effects [Research Articles] By www.jlr.org Published On :: 2020-11-03T06:36:28-08:00 Adiponectin, an adipocyte-derived protein, has anti-atherogenic and anti-diabetic effects, but how it confers the anti-atherogenic effects is not well understood. To study the anti-atherogenic mechanisms of adiponectin, we examined whether it interacts with atherogenic low-density lipoprotein (LDL) to attenuate LDL’s atherogenicity. L5, the most electronegative subfraction of LDL, induces atherogenic responses similarly to copper-oxidized LDL (oxLDL). Unlike native LDL endocytosed via the LDL receptor, L5 and oxLDL are internalized by cells via the lectin-like oxidized LDL receptor-1 (LOX-1). Using enzyme-linked immunosorbent assays (ELISAs), we showed that adiponectin preferentially bound oxLDL but not native LDL. In Chinese hamster ovary (CHO) cells transfected with LOX-1 or LDL receptor, adiponectin selectively inhibited the uptake of oxLDL but not of native LDL, respectively. Furthermore, adiponectin suppressed the internalization of oxLDL in human coronary artery endothelial cells (HCAECs) and THP-1–derived macrophages. Western blot analysis of human plasma showed that adiponectin was abundant in L5 but not in L1, the least electronegative subfraction of LDL. Sandwich ELISAs with anti-adiponectin and anti–apolipoprotein B antibodies confirmed the binding of adiponectin to L5 and oxLDL. In LOX-1–expressing CHO cells, adiponectin inhibited cellular responses to oxLDL and L5, including nuclear factor-B activation and ERK phosphorylation. In HCAECs, adiponectin inhibited oxLDL-induced endothelin-1 secretion and ERK phosphorylation. Conversely, oxLDL suppressed the adiponectin-induced activation of adenosine monophosphate–activated protein kinase in COS-7 cells expressing adiponectin receptor AdipoR1. Our findings suggest that adiponectin binds and inactivates atherogenic LDL, providing novel insight into the anti-atherogenic mechanisms of adiponectin. Full Article
esea Structure dynamics of ApoA-I amyloidogenic variants in small HDL increase their ability to mediate cholesterol efflux [Research Articles] By www.jlr.org Published On :: 2020-11-17T08:30:36-08:00 Apolipoprotein A-I (ApoA-I) of high-density lipoprotein (HDL) is essential for the transportation of cholesterol between peripheral tissues and the liver. However, specific mutations in Apolipoprotein A-I (ApoA-I) of high-density lipoprotein (HDL) are responsible for a late-onset systemic amyloidosis, the pathological accumulation of protein fibrils in tissues and organs. Carriers of these mutations do not exhibit increased cardiovascular disease risk despite displaying reduced levels of ApoA-I/ HDL-cholesterol. To explain this paradox, we show that the HDL particle profile of patients carrying either L75P or L174S ApoA-I amyloidogenic variants a higher relative abundance of the 8.4 nm vs 9.6 nm particles, and that serum from patients, as well as reconstituted 8.4 and 9.6 nm HDL particles (rHDL), possess increased capacity to catalyze cholesterol efflux from macrophages. Synchrotron radiation circular dichroism and hydrogen-deuterium exchange revealed that the variants in 8.4 nm rHDL have altered secondary structure composition and display a more flexible binding to lipids compared to their native counterpart. The reduced HDL-cholesterol levels of patients carrying ApoA-I amyloidogenic variants are thus balanced by higher proportion of small, dense HDL particles and better cholesterol efflux due to altered, region-specific protein structure dynamics. Full Article
esea Insights on the kinetics and dynamics of the furin-cleaved form of PCSK9 [Research Articles] By www.jlr.org Published On :: 2020-11-17T08:30:36-08:00 Proprotein convertase subtilisin/kexin type 9 (PCSK9) regulates cholesterol metabolism by inducing the degradation of hepatic low-density lipoprotein receptor (LDLR). Plasma PCSK9 has two main molecular forms: a 62-kDa mature form (PCSK9_62) and a 55-kDa, furin-cleaved form (PCSK9_55). PCSK9_55 is considered less active than PCSK9_62 in degrading LDLR. We aimed to identify the site of PCSK9_55 formation (intra- vs. extracellular) and to further characterize the LDLR-degradative function of PCSK9_55 relative to PCSK9_62. Co-expressing PCSK9_62 with furin in cell culture induced formation of PCSK9_55, most of which was found in the extracellular space. Under the same conditions we found that: i) adding a cell-permeable furin inhibitor preferentially decreased the formation of PCSK9_55 extracellularly; ii) using pulse-chase, we observed the formation of PCSK9_55 exclusively extracellularly in a time-dependent manner. A recombinant form of PCSK9_55 was efficiently produced but displayed impaired secretion that resulted in its intracellular trapping. However, the non-secreted PCSK9_55 was able to induce degradation of LDLR, though with 50% lower efficiency compared with PCSK9_62. Collectively, our data show that PCSK9_55 is generated in the extracellular space, and that intracellular PCSK9_55 is not secreted but retains the ability to degrade the LDLR through an intracellular pathway. Full Article
esea Generation and validation of a conditional knockout mouse model for the study of the Smith-Lemli-Opitz Syndrome [Research Articles] By www.jlr.org Published On :: 2020-11-17T11:30:28-08:00 Smith-Lemli-Opitz Syndrome (SLOS) is a developmental disorder (OMIM #270400) caused by autosomal recessive mutations in the Dhcr7 gene, which encodes the enzyme 3β-hydroxysterol-7 reductase. SLOS patients present clinically with dysmorphology and neurological, behavioral and cognitive defects, with characteristically elevated levels of 7-dehydrocholesterol (7-DHC) in all bodily tissues and fluids. Previous mouse models of SLOS have been hampered by postnatal lethality when Dhcr7 is knocked out globally, while a hypomorphic mouse model showed improvement in the biochemical phenotype with ageing, and did not manifest most other characteristic features of SLOS. We report the generation of a conditional knockout of Dhcr7 (Dhcr7flx/flx), validated by generating a mouse with a liver-specific deletion (Dhcr7L-KO). Phenotypic characterization of liver-specific knockout mice revealed no significant changes in viability, fertility, growth curves, liver architecture, hepatic triglyceride secretion, or parameters of systemic glucose homeostasis. Furthermore, qPCR and RNA-Seq analyses of livers revealed no perturbations in pathways responsible for cholesterol synthesis, either in male or female Dhcr7L-KO mice, suggesting hepatic disruption of post-squalene cholesterol synthesis leads to minimal impact on sterol metabolism in the liver. This validated conditional Dhcr7 knockout model may now allow us to systematically explore the pathophysiology of SLOS, by allowing for temporal, cell and tissue-specific loss of DHCR7. Full Article
esea Multi-modal Functional Imaging of Brown Adipose Tissue [Images in Lipid Research] By www.jlr.org Published On :: 2020-11-18T10:30:48-08:00 Full Article
esea rHDL modelling and the anchoring mechanism of LCAT activation [Research Articles] By www.jlr.org Published On :: 2020-12-02T13:30:37-08:00 Lecithin:cholesterol-acyl-transferase (LCAT) plays a major role in cholesterol metabolism as it is the only extracellular enzyme able to esterify cholesterol. LCAT activity is required for lipoprotein remodelling and, most specifically, for the growth and maturation of HDLs. In fact, genetic alterations affecting LCAT func- tionality may cause a severe reduction in plasma levels of HDL-cholesterol with important clinical consequences. Although several hypotheses were formulated, the exact molecular recognition mechanism between LCAT and HDLs is still unknown. We employed a combination of structural bioinformatics procedures to deepen the insights into the HDL-LCAT interplay that promotes LCAT activation and cholesterol esterification. We have generated a data-driven model of reconstituted HDL (rHDL) and studied the dynamics of an assembled rHDL::LCAT supramolecular complex, pinpointing the conformational changes originating from the interaction between LCAT and apolipoprotein A-I (apoA-I) that are necessary for LCAT activation. Specifically, we propose a mechanism in which the anchoring of LCAT lid to apoA-I helices allows the formation of a hydrophobic hood that expands LCAT active site and shields it from the solvent, allowing the enzyme to process large hydrophobic substrates. Full Article
esea Apolipoprotein C3 and apolipoprotein B colocalize in proximity to macrophages in atherosclerotic lesions in diabetes [Images in Lipid Research] By www.jlr.org Published On :: 2020-12-08T14:30:11-08:00 Full Article
esea Human CETP lacks lipopolysaccharide transfer activity, but worsens inflammation and sepsis outcomes in mice [Research Articles] By www.jlr.org Published On :: 2020-12-09T11:36:34-08:00 Bacterial lipopolysaccharides (LPSs or endotoxins) can bind most proteins of the lipid transfer/LPS-binding protein (LT/LBP) family in host organisms. The LPS-bound LT/LBP proteins then trigger either an LPS-induced proinflammatory cascade or LPS binding to lipoproteins that are involved in endotoxin inactivation and detoxification. Cholesteryl ester transfer protein (CETP) is an LT/LBP member, but its impact on LPS metabolism and sepsis outcome is unclear. Here, we performed fluorescent LPS transfer assays to assess the ability of CETP to bind and transfer LPS. The effects of intravenous (iv) infusion of purified LPS or polymicrobial infection (cecal ligation and puncture [CLP]) were compared in transgenic mice expressing human CETP and wild-type mice naturally having no CETP activity. CETP displayed no LPS transfer activity in vitro, but it tended to reduce biliary excretion of LPS in vivo. The CETP expression in mice was associated with significantly lower basal plasma lipid levels and with higher mortality rates in both models of endotoxemia and sepsis. Furthermore, CETPTg plasma modified cytokine production of macrophages in vitro. In conclusion, despite having no direct LPS binding and transfer property, human CETP worsens sepsis outcomes in mice by altering the protective effects of plasma lipoproteins against endotoxemia, inflammation, and infection. Full Article
esea Mutation in the distal NPxY motif of LRP1 alleviates dietary cholesterol-induced dyslipidemia and tissue inflammation [Research Articles] By www.jlr.org Published On :: 2020-12-09T08:30:22-08:00 The LDL receptor-related protein-1 (LRP1) is highly expressed in numerous cell types, and its impairment is associated with obesity, diabetes, and fatty liver disease. However, the mechanisms linking LRP1 to metabolic disease are not completely understood. Here, we compared the metabolic phenotype of C57BL/6J wild type and LRP1 knock-in mice carrying an inactivating mutation in the distal NPxY motif after feeding a low fat (LF) diet or high fat diets with (HFHC) or without (HF) cholesterol supplementation. In response to HF feeding, both groups developed hyperglycemia, hyperinsulinemia, and hyperlipidemia, as well as increased adiposity with adipose tissue inflammation and liver steatosis. However, when animals were fed the HF diet supplemented with cholesterol, the LRP1 NPxY mutation prevents hypercholesterolemia, reduces adipose tissue and brain inflammation, and limits liver progression to steatohepatitis. Nevertheless, insulin signaling is impaired in LRP1 NPxY mutant hepatocytes and this mutation does not protect against HFHC-induced insulin resistance. The selective metabolic improvement observed in HFHC-fed LRP1 NPxY mutant mice is due to an apparent increase of hepatic LDL receptor levels, leading to an elevated rate of plasma lipoprotein clearance and lowering of plasma and hepatic cholesterol levels. The unique metabolic phenotypes displayed by LRP1 NPxY mutant mice in response to HF or HFHC diet feeding indicate an LRP1-cholesterol axis in modulating tissue inflammation. The LRP1 NPxY mutant mouse phenotype differs from phenotypes observed in mice with tissue-specific LRP1 inactivation, thus highlighting the importance of an integrative approach to evaluate how global LRP1 dysfunction contributes to metabolic disease development. Full Article
esea Distinct patterns of apolipoprotein C-I, C-II and C-III isoforms are associated with markers of Alzheimers disease [Research Articles] By www.jlr.org Published On :: 2020-12-11T08:33:28-08:00 Apolipoproteins C-I, C-II and C-III interact with ApoE to regulate lipoprotein metabolism and contribute to Alzheimer’s disease pathophysiology. In plasma, apoC-I and C-II exist as truncated isoforms, while apoC-III exhibits multiple glycoforms. This study aimed to 1. delineate apoC-I, C-II and C-III isoform profiles in CSF and plasma in a cohort of non-demented older individuals (n = 61), and 2. examine the effect of APOE4 on these isoforms and their correlation with CSF Aβ42, a surrogate of brain amyloid accumulation. The isoforms of the apoCs were immunoaffinity enriched and measured with MALDI-TOF mass spectrometry, revealing a significantly higher percentage of truncated apoC-I and apoC-II in CSF compared to matched plasma, with positive correlation between CSF and plasma. A greater percentage of monosialylated and disialylated apoC-III isoforms was detected in CSF, accompanied by a lower percentage of the two non-sialylated apoC-III isoforms, with significant linear correlations between CSF and plasma. Furthermore, a greater percentage of truncated apoC-I in CSF, and apoC-II in plasma and CSF, was observed in individuals carrying at least one apoE E4 allele. Increased apoC-I and apoC-II truncations were associated with lower CSF Aβ42. Finally, monosialylated apoC-III was lower, and disialylated apoC-III greater in the CSF of E4 carriers. Together, these results reveal distinct patterns of the apoCs isoforms in CSF, implying CSF-specific apoCs processing. These patterns were accentuated in APOE E4 allele carriers, suggesting an association between APOE4 genotype and Alzheimer’s disease pathology with apoCs processing and function in the brain. Full Article
esea Deletion of lysophosphatidylcholine acyltransferase3 in myeloid cells worsens hepatic steatosis after a high fat diet [Research Articles] By www.jlr.org Published On :: 2020-12-11T09:30:19-08:00 Recent studies have highlighted an important role for lysophosphatidylcholine acyltransferase 3 (LPCAT3) in controlling the PUFA composition of cell membranes in the liver and intestine. In these organs, LPCAT3 critically supports cell membrane-associated processes such as lipid absorption or lipoprotein secretion. However, the role of LPCAT3 in macrophages remains controversial. Here, we investigated LPCAT3’s role in macrophages both in vitro and in vivo in mice with atherosclerosis and obesity. To accomplish this, we used the LysMCre strategy to develop a mouse model with conditional Lpcat3 deficiency in myeloid cells (Lpcat3KOMac). We observed that partial Lpcat3 deficiency (approx. 75% reduction) in macrophages alters the PUFA composition of all phospholipid (PL) subclasses, including phosphatidylinositols and phosphatidylserines. A reduced incorporation of C20 PUFAs (mainly arachidonic acid [AA]) into PLs was associated with a redistribution of these FAs toward other cellular lipids such as cholesteryl esters. Lpcat3 deficiency had no obvious impact on macrophage inflammatory response or endoplasmic reticulum (ER) stress; however, Lpcat3KOMac macrophages exhibited a reduction in cholesterol efflux in vitro. In vivo, myeloid Lpcat3 deficiency did not affect atherosclerosis development in LDL receptor deficient mouse (Ldlr-/-) mice. Lpcat3KOMac mice on a high-fat diet displayed a mild increase in hepatic steatosis associated with alterations in several liver metabolic pathways and in liver eicosanoid composition. We conclude that alterations in AA metabolism along with myeloid Lpcat3 deficiency may secondarily affect AA homeostasis in the whole liver, leading to metabolic disorders and triglyceride accumulation. Full Article
esea Perilipin 5 S155 phosphorylation by PKA is required for the control of hepatic lipid metabolism and glycemic control [Research Articles] By www.jlr.org Published On :: 2020-12-17T12:30:20-08:00 Perilipin (PLIN) 5 is a lipid droplet-associated protein that coordinates intracellular lipolysis in highly oxidative tissues and is thought to regulate lipid metabolism in response to phosphorylation by protein kinase A (PKA). We sought to identify PKA phosphorylation sites in PLIN5 and assess their functional relevance in cultured cells and the livers of mice. We detected phosphorylation on S155, S161 and S163 of recombinant PLIN5 by PKA in vitro and identified S155 as a functionally important site for lipid metabolism. Expression of phosphorylation-defective PLIN5 S155A in Plin5 null cells resulted in decreased rates of lipolysis and triglyceride-derived fatty acid oxidation compared with cells expressing wildtype PLIN5. These differences in lipid metabolism were not associated with differences in the cellular distribution of PLIN5. Rather, FLIM-FRET analysis of protein-protein interactions showed that PLIN5 S155 phosphorylation regulates PLIN5 interaction with adipose triglyceride lipase (ATGL) at the lipid droplet, but not with the co-activator of ATGL, α-β hydrolase domain-containing 5 (ABHD5). Re-expression of PLIN5 S155A in the liver of Plin5 liver-specific null mice reduced lipolysis when compared to mice with wildtype PLIN5 re-expression, but was not associated with other changes in hepatic lipid metabolism, such as fatty acid oxidation, de novo lipogenesis and triglyceride secretion. Furthermore, glycemic control was impaired in mice with expression of PLIN5 S155A compared with mice expressing PLIN5. Together, these studies demonstrate that PLIN5 S155 is required for PKA-mediated lipolysis and builds on the body of evidence demonstrating a critical role for PLIN5 in coordinating lipid and glucose metabolism Full Article
esea Lipid signature of advanced human carotid atherosclerosis assessed by mass spectrometry imaging [Research Articles] By www.jlr.org Published On :: 2020-12-23T12:30:44-08:00 Carotid atherosclerosis is a risk factor for ischemic stroke, one of the main causes of mortality and disability worldwide. The disease is characterized by plaques, heterogeneous deposits of lipids and necrotic debris in the vascular wall, which grow gradually and may remain asymptomatic for decades. However, at some point a plaque can evolve to a high-risk plaque phenotype, which may trigger a cerebrovascular event. Lipids play a key role in the development and progression of atherosclerosis, but the nature of their involvement is not fully understood. Using matrix-assisted laser desorption/ionization mass spectrometry imaging, we visualized the distribution of approximately 200 different lipid signals, originating of > 90 uniquely assigned species, in 106 tissue sections of 12 human carotid atherosclerotic plaques. We performed unsupervised classification of the mass spectrometry dataset, as well as a histology-directed multivariate analysis. These data allowed us to extract the spatial lipid patterns associated with morphological plaque features in advanced plaques from a symptomatic population, revealing spatial lipid patterns in atherosclerosis and their relation to histological tissue type. The abundances of sphingomyelin and oxidized cholesteryl ester species were elevated specifically in necrotic intima areas, while diacylglycerols and triacylglycerols were spatially correlated to areas containing the coagulation protein fibrin. These results demonstrate a clear co-localization between plaque features and specific lipid classes, as well as individual lipid species in high-risk atherosclerotic plaques. Full Article
esea Gene Networks and Pathways for Plasma Lipid Traits via Multi-tissue Multi-omics Systems Analysis [Research Articles] By www.jlr.org Published On :: 2020-12-23T12:30:45-08:00 Genome-wide association studies (GWAS) have implicated ~380 genetic loci for plasma lipid regulation. However, these loci only explain 17-27% of the trait variance and a comprehensive understanding of the molecular mechanisms has not been achieved. In this study, we utilized an integrative genomics approach leveraging diverse genomic data from human populations to investigate whether genetic variants associated with various plasma lipid traits, namely total cholesterol (TC), high and low density lipoprotein cholesterol (HDL and LDL), and triglycerides (TG), from GWAS were concentrated on specific parts of tissue-specific gene regulatory networks. In addition to the expected lipid metabolism pathways, gene subnetworks involved in ‘interferon signaling’, ‘autoimmune/immune activation’, ‘visual transduction’, and ‘protein catabolism’ were significantly associated with all lipid traits. Additionally, we detected trait-specific subnetworks, including cadherin-associated subnetworks for LDL, glutathione metabolism for HDL, valine, leucine and isoleucine biosynthesis for TC, and insulin signaling and complement pathways for TG. Finally, utilizing gene-gene relations revealed by tissue-specific gene regulatory networks, we detected both known (e.g. APOH, APOA4, and ABCA1) and novel (e.g. F2 in adipose tissue) key regulator genes in these lipid-associated subnetworks. Knockdown of the F2 gene (Coagulation Factor II, Thrombin) in 3T3-L1 and C3H10T1/2 adipocytes reduced gene expression of Abcb11, Apoa5, Apof, Fabp1, Lipc, and Cd36, reduced intracellular adipocyte lipid content, and increased extracellular lipid content, supporting a link between adipose thrombin and lipid regulation. Our results shed light on the complex mechanisms underlying lipid metabolism and highlight potential novel targets for lipid regulation and lipid-associated diseases. Full Article
esea Human glucocerebrosidase mediates formation of xylosyl-cholesterol by {beta}-xylosidase and transxylosidase reactions. [Research Articles] By www.jlr.org Published On :: 2020-12-23T13:30:20-08:00 Deficiency of glucocerebrosidase (GBA), a lysosomal β-glucosidase, causes Gaucher disease. The enzyme hydrolyzes β-glucosidic substrates and transglucosylates cholesterol to cholesterol-β-glucoside. Here we show that recombinant human GBA also cleaves β-xylosides and transxylosylates cholesterol. The xylosyl-cholesterol formed acts as acceptor for subsequent formation of di-xylosyl-cholesterol. Common mutant forms of GBA from patients with Gaucher disease with reduced β-glucosidase activity were similarly impaired in β-xylosidase, transglucosidase and transxylosidase activities, except for a slightly reduced xylosidase/glucosidase activity ratio of N370S GBA and a slightly reduced transglucosylation/glucosidase activity ratio of D409H GBA. XylChol was found to be reduced in spleen from Gaucher disease patients. The origin of newly identified XylChol in mouse and human tissues was investigated. Cultured human cells exposed to exogenous β-xylosides generated XylChol in a manner dependent on active lysosomal GBA but not the cytosol-facing β-glucosidase GBA2. We later sought an endogenous β-xyloside acting as donor in transxylosylation reactions, identifying xylosylated ceramide (XylCer) in cells and tissues that serve as donor in the formation of XylChol. UDP-glucosylceramide synthase (GCS) was unable to synthesize XylChol but could catalyse formation of XylCer. Thus, food-derived β-D-xyloside and XylCer are potential donors for the GBA-mediated formation of XylChol in cells. The enzyme GCS produces XylCer at a low rate. Our findings point to further catalytic versatility of GBA and prompt a systematic exploration of the distribution and role of xylosylated lipids. Full Article
esea Palmitoylation of acetylated tubulin and association with ceramide-rich platforms is critical for ciliogenesis [Research Articles] By www.jlr.org Published On :: 2020-12-30T10:30:23-08:00 Microtubules are polymers composed of αβ-tubulin subunits that provide structure to cells and play a crucial role in in the development and function of neuronal processes and cilia, microtubule-driven extensions of the plasma membrane that have sensory (primary cilia) or motor (motile cilia) functions. To stabilize microtubules in neuronal processes and cilia, α tubulin is modified by the posttranslational addition of an acetyl group, or acetylation. We discovered that acetylated tubulin in microtubules interacts with the membrane sphingolipid, ceramide. However, the molecular mechanism and function of this interaction are not understood. Here, we show that in human iPS cell-derived neurons, ceramide stabilizes microtubules, which indicates a similar function in cilia. Using proximity ligation assays, we detected complex formation of ceramide with acetylated tubulin in C. reinhardtii flagella and cilia of human embryonic kidney (HEK293T) cells, primary cultured mouse astrocytes, and ependymal cells. Using incorporation of palmitic azide and click chemistry-mediated addition of fluorophores, we show that a portion of acetylated tubulin is S-palmitoylated. S-palmitoylated acetylated tubulin is colocalized with ceramide-rich platforms (CRPs) in the ciliary membrane, and it is coimmunoprecipitated with Arl13b, a GTPase that mediates transport of proteins into cilia. Inhibition of S-palmitoylation with 2-bromo palmitic acid or inhibition of ceramide biosynthesis with fumonisin B1 reduces formation of the Arl13b-acetylated tubulin complex and its transport into cilia, concurrent with impairment of ciliogenesis. Together, these data show, for the first time, that CRPs mediate membrane anchoring and interaction of S-palmitoylated proteins that are critical for cilium formation, stabilization, and function. Full Article
esea Risks of duloxetine for stress incontinence outweigh benefits, say researchers By www.bmj.com Published On :: Tuesday, November 15, 2016 - 06:30 Full Article
esea Esterification of 4{beta}-hydroxycholesterol and other oxysterols in human plasma occurs independently of LCAT [Patient-Oriented and Epidemiological Research] By www.jlr.org Published On :: 2020-09-01T00:05:14-07:00 The acyltransferase LCAT mediates FA esterification of plasma cholesterol. In vitro studies have shown that LCAT also FA-esterifies several oxysterols, but in vivo evidence is lacking. Here, we measured both free and FA-esterified forms of sterols in 206 healthy volunteers and 8 individuals with genetic LCAT deficiency, including familial LCAT deficiency (FLD) and fish-eye disease (FED). In the healthy volunteers, the mean values of the ester-to-total molar ratios of the following sterols varied: 4β-hydroxycholesterol (4βHC), 0.38; 5,6α-epoxycholesterol (5,6αEC), 0.46; 5,6β-epoxycholesterol (5,6βEC), 0.51; cholesterol, 0.70; cholestane-3β,5α,6β-triol (CT), 0.70; 7-ketocholesterol (7KC), 0.75; 24S-hydroxycholesterol (24SHC), 0.80; 25-hydroxycholesterol (25HC), 0.81; 27-hydroxycholesterol (27HC), 0.86; and 7α-hydroxycholesterol (7αHC), 0.89. In the individuals with LCAT deficiency, the plasma levels of the FA-esterified forms of cholesterol, 5,6αEC, 5,6βEC, CT, 7αHC, 7KC, 24SHC, 25HC, and 27HC, were significantly lower than those in the healthy volunteers. The individuals with FLD had significantly lower FA-esterified forms of 7αHC, 24SHC, and 27HC than those with FED. It is of note that, even in the three FLD individuals with negligible plasma cholesteryl ester, substantial amounts of the FA-esterified forms of 4βHC, 5,6αEC, 7αHC, 7KC, and 27HC were present. We conclude that LCAT has a major role in the FA esterification of many plasma oxysterols but contributes little to the FA esterification of 4βHC. Substantial FA esterification of 4βHC, 5,6αEC, 7αHC, 7KC, and 27HC is independent of LCAT. Full Article
esea Angiopoietin-like protein 3 governs LDL-cholesterol levels through endothelial lipase-dependent VLDL clearance [Research Articles] By www.jlr.org Published On :: 2020-09-01T00:05:14-07:00 Angiopoietin-like protein (ANGPTL)3 regulates plasma lipids by inhibiting LPL and endothelial lipase (EL). ANGPTL3 inactivation lowers LDL-C independently of the classical LDLR-mediated pathway and represents a promising therapeutic approach for individuals with homozygous familial hypercholesterolemia due to LDLR mutations. Yet, how ANGPTL3 regulates LDL-C levels is unknown. Here, we demonstrate in hyperlipidemic humans and mice that ANGPTL3 controls VLDL catabolism upstream of LDL. Using kinetic, lipidomic, and biophysical studies, we show that ANGPTL3 inhibition reduces VLDL-lipid content and size, generating remnant particles that are efficiently removed from the circulation. This suggests that ANGPTL3 inhibition lowers LDL-C by limiting LDL particle production. Mechanistically, we discovered that EL is a key mediator of ANGPTL3’s novel pathway. Our experiments revealed that, although dispensable in the presence of LDLR, EL-mediated processing of VLDL becomes critical for LDLR-independent particle clearance. In the absence of EL and LDLR, ANGPTL3 inhibition perturbed VLDL catabolism, promoted accumulation of atypical remnants, and failed to reduce LDL-C. Taken together, we uncover ANGPTL3 at the helm of a novel EL-dependent pathway that lowers LDL-C in the absence of LDLR. Full Article
esea Generation and characterization of LPA-KIV9, a murine monoclonal antibody binding a single site on apolipoprotein (a) [Research Articles] By www.jlr.org Published On :: 2020-09-01T00:05:14-07:00 Lipoprotein (a) [Lp(a)] is a risk factor for CVD and a target of therapy, but Lp(a) measurements are not globally standardized. Commercially available assays generally use polyclonal antibodies that detect multiple sites within the kringle (K)IV2 repeat region of Lp(a) and may lead to inaccurate assessments of plasma levels. With increasing awareness of Lp(a) as a cardiovascular risk factor and the active clinical development of new potential therapeutic approaches, the broad availability of reagents capable of providing isoform independence of Lp(a) measurements is paramount. To address this issue, we generated a murine monoclonal antibody that binds to only one site on apo(a). A BALB/C mouse was immunized with a truncated version of apo(a) that contained eight total KIV repeats, including only one copy of KIV2. We generated hybridomas, screened them, and successfully produced a KIV2-independent monoclonal antibody, named LPA-KIV9. Using a variety of truncated apo(a) constructs to map its binding site, we found that LPA-KIV9 binds to KIV9 without binding to plasminogen. Fine peptide mapping revealed that LPA-KIV9 bound to the sequence 4076LETPTVV4082 on KIV9. In conclusion, the generation of monoclonal antibody LPA-KIV9 may be a useful reagent in basic research studies and in the clinical application of Lp(a) measurements. Full Article
esea Prognostic utility of triglyceride-rich lipoprotein-related markers in patients with coronary artery disease [Research Articles] By www.jlr.org Published On :: 2020-09-01T00:05:14-07:00 TG-rich lipoprotein (TRL)-related biomarkers, including TRL-cholesterol (TRL-C), remnant-like lipoprotein particle-cholesterol (RLP-C), and apoC-III have been associated with atherosclerosis. However, their prognostic values have not been fully determined, especially in patients with previous CAD. This study aimed to examine the associations of TRL-C, RLP-C, and apoC-III with incident cardiovascular events (CVEs) in the setting of secondary prevention of CAD. Plasma TRL-C, RLP-C, and total apoC-III were directly measured. A total of 4,355 participants with angiographically confirmed CAD were followed up for the occurrence of CVEs. During a median follow-up period of 5.1 years (interquartile range: 3.9–6.4 years), 543 (12.5%) events occurred. Patients with incident CVEs had significantly higher levels of TRL-C, RLP-C, and apoC-III than those without events. Multivariable Cox analysis indicated that a log unit increase in TRL-C, RLP-C, and apoC-III increased the risk of CVEs by 49% (95% CI: 1.16–1.93), 21% (95% CI: 1.09–1.35), and 40% (95% CI: 1.11–1.77), respectively. High TRL-C, RLP-C, and apoC-III were also independent predictors of CVEs in individuals with LDL-C levels ≤1.8 mmol/l (n = 1,068). The addition of RLP-C level to a prediction model resulted in a significant increase in discrimination, and all three TRL biomarkers improved risk reclassification. Thus, TRL-C, RLP-C, and apoC-III levels were independently associated with incident CVEs in Chinese CAD patients undergoing statin therapy. Full Article
esea ANGPTL4 inactivates lipoprotein lipase by catalyzing the irreversible unfolding of LPLs hydrolase domain [Images In Lipid Research] By www.jlr.org Published On :: 2020-09-01T00:05:14-07:00 Full Article
esea The structural basis for monoclonal antibody 5D2 binding to the tryptophan-rich loop of lipoprotein lipase [Research Articles] By www.jlr.org Published On :: 2020-10-01T00:05:17-07:00 For three decades, the LPL–specific monoclonal antibody 5D2 has been used to investigate LPL structure/function and intravascular lipolysis. 5D2 has been used to measure LPL levels, block the triglyceride hydrolase activity of LPL, and prevent the propensity of concentrated LPL preparations to form homodimers. Two early studies on the location of the 5D2 epitope reached conflicting conclusions, but the more convincing report suggested that 5D2 binds to a tryptophan (Trp)-rich loop in the carboxyl terminus of LPL. The same loop had been implicated in lipoprotein binding. Using surface plasmon resonance, we showed that 5D2 binds with high affinity to a synthetic LPL peptide containing the Trp-rich loop of human (but not mouse) LPL. We also showed, by both fluorescence and UV resonance Raman spectroscopy, that the Trp-rich loop binds lipids. Finally, we used X-ray crystallography to solve the structure of the Trp-rich peptide bound to a 5D2 Fab fragment. The Trp-rich peptide contains a short α-helix, with two Trps projecting into the antigen recognition site. A proline substitution in the α-helix, found in mouse LPL, is expected to interfere with several hydrogen bonds, explaining why 5D2 cannot bind to mouse LPL. Full Article
esea Different rates of flux through the biosynthetic pathway for long-chain versus very-long-chain sphingolipids [Research Articles] By www.jlr.org Published On :: 2020-10-01T00:05:17-07:00 The backbone of all sphingolipids (SLs) is a sphingoid long-chain base (LCB) to which a fatty acid is N-acylated. Considerable variability exists in the chain length and degree of saturation of both of these hydrophobic chains, and recent work has implicated ceramides with different LCBs and N-acyl chains in distinct biological processes; moreover, they may play different roles in disease states and possibly even act as prognostic markers. We now demonstrate that the half-life, or turnover rate, of ceramides containing diverse N-acyl chains is different. By means of a pulse-labeling protocol using stable-isotope, deuterated free fatty acids, and following their incorporation into ceramide and downstream SLs, we show that very-long-chain (VLC) ceramides containing C24:0 or C24:1 fatty acids turn over much more rapidly than long-chain (LC) ceramides containing C16:0 or C18:0 fatty acids due to the more rapid metabolism of the former into VLC sphingomyelin and VLC hexosylceramide. In contrast, d16:1 and d18:1 ceramides show similar rates of turnover, indicating that the length of the sphingoid LCB does not influence the flux of ceramides through the biosynthetic pathway. Together, these data demonstrate that the N-acyl chain length of SLs may not only affect membrane biophysical properties but also influence the rate of metabolism of SLs so as to regulate their levels and perhaps their biological functions. Full Article
esea Depletion of adipocyte sphingosine kinase 1 leads to cell hypertrophy, impaired lipolysis, and nonalcoholic fatty liver disease [Research Articles] By www.jlr.org Published On :: 2020-10-01T00:05:17-07:00 Sphingolipids have become established participants in the pathogenesis of obesity and its associated maladies. Sphingosine kinase 1 (SPHK1), which generates S1P, has been shown to increase in liver and adipose of obese humans and mice and to regulate inflammation in hepatocytes and adipose tissue, insulin resistance, and systemic inflammation in mouse models of obesity. Previous studies by us and others have demonstrated that global sphingosine kinase 1 KO mice are protected from diet-induced obesity, insulin resistance, systemic inflammation, and NAFLD, suggesting that SPHK1 may mediate pathological outcomes of obesity. As adipose tissue dysfunction has gained recognition as a central instigator of obesity-induced metabolic disease, we hypothesized that SPHK1 intrinsic to adipocytes may contribute to HFD-induced metabolic pathology. To test this, we depleted Sphk1 from adipocytes in mice (SK1fatKO) and placed them on a HFD. In contrast to our initial hypothesis, SK1fatKO mice displayed greater weight gain on HFD and exacerbated impairment in glucose clearance. Pro-inflammatory cytokines and neutrophil content of adipose tissue were similar, as were levels of circulating leptin and adiponectin. However, SPHK1-null adipocytes were hypertrophied and had lower basal lipolytic activity. Interestingly, hepatocyte triacylglycerol accumulation and expression of pro-inflammatory cytokines and collagen 1a1 were exacerbated in SK1fatKO mice on a HFD, implicating a specific role for adipocyte SPHK1 in adipocyte function and inter-organ cross-talk that maintains overall metabolic homeostasis in obesity. Thus, SPHK1 serves a previously unidentified essential homeostatic role in adipocytes that protects from obesity-associated pathology. These findings may have implications for pharmacological targeting of the SPHK1/S1P signaling axis. Full Article