s

Device and method for generating a control signal

A device is described for generating a control signal for controlling a passenger protection arrangement of a motor vehicle, having a first acceleration sensor for generating a first acceleration signal, having a second acceleration sensor for generating a second acceleration signal, having a first structure-borne noise sensor for generating a first structure-borne noise signal, having a second structure-borne noise sensor for generating a second structure-borne noise signal, and having an evaluation circuit, the evaluation circuit (being configured for generating a combination signal from the first structure-borne noise signal and the second structure-borne noise signal, the evaluation circuit being configured for generating the control signal as a function of the first acceleration signal, the second acceleration signal and the combination signal.




s

Easily removable combustion tube

A combustion tube mounting system releasably mounts a combustion tube to an aperture in the floor of a furnace housing. The combustion tube has a base assembly with a cam and can be manually or automatically unlocked by cam pins in the floor for selectively engaging the cam for lowering the combustion tube from the floor of the furnace. When a new combustion tube is placed on the lower seal assembly and raised, it automatically aligns and engages the upper furnace seal and engages cams on the floor of the furnace housing which lock the combustion tube in place as it is introduced into the furnace.




s

Electric power system for electric induction heating and melting of materials in a susceptor vessel

Apparatus and process for heating and melting a material in a susceptor vessel are provided wherein phase synchronized ac voltage is supplied from a separate power source to each one of at least two induction coils in separate zones around the vessel. Power magnitude from each source to an induction coil is controlled by pulse width control of the source's output voltage. Output frequency from each source is either fixed or variable based upon the electrically conductive state of the material. Optional electromagnetic stirring is achieved by establishing a phase shift between the voltage outputs of the power supplies after the material in the susceptor vessel has melted.




s

Method of manufacturing fused silica crucible

Method of manufacturing a fused silica crucible, including manufacturing a plurality of carbon electrodes for melting a vitreous silica object to be melted by arc discharge by rubbing the surface of a carbon electrode of the electrodes with a vitreous silica of the same type as the vitreous silica object to be melted, by at least one of: inserting a front end of the carbon electrode into a storage tank storing powdered vitreous silica, by at least one of rotating and reciprocating in an axial direction the storage tank and the carbon electrode relative to each other; rubbing the surface of the carbon electrode by ejecting powdered vitreous silica from a nozzle onto the surface of the electrode; rubbing the surface of the electrode with a vitreous silica grinder; and rubbing the surface of the electrode against a rotating surface of a portion of a fused vitreous silica crucible.




s

Electric glass hot shop system

An electric glass hot shop system is described herein that has at least one electrically powered heating unit (e.g., electric furnace, electric glory hole, electric pipe warmer, electric color box, electric annealer, electric crucible kiln) used in the processing of glass.




s

Refining and casting apparatus and method

An apparatus for casting metals by a nucleated casting technique to create a preform, the apparatus including a mold having a base and a side wall where the base can be moved relative to the side wall to withdraw the preform as it is being created. In various circumstances, portions of a droplet spray created by an atomizing nozzle, i.e., overspray, may accumulate on a top surface of the side wall and prevent or inhibit the preform from being moved relative to the side wall. The atomizing nozzle can be oriented such that the droplet spray passes over the top of the side wall to remelt and remove at least a portion of the overspray that has accumulated thereon. The mold can be rotated such that the overspray formed on a region of or on the entire perimeter of the top surface can pass through the droplet spray and can be removed from the side wall.




s

Shaft high temperature continuous graphitizing furnace

The present invention provides a shaft high temperature continuous graphitizing furnace comprising a furnace body comprising a feeding inlet and a discharging outlet, an electrode pair, a cooling system and a discharging device; the furnace body is designed to be a shaft cylindrical structure; the electrode pair is provided within the furnace body and comprise an upper electrode and a lower electrode, the upper electrode is located below the feeding inlet, and an umbrella or cone table shape electric field having a lower cross section area greater than its upper cross section area arises between the upper electrode and eh lower electrode; and the cooling system is located between the lower electrode and the discharging outlet. For the shaft high temperature continuous graphitizing furnace of the present invention, a perpendicularly placed column electrode is used as the upper electrode, a horizontally placed circular hollow electrode is used as the lower electrode, an umbrella high temperature area is formed between the electrode pair, and the natural flow law of an object is used to have materials pass a high temperature graphitizing area and then discharged, which ensures the quality of the product.




s

Heating electrode assembly for crystal growth furnace

A heating electrode assembly for a crystal growth furnace includes: a heat insulation board unit that is disposed between a furnace wall and a heater, that includes a first surface facing the furnace wall and a second surface facing the heater, and that is formed with a hole extending through the first surface and the second surface; an electrode unit that includes an electricity input portion mounted to the furnace wall, a post portion disposed in the hole, and an abutment flange connecting the post portion and the heater; and an electrical insulating unit including a tubular sleeve that is disposed in the hole and that surrounds the post portion, and a pad that is clamped between the abutment flange and the second surface.




s

Furnace for dehydrating and sintering porous glass preform

A furnace for dehydrating and sintering a porous glass preform includes a core tube that passes through a center portion of a furnace body to accommodate therein the porous glass preform, a heater that is arranged around the core tube in the furnace body to heat the porous glass preform in the core tube, and a core tube weight dividing and bearing means that is arranged at an outer periphery of the core tube to divide and bear the weight of the core tube in its longitudinal direction. The core tube weight dividing and bearing means includes a plurality of collars that is protruded at a predetermined interval in the longitudinal direction at the outer periphery of the core tube, a first weight receiving means that supports the collars at the outer periphery of the core tube, and a second weight receiving means that bears the weight of the first weight receiving means.




s

Method to control the feed of the metal charge for electric arc furnaces

A method is provided to control the feed of a metal charge into an electric arc furnace having at least one electrode to generate an electric arc to melt metals. The method includes: a step of defining a “cover index CI” of the electric arc by the slag present above the liquid metal bath, in order to calculate which of the harmonics present in an electric feed quantity of the furnace are taken into consideration; a step of measuring the actual cover index CI value during a functioning cycle of the furnace; and a step of adjusting the speed of feed of the metal charge into the furnace based on the measured value of the cover index CI.




s

Aluminum melting apparatus

A method and apparatus for melting aluminum uses a dense metal salt of Rubidium, Cesium, or Strontium. The salt is melted by a stinger and then superheated by AC applied to electrodes immersed in the salt. Aluminum in contact with the salt melts and floats on the salt. In continuous scrap melting, inflows and outflows of aluminum are comparable and may be shielded by inert gas. The superheated salt may be purified and may be heated in a separate reservoir and pumped to and from another reservoir containing salt and/or metal. The salt may be used to supplement the heating of an existing furnace.




s

Inoculation process and device

The present invention describes an inoculation process for inoculating a nucleating additive to a cast iron alloy in a pouring distributor by means of using a transferred arc plasma torch, with an anode partially immersed in the cast iron alloy and a cathode located on the surface of said alloy, the anode or the cathode or both comprising graphite, preferably synthetic crystalline graphite, which supplies said nucleating additive to the iron alloy. The invention thus describes an inoculation device useful for carrying out the inoculation process.




s

Graphite electrodes

A graphite electrode exhibits oxidation resistance by modifying the outer radial surface characteristics. The outer radial surface may be modified by providing a textured portion which improves water flow while minimizing water absorbtion. Alternately, a layer of flexible graphite or plurality of particles of exfoliated graphite may be disposed on the outer radial surface of the electrode body.




s

Sealing device

In a sealing device (1) for sealing the through hole of an electrode, the pressurizing medium that generates the pressure of mechanical sealings against a rod electrode structure is an inert gas, such as nitrogen. The means for pressing the created sealing ring (6) against the rod electrode structure (4) include a gas distribution chamber (8) surrounding the sealing ring (6); a first channel (9) that is arranged to provide a flow path for the inert gas in between the hose (14) and the gas distribution chamber (8); an annular groove (10) in the sealing surface (7) of the sealing ring (6); and a second channel (11), which is placed in the sealing ring (6) and is arranged to provide a flow path for the gas from the gas distribution chamber to the groove (10) for extruding the gas in between the sealing surface (7) and the rod electrode structure (4).




s

Graphite crucible for silicon electromagnetic induction heating and apparatus for silicon melting and refining using the graphite crucible

Disclosed herein are a graphite crucible for electromagnetic induction-based silicon melting and an apparatus for silicon melting/refining using the same, which performs a melting operation by a combination of indirect melting and direct melting. The crucible is formed of a graphite material and includes a cylindrical body having an open upper part through which a silicon raw material is charged into the crucible, and an outer wall surrounded by an induction coil, wherein a plurality of slits are vertically formed through the outer wall and an inner wall of the crucible such that an electromagnetic force created by an electric current flowing in the induction coil acts toward an inner center of the crucible to prevent a silicon melt from contacting the inner wall of the crucible.




s

Graphite crucible for electromagnetic induction melting silicon and apparatus for silicon melting and refining using the graphite crucible

A graphite crucible for electromagnetic induction-based silicon melting and an apparatus for silicon melting/refining using the same, which performs a melting operation by a combination of indirect melting and direct melting. The crucible is formed of a graphite material and includes a cylindrical body having an open upper part through which a silicon raw material is charged into the crucible, and an outer wall surround by an induction coil, wherein a plurality of first slits are vertically formed through the outer wall and an inner wall of the crucible, and a plurality of second slits are vertically formed from an edge of the disc-shaped bottom of the crucible toward a center of the bottom.




s

Refining and casting apparatus and method

A method for refining and casting metals and metal alloys includes melting and refining a metallic material and then casting the refined molten material by a nucleated casting technique. The refined molten material is provided to the atomizing nozzle of the nucleated casting apparatus through a transfer apparatus adapted to maintain the purity of the molten refined material. An apparatus including a melting and refining apparatus, a transfer apparatus, and a nucleated casting apparatus, in serial fluid communication, also is disclosed.




s

Electromagnetic induction melting furnace to control an average nominal diameter of the TiB2 cluster of the Al-Ti-B alloy

An electromagnetic induction melting furnace to control an average nominal diameter of the TiB2 cluster of the Al—Ti—B alloy includes a main body containing the melted alloy; and a multi-layer coil disposed on the main body, wherein a frequency of the alternative current of each coil of the multi-layer coil is different, and the alloy is heated by inducing a magnetic field generated by the alternative currents. The selection of the frequency and the changeable magnetic field may reduce the cohesion force between the TiB2 grains of the Al—Ti—B alloy to control the average nominal diameter of the TiB2 cluster.




s

Electromagnetic induction melting furnace to control an average nominal diameter of the TiC cluster of the Al—Ti—C alloy

An electromagnetic induction melting furnace to control an average nominal diameter of the TiC cluster of the Al—Ti—C alloy includes a main body containing the melted alloy; and a multi-layer coil disposed on the main body, wherein a frequency of the alternative current of each coil of the multi-layer coil is different, and the alloy is heated by inducing a magnetic field generated by the alternative currents. The selection of the frequency and the changeable magnetic field may reduce the cohesion force between the TiC grains of the Al—Ti—C alloy to control the average nominal diameter of the TiC cluster.




s

Vacuum cleaning structure for electrode furnace

An electrode for a resistance analytical furnace has a crucible-engaging surface and an end spaced from the crucible-engaging surface having a plurality of grooves formed therein. A manifold mounted on the end of the electrode defines a dust recovery plenum and includes an outlet communicating with the plenum for coupling to a vacuum source to remove debris from the electrode. The improved electrode and electrode cleaning manifold positioned on the electrode provides a turbulent airflow for removal of dust and debris from an analytical furnace.




s

Decoupler assembly with sliding interface between hub and pulley

In one aspect, the invention is directed to a decoupler assembly for between an endless drive element and a shaft. The endless drive element may be, for example, an accessory drive belt from a vehicular engine. The shaft may be, for example, the input shaft of a belt-driven accessory, such as an alternator or a compressor. The decoupler assembly includes a hub that mounts to the shaft, a pulley that is rotatable with respect to the hub, a dampening spring and a clutch member. A part of the pulley is supported on a pulley support surface on the hub. There is a gap between the pulley and the pulley support surface. The gap has lubricant therein to facilitate sliding between the pulley and the pulley support surface. By eliminating the use of a polymeric bushing between pulley and the hub, there are several advantages that are provided.




s

Steering system and cross joint

In a steering system that includes: an intermediate shaft on a steering wheel side; a pinion shaft on a steered wheel side; and a cross joint by which the intermediate shaft and the pinion shaft are rotatably connected to each other on a plane intersecting with each of the shafts, and that steers steered wheels by transmitting steering torque of a steering wheel from the intermediate shaft to the pinion shaft, a weakened portion is formed in a joint spider of the cross joint. The weakened portion can be identified in advance as a portion that breaks first. This makes it possible to realize a failure mode in which a vehicle is able to run by itself for a certain period of time after a failure.




s

Cross universal joint and manufacturing method thereof

Structure of a cross universal joint is achieved in which the fact that an excessive torque was applied to a universal joint due to a collision accident or mishandling can be easily determined afterwards. Protrusions 20, which are straight lines as seen from the outside surface sides of linking arm sections 15c of a yoke 12c, are formed on the outside surfaces of the linking arm sections 15c. When an excessive torque acts and the linking arm sections 15c are plastically deformed, the protrusions 20 change from a straight line to a non-straight line. From this change it is possible to easily confirm that an excessive torque has been applied to a cross universal joint that includes this yoke 12c. Moreover, when the space between the inside surfaces of the linking arm sections 15c is taken to be D, and the length in the axial direction of the linking arm sections 15c is taken to be L, the dimensions of the parts of the yoke 12c are regulated so that the relation 3




s

Flexible coupling means and a mechanical transmission

A coupling means (10) provided with a first member (20) suitable for being fastened to a first rotary part (2) and with a second member (30) suitable for being fastened to a second rotary part (3), the first member (20) being provided with a first diaphragm (22) and the second member (30) being provided with a second diaphragm (32) that is secured to the first diaphragm (22). An emergency torque transmission device comprises at least one bayonet system including a protuberance (50) secured to one member (30) and co-operating with an angled groove (60) secured to the other member (20) by being inserted in the angled groove (60) by a thrust-and-rotation movement, in the absence of said breakage said coupling means (10) including both axial clearances in compression (70') and in translation (70″) and also circumferential clearance between each protuberance (50) and walls defining the corresponding angled groove (60).




s

Starting device of spark-ignition multi-cylinder engine

A starting device of a spark-ignition multi-cylinder engine is provided. The device includes a multi-cylinder engine body having cylinders, fuel injection valves, ignition plugs, an intake valve drive mechanism for opening and closing intake valves, a hydraulic variable valve phase mechanism for changing a close timing of each intake valve, an engine-driven hydraulic pressure supply source for supplying a hydraulic pressure, and a start controller for controlling the fuel injection valves, the ignition plugs, and the variable valve phase mechanism. When the supplied hydraulic pressure is below a predetermined pressure, the variable valve phase mechanism locks the close timing. When an engine temperature in an engine-start is high, the start controller retards a fuel injection timing of the cylinder on intake stroke at an engine stopped timing and retards an ignition timing thereof. The start controller does not retard the close timing of the intake valve until the engine-start completes.




s

Shaft assembly including a contained shaft spring load

An input shaft assembly is movable along an axis to absorb external impact loads. A biasing member exerts an axial load in a direction counter to potential impact loads. A stop is provided to control the application of biasing loads to control application of such axial load.




s

Torque limiting device, particularly for power transmission elements

A torque limiting device, particularly for power transmission elements, is provided. The torque limiting device includes a first connecting member and a second connecting member, which is connected rotatably to a driven element. The first connecting member includes a motor driving disk and the second connecting member includes a sliding disk, and further includes a pin supporting body which comprises a drum that is assembled on the second connecting member and includes a plurality of radial holes, each one of which accommodates a pin that is pressed, toward the center of the drum, by elastic means, and abuts, with at least one of its faces which is inclined with respect to the central rotation axis of the second connecting member, against at least one corresponding abutment face.




s

Foldover tab for retainer spring stop

A vibration damper, including a cover plate with an annular portion, and a spring portion including spring retaining portions forming respective spaces and a spring blocking portions including respective protrusion segments and respective tab segments including respective portions of an edge of the cover plate and having a same first thickness. The damper includes springs at least partially located in the respective spaces, and having respective longitudinal ends, and a second cover plate or output flange connected to the cover plate. The springs are arranged to transmit torque to the cover plate. The respective protrusion segments have a same second thickness and include respective protrusions. Respective first portions of the longitudinal ends of the springs are engaged with the respective protrusions. Respective second portions of the longitudinal ends of the springs are engaged with the respective tab segments.




s

Flexible shaft coupling and method of manufacturing the same

A flexible shaft coupling demonstrates a high performance in transmitting torque and accommodating positional deviations, and is yet highly durable. A first elastomer member (82) having a relatively high rubber hardness is circumferentially interposed between a first claw (32) of a first shaft coupling member (20) and a second claw (62) of a second shaft coupling member (50), and a second elastomer member (84, 86) having a lower rubber hardness than the first elastomer member is interposed between a surface portion (end surface) (30) of the first shaft coupling member (20) and the second claw (62) and/or between a surface portion (end surface) (60) of the second shaft coupling member (50) and the first claw (32).




s

Constant velocity joint torsional damper

A constant velocity joint including an outer race having inner and outer surfaces, the inner surface including a plurality of outer bail tracks. The constant velocity joint also includes an inner race having a plurality of inner ball tracks which correspond to the outer ball tracks, a ball cage disposed between the outer race and the inner race, a plurality of balls arranged within the ball cage and contacting the outer ball tracks and the inner ball tracks. A damping assembly is connected to the outer race.




s

Torque fluctuation absorber

A torque fluctuation absorber includes a first rotating member, a second rotating member arranged coaxially with the first rotating member, a control plate arranged between the first rotating member and the second rotating member in an axial direction and engaging non-rotatably with the second rotating member, a thrust member arranged between the first rotating member and the control plate in the axial direction, engaging with the first rotating member in an axially movable and non-rotatable manner, and slidably making contact with the control plate, and an elastic member arranged between the first rotating member and the thrust member in the axial direction, supported by the first rotating member and pressing the thrust member against the control plate.




s

Fixed-type constant velocity universal joint

A fixed type constant velocity universal joint has pairs of track grooves, each pair forming a wedge angle (α). The wedge angle (α) includes a wedge angle (α0) formed, when an operating angle is 0°, with respect to each of torque transmitting balls arranged in a joint center plane, and opening to the same side in an axial direction for all pairs of track grooves. Further, the pairs of track grooves are mirror-image symmetrical with each other when the operating angle is 0°.




s

Driveshaft containment device

A driveshaft containment system and a method of its use. In preferred embodiments, the invention takes the form of a two component system including a first component mounted to a device such as a differential housing, coupled to driveshaft, and a second component comprising a tubular driveshaft containment housing. A driveshaft containment ring is preferably mounted to the forward end of the tubular housing which in turn is provided with a mechanism at its rearward end for rotationally engaging and disengaging the first component. The first and second components are also provided with a mechanism for preventing relative rotational movement of the first and second components while engaged with one another.




s

Device for damping vibrations in a drive train

A device for damping vibrations in a drive train, in particular for plug screws in the pulp and paper industries. The device is principally characterized in that a cylindrical shaft, preferably designed as a hollow shaft, is provided, wherein the cylindrical shaft is arranged between the halves of a coupling and at least one ring having friction surfaces is arranged around the cylindrical shaft. Stick-slip vibrations that occur can thereby be favorably eliminated, and thus the gearbox and the motor of the drive train can be protected.




s

Variable valve actuating apparatus for internal combustion engine

A variable valve actuating apparatus includes: a first rotary member which includes a rotor fixed to one of the inner cam shaft and the outer cam shaft, and a receiving chamber formed within the first rotary member, and which is arranged to be rotated in an advance angle direction or in a retard angle direction relative to the drive rotary member by a hydraulic pressure selectively supplied to or drained from the advance angle operation chamber and the retard angle operation chamber; and a second rotary member fixed to the other of the inner cam shaft and the outer cam shaft, rotatably received within the receiving chamber of the first rotary member, and arranged to be rotated relative to the first rotary member and the drive rotary member within a predetermined angle range.




s

Variable valve actuating apparatus for internal combustion engine

A variable valve actuating apparatus includes: a first lock recessed portion; a first lock member; a second lock recessed portion formed in the second rotary member's side; a second lock member; a first lock passage arranged to supply the hydraulic fluid, and thereby to move the first lock member out of the first lock recessed portion; and a second lock passage arranged to supply the hydraulic fluid, and thereby to move the second lock member out of the second lock recessed portion, at least a part of the first lock recessed portion and at least a part of the second lock recessed portion being disposed at a position to be projected in an axial direction when the first lock member and the second lock member are in the lock state.




s

Rotation transmitting apparatus, vehicle steering system, and intermediate shaft

A rotation transmitting apparatus includes a first shaft on which multiple external teeth are formed so as to be arranged in a circumferential direction, and a second shaft in which multiple internal teeth are formed so as to be arranged in the circumferential direction, the second shaft being fitted to the first shaft so as to be slidable relative to the first shaft in the axial direction and so as to be engageable with the first shaft in a rotational direction through the use of the external teeth and the internal teeth. A protrusion is formed on the tooth flank of one of the external tooth and the internal tooth, the protrusion being projected toward the corresponding tooth flank of the other of the external tooth and the internal tooth. The protrusion is made of a resin that is more elastically deformable than the tooth flank.




s

Aluminum alloy propeller shaft and friction welding process thereof

An aluminum alloy propeller shaft including a tube made of an aluminum alloy, and a pair of yoke members made of an aluminum alloy, the yoke members including cylindrical base portions friction-welded to opposite end portions of the tube, each of the yoke members including a tip end portion having a pair of bearing retaining holes aligned with each other in a radial direction of the base portion. Variation in length between a central axis of the bearing retaining holes in one of the yoke members and a central axis of the bearing retaining holes in the other yoke member with respect to a reference length is set within a range of from +2.0 mm to −2.0 mm. A friction welding process of producing an aluminum alloy propeller shaft, including a friction step, a position displacement detection step, a rotation stop step and an upset step.




s

Counter track joint with axial displacement range

A joint in the form of a counter track joint is disclosed that comprises a joint outer part with first outer ball tracks and second outer ball tracks; a joint inner part with first inner ball tracks and second inner ball tracks; wherein first aperture angles are respectively formed between tangents to contact points of a ball with the first outer ball track and with the first inner ball track, and second aperture angles are respectively formed between tangents to contact points between a ball with the second outer ball track and with the second inner ball track. The first aperture angles of the first track pairs open towards a first side of the joint, and the second aperture angles of the second track pairs open towards a second side of the joint. Outer axial play is provided between the joint outer part and the ball cage. Inner axial play is provided between the ball cage and the joint inner part. Axial play permits relative axial displacement of the joint inner part with respect to the joint outer part.




s

Driveline shield assembly

A driveline shield system having a cap disposed to releasably engage a bearing mounted adjacent a drive shaft. The cap supports a tubular guard or shield in a coaxial position relative to the drive shaft. One or more lugs on the bearing are disposed to seat in corresponding slots formed in the cap. When the lugs are seated in the slots, rotation of the cap relative to the bearing causes the bearing and the cap to engage one another. A U-shaped clip is pivotally mounted to the cap and rotatable between a first position in which the clip extends into the slot and secures the lugs in engagement with the cap and a second release position in which the clip is retracted from the slot, thereby permitting relative rotation between the cap and bearing.




s

Inner seal for CV joint boot

A combined CV joint boot and inner seal includes a boot portion having a first end and a second end and having a shaft sealing portion at the first end for sealing with a first shaft of the CV joint. A front can sealing portion is positioned at the second end of the boot portion. An inner seal portion extends generally inwardly towards the CV joint longitudinal axis to block lubricant from migrating into the interior of the boot portion.




s

Wheel supporting device

A wheel supporting device includes: a hub unit that has a rotary ring having a first spline on its axially inner end face; and a joint that has an outer ring having a second spline, meshing with the first spline, on its axially outer end face. At least one projection included in a plurality of projections of the first spline projects in the axial direction by a larger amount than the remaining projections of the first spline. When a crest of the at least one projection contacts a crest of one of projections of the second spline, a play is caused between the rotary ring and the outer ring due to the at least one projection that works as a fulcrum.




s

Scroll compressor with bearing grooves on both sides of key groove

In a scroll compressor of the present invention, a fixed scroll 11 and an orbiting scroll 12 are meshed with each other such that spiral laps of the fixed scroll 11 and the orbiting scroll 12 inwardly face each other, an Oldham ring 26 is provided between the main bearing member 19 and the orbiting scroll 12, and a key portion of the Oldham ring 26 is inserted into a key groove 19a of the main bearing member 19. Grooves 19b are formed in Oldham ring 26 sliding surfaces on both sides of the key groove 19a. According to this configuration, the Oldham ring 26 and the main bearing member 19 can be restrained from coming into contact with each other in the vicinity of the bearing key groove 19a, and restrained from vibrating, and it is possible to provide an inexpensive scroll compressor of low noise.




s

Drive shaft coupling having sealed interior passage for pressurized fluid

A coupling for connecting a rotating tube cleaning shaft to a tube cleaning machine where high pressure fluid is pumped through the coupling, where the coupling is sealed to contain the high pressure fluid, and where a machine driven rotary flexible shaft passes through the coupling.




s

Slip clutch

A slip clutch, including: a flywheel; and a vibration damper including: first and second cover plates; a flange; and at least one spring engaged with the cover plates and flange. The clutch includes a slip assembly, with a first plurality of circumferentially aligned surfaces: fixedly connected to the flywheel or formed with the flywheel; and at an acute angle with respective to a circumferential line, and a second plurality of circumferentially aligned surfaces: formed by a portion of the first cover plate radially outward of the spring; at an acute angle with respective to a circumferential line; and in contact with the first plurality of surfaces, or engaged with the first plurality of surfaces via an intermediate element in contact with the first and second pluralities of surfaces. The slip assembly includes a resilient element applying a force to the first cover plate in an axial direction toward the flywheel.




s

Propshaft assembly

A propshaft assembly includes an axle flange, a propshaft, and a damper. The propshaft includes a prop flange, which may be mated to the axle flange for common rotation therewith. The damper includes an outer mass that annularly surrounds the prop flange. The damper is press-fit onto one of the prop flange and a flange pilot, such that the damper is attached directly to the propshaft without fasteners.




s

Variable cam timing system and method

A phase control apparatus in a variable cam timing (VCT) system of an engine is described herein. The phase control apparatus includes a locking pin coupled to a vane, the locking pin extending into a locking pin recess in a cover plate in a locked configuration, the locking pin and locking pin recess having a backlash and a housing at least partially enclosing the vane and spaced away from the vane forming a gap in the locked configuration.




s

Valve timing control device for internal combustion engine

A valve timing control device includes: a vane rotor having a plurality of vanes; a housing having the vane rotor inside so that an advance chamber is formed on one side of each vane and a retard chamber is formed on the other side; a lock pin inserted in a cylinder provided in the vane and moves to a lock position and to an unlock position; and a feeding passage for feeding oil into the cylinder from the retard chamber adjacent to the vane provided with the cylinder to make the lock pin move to the unlock position, and controls an oil supplying unit to supply oil to each retard chamber, wherein a flow passage cross sectional area of the branch passage connected with the retard chamber linking with the cylinder is larger than a flow passage cross sectional area of the branch passage connected with the other retard chamber.




s

Multi-legged walking apparatus

A multi-legged apparatus enables a multi-legged robot to provide a natural motion, and includes a body portion comprising a body, a front leg portion comprising a front fixing portion fixed to the body, and a front rotating portion rotatably connected to the front fixing portion, a rear leg portion connected to the body and a rear leg portion comprising a rear rotating portion rotatably connected to the rear fixing portion, and a first link rotatably connected, at both ends, to the front and rear rotating portions, respectively. The body portion additionally includes a driving portion which rotates one of the front and rear rotating portions. By employing the first link and the driving portion, the body of the multi-legged robot is moved to and fro and left and right naturally in accordance with the movement of the legs, in a similar pattern as that generally shown in actual multi-legged animals.




s

Drive shaft coupling mechanism

An in-line coupling device for a motor driven agricultural system utilizes less metal components while optimizing torque transfer. The device comprises a puck having a plurality of outwardly extending arms, a first shaft hub having outwardly extending flanges adapted to seat between a pair of the plurality of outwardly extending arms, and a second shaft hub having outwardly extending flanges adapted to seat between a pair of the outwardly extending arms.