s

Devices, systems, and methods for elongating bone

The present invention comprises devices, systems, and methods for elongating bone using an extension implant having a first end and a second end. The first end of the extension implant is inserted into an opening in the live bone and the second end of the extension implant is combined with an enlarged implant. A plurality of channels extend through the components to serve as conduits for delivering fluids and physiological signals which induce bone formation. Some embodiments include a subcutaneous cage assembly for helping to support the implant as the bone heals around it.




s

Production of tissue engineered digits and limbs

The invention pertains to methods of producing artificial composite tissue constructs that permit coordinated motion. Biocompatable structural matrices having sufficient rigidity to provide structural support for cartilage-forming cells and bone-forming cells are used. Biocompatable flexible matrices seeded with muscle cells are joined to the structural matrices to produce artificial composite tissue constructs that are capable of coordinated motion.




s

Method for the improvement of mesh implant biocompatibility

The present invention provides a method of fixating a mesh implant to a tissue of a subject comprising attaching said mesh implant to said tissue, covering said mesh implant by an antiadhesive barrier, wherein said antiadhesive barrier is attached to said mesh implant by a biocompatible adhesive.




s

Micro-structure particles for load bearing bone growth

The present disclosure relates to methods of facilitating bone growth. The method may include positioning a device around at least a portion of a bone exhibiting a defect, the device capable of retaining bone segments and micro-structured particles. The method may also include applying micro-structure particles within the device to the defect, wherein each of the micro-structure particles include at least one pore therein. In addition, the method may include aligning at least a portion of the micro-structure particles and applying a polymer to the particles and solidifying the polymer.




s

Method of making a stent

A method of making a stent, including preparing a solution containing a composition, the composition comprising a biodegradable polymer and a vascular intimal hyperplasia inhibitor of a kind, including argatroban, which does not inhibit proliferation of endothelial cells, the weight compositional ratio of the polymer to the vascular intimal hyperplasia inhibitor being within the range of 8:2 to 3:7, the composition dissolved in a solvent selected from the group consisting of a mixture of a lower alkyl ketone and methanol, a mixture of a lower alkyl ester and methanol or a mixture of a lower halogenated hydrocarbon and methanol; coating at least an outer surface of a stent body of a cylindrical configuration having outer and inner surfaces with a diamond-like thin film coated on the surfaces; and after the coating, removing the solvent to complete a first coated layer.




s

Fenestrated stent grafts

A stent graft (1) including a tubular wall (3) with at least one fenestration (40) including a peripheral (37) reinforcement around at least part of the fenestration. There can also be a tubular extension (15). The side arm includes a stent (19) and a cover (17) and extends from and is in fluid communication with the fenestration and the stent graft. The stent may be a self expanding stent. The ring and/or tubular extension provides better support and sealing for an extension arm. The fenestration (40) can be circular or if towards the ends of the stent graft may be in the form of a U-shape (50) with an open end.




s

Intervertebral spacer

Disclosed is an assembly and method for implant installation between adjacent vertebral bodies of a patient. The implant has a support body and a rotatable insert therein and the support body is curved for installation between adjacent vertebral bodies transforaminally. An installation instrument is also disclosed for removable attachment to implant and engagement with the rotatable insert to selectively permit rotation between the insert and the support body. The installation instrument extends along a longitudinal tool axis and when the installation instrument is in a first position the insert is rotationally fixed with respect to the support body and when the installation instrument is in a second position the support body may rotate with respect to the insert.




s

Devices and a kit for improving the function of a heart valve

A device for improving the function of a heart valve comprises a first loop-shaped support, which is configured to abut a first side of the heart valve, and a second loop-shaped support, which is configured to abut a second side of the heart valve opposite to said first side, whereby a portion of the valve tissue is trapped between the first and second supports. An outer boundary of the second support is greater than an outer boundary of the first support.




s

Family of conducting liquid crystals

A mixture comprising a molecule of formula (I); in which A1, A2, A3, A4, A5 and A6, which may be the same or different, are each N or —CH; Y1, Y2, Y3, Y4, Y5 and Y6, which may be the same or different, are each hydrogen or C1 to C12 alkoxy; X1, X2, X3, X4, X5 and X6, which may be the same or different, are each hydrogen, C1 to C12 alkoxy or alkyl C1 to C12; and R7, R8, R9, R10, R11 and R12 are each hydrogen, or each of R7 and R8, R9 and R10 and R11 and R12 may form a bond; and a molecule of formula (II); in which R1, R2, R3, R4, R5 and R6, which may be the same or different, are each alkyl or substituted (and/or chiral) alkyl C1 to C16, acyl C1 to C16, polyethyleneoxy, a flexible connection to a polymer backbone or part of a polymer backbone in homopolymers, copolymers or block copolymers; and B1, B2, B3, B4, B5 and B6a, which may be the same or different, are each, hydrogen, alkyl C1 to C16, alkoxy C1 to C16, nitro, halogeno, cyano, amido, diazo or ester, e.g. alkyl C1 to C16 ester.




s

Quick and sensitive method of quantifying mycolic acid to develop anti-microbial agents and a diagnostic kit thereof

The present invention relates to a rapid, sensitive, simple, and cost-effective spectrophotometric method of detecting and quantifying mycolic acid in a mycolic acid-fuschin dye complex with absorbance maxima ranging between 490-500 nm in the presence of various test compounds, for screening mycolic acid biosynthesis inhibitors useful as anti-microbial agents and a diagnostic kit thereof comprising basic fuschin dye in the concentration ranging between 0.1-1.0 gm/100 ml, phenol and 95% ethanol in the ratio ranging between 1:4 to 2:1 (v/v), and phenol and distilled water in the ratio ranging between 1:14 to 1:25.




s

Rapid assays for neurotransmitter transporters

The invention describes the finding that 4-(4-dimethylaminostyrl)-N-methylpyridinium or ASP+ is a fluorescent substrate that is transported by several neurotransmitter transporters. Provided are methods for the analysis of neurotransmitter transport and binding using ASP+. The invention also provides rapid methods for screening for modulators of neurotransmitter transport. As neurotransmitter transporter defects are associated with numerous neurological disorders, the invention also provides methods for treating neurotransmitter transport-associated defects/conditions using the modulators identified by the screening methods of the invention.




s

Thermoplastic articles for packaging UV sensitive materials, processes for the articles production and use and novel UV absorbers

Thermoplastic composition and articles containing UV absorbers that protect the articles contents from harmful UV radiation are disclosed as well as methods for making the thermoplastic articles and methods for using the articles to contain and protect materials sensitive to UV radiation. The UV absorbers contain oxazolone and/or azine functional groups that absorb UV radiation and prevent its transmission into the article. Many of the compounds are novel compositions of matter. The generally clear thermoplastic articles of this disclosure are particularly useful for containing a variety of UV sensitive consumer products that would otherwise have to be packaged in opaque containers.




s

Universal linker compositions for the release or transfer of chemical agents from a polynucleotide

A universal linker structure is provided, in which a functional group and activating leaving group are placed on a tether, allowing the placement of an electrophile at the end of any nucleic acid sequence. The electrophile on the tether can react with a second nucleic acid carrying a nucleophile when the two nucleic acids are hybridized near one another, resulting in release of the leaving group, and creation of a functional change. The linker can be designed to destabilize the ligation product without slowing the rate of reaction. This lowers product inhibition, and the target DNA or RNA can become a catalyst for isothermally generating multiple signals for detection. This enhanced signal is demonstrated in solution experiments and in solid supported assays. The universal linkers of the present invention are simple and inexpensive to prepare, and can be appended to any polynucleotide in automated steps on a standard DNA synthesizer.




s

Switching element

The present invention provides a switching element that has a stable bistable characteristic and a high transition voltage and demonstrates excellent cyclic performance. The switching element has two stable resistance values with respect to the voltage applied between electrodes, wherein a first electrode layer, an organic bistable material layer, and a second electrode layer are successively formed as thin films on a substrate and the organic bistable material constituting the organic bistable material layer is a quinomethane-based compound or a monoquinomethane-based compound. A metal constituting the second electrode layer is diffused into the organic bistable material layer. It is preferred that the second electrode layer be formed by vapor deposition and the temperature of the substrate during the vapor deposition be 30-150° C.




s

Azaindenofluorenedione derivative, material for organic electroluminescence device and organic electroluminescence device

An azaindenofluorenedione derivative shown by the following formula (I), (IIa) or (IIb):




s

Temperature resistant pH buffers for use at low temperatures

A method for preparing a composition that includes selecting a pH of the composition; selecting a first buffer with a negative temperature coefficient; selecting a second buffer with a positive temperature coefficient; and forming the composition comprising the first buffer and the second buffer. The composition has an average temperature coefficient, ΔpH/ΔT(Ta,Tb)≦1×10−3 pH-unit/K and a ΔpH(Ta,Tb)≦0.31 pH-unit for Ta=4 K and Tb=313 K.




s

Method for eliminating carbon dioxide from waste gases

A method for the elimination of carbon dioxide from waste gases includes the following steps. First, waste gases, which include carbon dioxide, are provided from a source for waste gases. Next, the waste gases are contacted with an absorbent composition that includes perfluorodecalin solution. The waste gases, especially the carbon dioxide, are then absorbed by the absorbent composition. The absorbent composition thereby absorbs the waste gases to eliminate the carbon dioxide.




s

Esters of 4,5-disubstituted-oxy-2-methyl-3,6-dioxo-cyclohexa-1,4-dienyl alkyl acids and preparation thereof

Esters of 4,5-disubstituted-oxy-2-methyl-3,6-dioxo-cyclohexa-1,4-dienyl alkyl acids were prepared chemically and/or enzymatically. Depending upon the ester, improved melanocyte cytotoxicity was achieved. Improved cytotoxicity characteristics are consistent with ester analogs being more physiologically compatible and less irritating to skin than their corresponding acids.




s

Process for production of sulfonic acid ester

The present invention provides a method for producing a sulfonate ester efficiently and in high yield. The present invention is an invention of a method for producing a sulfonate ester compound, which comprising reacting: (a) a compound having a sulfo group (—SO3H); and(b) a compound having a group represented by the general formula [1]: —OR1 [1] [wherein, R1 represents a sulfonyl group represented by the general formula [2]: —SO2—R2 [2] (wherein, R2 represents a halogen atom, a haloalkyl group, an alkoxy group, or an optionally substituted alkyl group or an optionally substituted aryl group) or an acyl group represented by the general formula [3]: (wherein, R3 represents an optionally substituted alkyl group or an optionally substituted aryl group)]; in the presence of an organic base which is capable of forming a salt with said sulfo group.




s

Catalyst material for producing oxygen gas from water

Provided is a catalyst material comprising aggregates of nanoneedles of mainly R-type manganese dioxide and having a mesoporous structure. With this, water can be oxidatively decomposed under visible light at room temperature to produce oxygen gas, proton and electron. Also provided is a catalyst material comprising aggregates of nanoparticles of mainly hydrogenated manganese dioxide. With this, acetic acid or an inorganic substance can be synthesized from carbon dioxide gas.




s

Compact multifunctional ligand to enhance colloidal stability of nanoparticles

A ligand design allows compact nanoparticle materials, such as quantum dots (QDs), with excellent colloidal stability over a wide range of pH and under high salt concentrations. Self-assembled biomolecular conjugates with QDs can be obtained which are stable in biological environments. Energy transfer with these ligands is maximized by minimizing distances between QDs/nanoparticles and donors/acceptors directly attached to the ligands or assembled on their surfaces.




s

Metal (III) complex of biuret-amide based macrocyclic ligand as green oxidation catalyst

The present invention discloses metal (III) complex of a biuret-amide based macrocyclic ligand as green catalysts that exhibit both excellent reactivity for the activation of H2O2 and high stability at low pH and high ionic strength. The invention also provides macrocyclic biuret amide based ligand for designing of functional peroxidase mimics. Further, the present invention discloses synthesis of said metal (III) complex of a biuret-amide based macrocyclic ligand.




s

Lipids for transfection of Eukaryotic cells

Compositions and methods for improved delivery of macromolecules into eukaryotic cells are provided. Fusogenic peptides from fusion proteins of non-enveloped viruses enhance the efficiency of transfection of eukaryotic cells mediated by transfection agents such as cationic lipids, polycationic polymers such as PEI and dendrimers. These fusogenic peptides are used as part of a transfection complex that efficiently delivers a macromolecule, for example, a nucleic acid, into a eukaryotic cell. Novel cationic lipids and compositions of cationic lipids also are provided that may be used for the introduction of macromolecules such as nucleic acids, proteins and peptides into a variety of cells and tissues. The lipids can be used alone, in combination with other lipids and/or in combination with fusogenic peptides to prepare transfection complexes.




s

Drug-ligand conjugates, synthesis thereof, and intermediates thereto

The present invention relates to methods for synthesizing compounds of formula I or pharmaceutically acceptable salts thereof: I wherein each of X, Alk1, Alk2, and W are as defined and described herein.




s

Arc melting furnace apparatus

An arc melting furnace apparatus is provided which reduces an operation burden on a worker and shortens working hours. An arc melting furnace apparatus 1 includes a housing 2 having formed therein a melting chamber 2a, a hearth 4 provided within the melting chamber 2a and having a recessed portion 4a, and a heating mechanism 10 for heating and melting a metal material supplied into the recessed portion 4 to generate an alloy ingot. The apparatus comprises a turning member 23 rotatably supported on a supporting member 21 standing within the melting chamber 2a, a perimeter edge of the turning member 23 rotating and moving along the inner surface of the recessed portion 4a to lift the alloy ingot generated in the recessed portion 4a above the hearth 4 and turn it over, and a resilient turn-over assisting member 24 provided above an upper end of the recessed portion 4a. Further, the turn-over assisting member 24 is arranged to flex by a predetermined amount when the alloy ingot abuts it, and to return to its original state from the flexed state so that the alloy ingot is urged to drop into the recessed portion 4a.




s

In-liquid plasma electrode, in-liquid plasma generating apparatus and in-liquid plasma generating method

An in-liquid plasma electrode according to the present invention is an in-liquid plasma electrode for generating plasma in a liquid and has an electrically conductive member having an electric discharge end surface in contact with the liquid, and an electrically insulating member covering an outer periphery of the conductive member at least except the electric discharge end surface. Preferably, d and x satisfy −2d≦x≦2d, where d is a length of a minor axis of the cross section when a conductive end portion of the electrically conductive member having the electric discharge end surface has an approximately circular cross section, or d is a length of a short side of the cross section when the conductive end portion has an approximately rectangular cross section, and x is a distance from a reference plane to a plane containing the electric discharge end surface when the reference plane is an end surface of the electrically insulating member that is approximately parallel with the electric discharge end surface. Owing to this construction, it is possible to provide an in-liquid plasma electrode which can simply generate plasma in a wide variety of liquids including a conductive liquid such as water and alcohol, and furthermore an in-liquid plasma generating apparatus having this electrode, and an in-liquid plasma generating method using this electrode.




s

Safety device for detecting electrode breakage

The invention relates to a safety device (1) for detecting electrode breakage in an electric arc furnace, wherein an electrode (6) is secured on an electrode support arm (4), and wherein a conduit is filled with a medium under a constant pressure and a pressure drop is produced at an electrode breakage, which is detected as an alarm signal. Here, the conduit (7a-d,3) is integrated in a protective component that is arranged beneath the electrode support arm (4) thereon, wherein in case of an electrode breakage, the conduit (7a-d,3) is damaged by a produce electric arc and the pressure drop takes place.




s

Electronic circuit and method of supplying electricity

The invention relates to an electronic circuit and a method for feeding power to at least one electrode of an alternating-current electric-arc furnace, particularly for melting metal. Known circuits of this type typically comprise a series connection with a transformer for providing a supply voltage for the electric-arc furnace from a power grid (1) and a AC power controller (8) connected between the transformer (6) and the electrode (11) for regulating the current through the electrode (11). According to the invention, a further development for such electronic circuits is proposed, which development has a simple design, is inexpensive and prevents overload of the AC power controller (8) even in operating modes of the electric-arc furnaces at high electrode currents. This further development provides to bypass the AC power controller with a bypass switch (9) that is opened or closed with the help of a controller as a function of the amount of current flowing through the electrode (11).




s

Extracting social relations from calling time data

A method, apparatus, and computer program product for generating a social network data structure, the method comprising: receiving a corpus comprising one or more communication indications for one or more customers, each communication indication indicating start time and end time of a communication of the customer; and generating a social network data structure indicating connections between customers based upon the start time and end time indications of communication indication comprised in the communication indications.




s

High temperature industrial furnace roof system

A high temperature industrial furnace roof system having first and second spaced apart hanger brick rows with a filler row disposed therebetween and a cable system including a plurality of electrical cables. The filler row includes a plurality of filler elements having at least one removable heating module with a heat source. The cable system operatively connects the heat source with a power source and permits the removable heating module to be removed from the respective filler element while the respective heat source remains operatively connected with the power source.




s

Sensor system for bottom electrodes of an electric arc furnace

A sensor system for monitoring and controlling the performance of the bottom electrode and the deflection of an electric arc in an electric steel making furnace includes an organized matrix of anode pins interspersed with refractory material and extending toward an electrically conductive plate secured to distal ends of the anode pins. A sensing device includes two temperature sensors at spaced apart locations along each of a distributed select group of anode pins for providing corresponding electrical signals and a current sensor responsive to electrical current flowing through the anode pins of the distributed select group of anode pins for providing a corresponding electrical signal. A controller responsive to the electrical signals derived at the anode pins of the select group operates the power supply and a display for monitoring the electrical performance of the elongated anode pins for heating by the electric arc in the furnace.




s

Apparatus and method for dehydrating biological materials

An apparatus for dehydrating a liquid sample of biological material has a microwave waveguide that is open to the atmosphere. It has a microwave generator, means for introducing a container of the material into the waveguide, means for evacuating the container, means for rotating the container and means for removing the container from the waveguide. It can include means for moving the container through the waveguide and for sealing it. In a dehydration method, a container of the liquid sample is put into the open waveguide, evacuated, rotated at high speed and microwaved. The container of dehydrated material is then removed from the waveguide. The apparatus and method are particularly suitable for dehydrating vaccines.




s

Induction melting furnace having asymmetrical sloping bottom

An induction melting furnace having an asymmetrical sloping bottom. The melting furnace includes: an induction coil member provided on the melting furnace so as to melt waste contained in the furnace by vitrification; a bottom unit provided in a lower part of the melting furnace, the bottom unit asymmetrically sloping downward in a direction toward a glass discharge port that is formed through the bottom unit; and a cooling member integrated with the bottom unit. Due to the asymmetrical sloping bottom of the furnace, waste in the furnace can be completely melted and can be easily discharged to the outside and, accordingly, the time and cost required to treat the waste are reduced and this improves work efficiency when treating the waste. Further, due to the insulation material, the melting furnace can be protected from electric damage that may be caused by electric arc.




s

Sidewall and bottom electrode arrangement for electrical smelting reactors and method for feeding such electrodes

Metallurgical reactors having cooling capability and electrode feed capability are disclosed. The reactors may include a shell having a sidewall and a bottom, where the shell is adapted to contain a molten material. The reactors may include at least one consumable electrode protruding through an opening of the shell and into the molten material. The reactors may include a current contact clamp configured to conduct operating current to the electrode, where the current clamp is in contact with the electrode, and where the current clamp comprises at least one internal channel, wherein the internal channel is configured to circulate a cooling medium. The reactors may include an electric isolation ring disposed between the electrode and the opening of the shell, wherein the electric isolation ring is configured to sealingly engage the electrode and the opening so as to restrict flow of the molten material out of the shell.




s

Electric induction heating and stirring of an electrically conductive material in a containment vessel

Apparatus and method are provided for electric induction heating and/or stirring of a molten electrically conductive composition in a containment vessel with the apparatus being removably insertable in the molten composition. An induction coil embedded in refractory or a coating is submerged in the composition and used to heat and/or stir the molten composition either externally or internally to the refractory or coating.




s

Dental firing or press furnace

The invention relates to a dental firing or press furnace (10) that enables the production of at least one dental restoration part (62). The dental firing or press furnace is provided with a firing space (12) that is heatable with the aid of a heating device (22), preferably, a resistance heating device. A heat-conducting element (50) having a specific thermal conductivity of at least 100 W/mK is arranged on the floor of the firing space (12).




s

Liquid cooled glass metal electrode

In various embodiments, an electrode has a shaft extending from an electrode head and a cooling passage extending from an open end disposed at an attachment end of the shaft to a closed end disposed within the electrode head.




s

Furnace slag door and corresponding furnace

The invention relates to a furnace slag door, comprising at least one panel which is moveable, in a mounted state of the slag door, from an opened position, in which the panel is remote from a corresponding slag discharge opening within the furnace wall to a closed position, in which the panel covers at least part of said slag discharge opening. The invention further comprises a corresponding furnace equipped with such slag door. The furnace is, in particular, an electric arc furnace (EAF) but may be as well of another type.




s

Method for treating spheroidal graphite iron and pouring device thereof

A method for treating spheroidal graphite iron includes the step: pouring molten spheroidal graphite iron into a pouring electrical furnace (1); covering the molten spheroidal graphite iron (5) with alkali slag (6) which is melted at high temperature and rich in alkali earth metal ion, rare earth metal ion, or mixture of them; connecting the molten spheroidal graphite iron (5) with the negative pole of the direct current source by one pole (7); connecting the alkali slag (6) with the positive pole of the direct current source by another pole (4), treating the molten spheroidal graphite iron (5) with the alkali slag (6) which is used as electrolyte. The method can prevent the spheroidized fading velocity of the spheroidal graphite iron. The pouring electrical furnace can be used for treating the molten spheroidal graphite iron.




s

Low temperature melting furnace and metal sector using an external cooling passage

A low temperature melting furnace using an external cooling passage includes a wall including a plurality of metal sectors, each metal sector including a cooling passage formed along a longitudinal direction thereof, and an extension tube provided outwardly from the wall and connected to the cooling passage.




s

Roof system for electric arc furnace and method for manufacturing the same

A roof system for an electric arc furnace includes a skew removably attached to the electric arc furnace, a lining of refractory material affixed to the skew, and a delta composed of a refractory material. The delta has at least one aperture capable of receiving an electrode. The delta fits onto and is supported by the refractory lining that is affixed to the skew.




s

Resonant power supply for use with high inductive loads and method of providing same

A resonant power supply (900) for use with high inductive loads includes an input rectifier (903) and a switching inverter formed using a plurality of parallel connected half bridge networks for switching the voltage provided from the input rectifier (903). A transformer (927) is used whose primary is connected to the switching inverter and whose secondary is connected to load such as a crucible (931). A capacitor (929) is used in series with the primary of the transformer (927) for resonating the inductance in the secondary circuit at the frequency of the switching inverter to provide maximum power transfer to the crucible (931).




s

Device for adjusting the locking point of an electrode

A device (10) for adjusting the locking point of the electrode of a smelting furnace includes a vice (120) for supporting said electrode and supplying it with power. A structure (13) is coupled with the vice (120), supports the electrode and moves the electrode vertically.




s

Movable device for injecting oxygen and other materials into electric arc furnace

A movable device for injecting oxygen and other technical materials into an electric arc furnace includes a housing situated above a portion of a step of a crucible and equipped with a cooling coil, an injection lance of oxygen and other technical materials, a supporting and moving system of the lance between minimum and maximum range points of the liquid bath level contained therein, positioned in the housing, an opening situated in the housing and facing the inside of the crucible in which the lance is transferably guided, and a scraping member disposed between the opening and the lance.




s

Wall elements for water-cooled, current-conducting electrode bearing arms and electrode bearing arms produced from such wall elements

A support arm for a water-cooled, current-conducting electrode includes wall elements, wherein each wall element is a flat conductive metal with a hollowed out recess on its outer surface extending over its length. The support arm further includes a cover extending over each recess to define a closed cooling channel within each wall element when the cover is welded to the wall element. The cover includes with an inlet port and an outlet port for cooling water.




s

Integrated process control system for electric induction metal melting furnaces

An integrated process control installation is provided for electric induction metal melting furnaces with variable furnace states. The integrated process control installation can include supporting charge delivery and slag removal installations, and furnace process operations for process control of melting metal in the furnaces. The variable furnace states, supporting installations, and furnace process operations are controlled by a supporting processing installation, while a robotic apparatus performs the furnace process operations.




s

Power supply arrangement

A power supply arrangement for supplying a square-wave current (I2) to a load connected to an output of the power supply arrangement, in particular a power supply arrangement in an arc furnace for generating an arc, including a transformer (TU) with at least two primary-site taps (1U1, 1U2) which form an input of the power supply arrangement, and with several secondary-side taps (2U1, 2U2, 2U3, 2UN), a bridge circuit (BU) with several first half bridges (11, 12, 13) which include converter valves (V11, V12, V13, V14, V15, V16) and which each have a first terminal (A11, A12, A13) of the bridge circuit, with a bridge section with a choke (L1), and with a second half bridge (20) which has converter valves (V17, V18) and a second terminal (A20) of the bridge circuit (BU), wherein each first terminal (A11, A12, A13) is connected to one of the secondary-side taps (2U1, 2U2, 2U3) of the transformer (TU), wherein the second terminal (A20) is connected to the output.




s

Common field magnetic susceptors

Thermoplastic pellitized materials are melted in gravity flow through coaxially oriented perforated cylindrical metal susceptors. The susceptors are equally energized by the interception of a common magnetic field formed by a high frequency powered inductor coil.




s

Sealing device

A sealing device is arranged around a rod electrode extending vertically through an aperture made in the ceiling of an arc furnace and being vertically movable inside the furnace to prevent the access of gases from the furnace through the aperture to the atmosphere, and on the other hand to prevent air from flowing from the atmosphere into the furnace. The sealing device comprises a gas distribution chamber provided with an inlet channel for feeding essentially passive gas, such as nitrogen or air, into the gas distribution chamber. The sealing device also includes a slit nozzle encasing the electrode, through which nozzle a gas jet is arranged to be discharged from the gas distribution chamber towards the electrode in a direction that is at an angle with respect to the horizontal plane and has a slightly upwards inclined orientation, and that is, with respect to the furnace interior, pointed outwardly, so that the sealing is carried out owing to the effect of the created stagnation pressure.




s

Channel electric inductor assembly

The present invention relates to an electric channel inductor assembly and method of forming an electric channel inductor assembly. A nonremovable, hollow, nonmagnetic channel mold is used to form the one or more flow channels of the assembly. A heated fluid medium is circulated in the hollow interior of the mold after the mold is situated in the assembly to heat treat the refractory surrounding the exterior walls of the mold. After heat treatment a liquid is supplied to the hollow interior of the mold to chemically dissolve the mold.