met

Man leaving home to live in cemetery

With tears streaming down his face and his voice trembling, a windshield wiper made a declaration that he would rather live in the cemetery than with his relatives. "A the cemetery me ago live. Unnu wicked to me," Ramarieo Bailey declared. Bailey...




met

C-tag TNF: a reporter system to study TNF shedding [Methods and Resources]

TNF is a highly pro-inflammatory cytokine that contributes not only to the regulation of immune responses but also to the development of severe inflammatory diseases. TNF is synthesized as a transmembrane protein, which is further matured via proteolytic cleavage by metalloproteases such as ADAM17, a process known as shedding. At present, TNF is mainly detected by measuring the precursor or the mature cytokine of bulk cell populations by techniques such as ELISA or immunoblotting. However, these methods do not provide information on the exact timing and extent of TNF cleavage at single-cell resolution and they do not allow the live visualization of shedding events. Here, we generated C-tag TNF as a genetically encoded reporter to study TNF shedding at the single-cell level. The functionality of the C-tag TNF reporter is based on the exposure of a cryptic epitope on the C terminus of the transmembrane portion of pro-TNF on cleavage. In both denatured and nondenatured samples, this epitope can be detected by a nanobody in a highly sensitive and specific manner only upon TNF shedding. As such, C-tag TNF can successfully be used for the detection of TNF cleavage in flow cytometry and live-cell imaging applications. We furthermore demonstrate its applicability in a forward genetic screen geared toward the identification of genetic regulators of TNF maturation. In summary, the C-tag TNF reporter can be employed to gain novel insights into the complex regulation of ADAM-dependent TNF shedding.




met

The cation diffusion facilitator protein MamM's cytoplasmic domain exhibits metal-type dependent binding modes and discriminates against Mn2+ [Molecular Biophysics]

Cation diffusion facilitator (CDF) proteins are a conserved family of divalent transition metal cation transporters. CDF proteins are usually composed of two domains: the transmembrane domain, in which the metal cations are transported through, and a regulatory cytoplasmic C-terminal domain (CTD). Each CDF protein transports either one specific metal or multiple metals from the cytoplasm, and it is not known whether the CTD takes an active regulatory role in metal recognition and discrimination during cation transport. Here, the model CDF protein MamM, an iron transporter from magnetotactic bacteria, was used to probe the role of the CTD in metal recognition and selectivity. Using a combination of biophysical and structural approaches, the binding of different metals to MamM CTD was characterized. Results reveal that different metals bind distinctively to MamM CTD in terms of their binding sites, thermodynamics, and binding-dependent conformations, both in crystal form and in solution, which suggests a varying level of functional discrimination between CDF domains. Furthermore, these results provide the first direct evidence that CDF CTDs play a role in metal selectivity. We demonstrate that MamM's CTD can discriminate against Mn2+, supporting its postulated role in preventing magnetite formation poisoning in magnetotactic bacteria via Mn2+ incorporation.




met

Determinants of replication protein A subunit interactions revealed using a phosphomimetic peptide [Molecular Biophysics]

Replication protein A (RPA) is a eukaryotic ssDNA-binding protein and contains three subunits: RPA70, RPA32, and RPA14. Phosphorylation of the N-terminal region of the RPA32 subunit plays an essential role in DNA metabolism in processes such as replication and damage response. Phosphorylated RPA32 (pRPA32) binds to RPA70 and possibly regulates the transient RPA70-Bloom syndrome helicase (BLM) interaction to inhibit DNA resection. However, the structural details and determinants of the phosphorylated RPA32–RPA70 interaction are still unknown. In this study, we provide molecular details of the interaction between RPA70 and a mimic of phosphorylated RPA32 (pmRPA32) using fluorescence polarization and NMR analysis. We show that the N-terminal domain of RPA70 (RPA70N) specifically participates in pmRPA32 binding, whereas the unphosphorylated RPA32 does not bind to RPA70N. Our NMR data revealed that RPA70N binds pmRPA32 using a basic cleft region. We also show that at least 6 negatively charged residues of pmRPA32 are required for RPA70N binding. By introducing alanine mutations into hydrophobic positions of pmRPA32, we found potential points of contact between RPA70N and the N-terminal half of pmRPA32. We used this information to guide docking simulations that suggest the orientation of pmRPA32 in complex with RPA70N. Our study demonstrates detailed features of the domain-domain interaction between RPA70 and RPA32 upon phosphorylation. This result provides insight into how phosphorylation tunes transient bindings between RPA and its partners in DNA resection.




met

A highly potent CD73 biparatopic antibody blocks organization of the enzyme active site through dual mechanisms [Methods and Resources]

The dimeric ectonucleotidase CD73 catalyzes the hydrolysis of AMP at the cell surface to form adenosine, a potent suppressor of the immune response. Blocking CD73 activity in the tumor microenvironment can have a beneficial effect on tumor eradication and is a promising approach for cancer therapy. Biparatopic antibodies binding different regions of CD73 may be a means to antagonize its enzymatic activity. A panel of biparatopic antibodies representing the pairwise combination of 11 parental monoclonal antibodies against CD73 was generated by Fab-arm exchange. Nine variants vastly exceeded the potency of their parental antibodies with ≥90% inhibition of activity and subnanomolar EC50 values. Pairing the Fabs of parents with nonoverlapping epitopes was both sufficient and necessary whereas monovalent antibodies were poor inhibitors. Some parental antibodies yielded potent biparatopics with multiple partners, one of which (TB19) producing the most potent. The structure of the TB19 Fab with CD73 reveals that it blocks alignment of the N- and C-terminal CD73 domains necessary for catalysis. A separate structure of CD73 with a Fab (TB38) which complements TB19 in a particularly potent biparatopic shows its binding to a nonoverlapping site on the CD73 N-terminal domain. Structural modeling demonstrates a TB19/TB38 biparatopic antibody would be unable to bind the CD73 dimer in a bivalent manner, implicating crosslinking of separate CD73 dimers in its mechanism of action. This ability of a biparatopic antibody to both crosslink CD73 dimers and fix them in an inactive conformation thus represents a highly effective mechanism for the inhibition of CD73 activity.




met

Inhibition of mitochondrial oxidative metabolism attenuates EMCV replication and protects {beta}-cells from virally mediated lysis [Immunology]

Viral infection is one environmental factor that may contribute to the initiation of pancreatic β-cell destruction during the development of autoimmune diabetes. Picornaviruses, such as encephalomyocarditis virus (EMCV), induce a pro-inflammatory response in islets leading to local production of cytokines, such as IL-1, by resident islet leukocytes. Furthermore, IL-1 is known to stimulate β-cell expression of iNOS and production of the free radical nitric oxide. The purpose of this study was to determine whether nitric oxide contributes to the β-cell response to viral infection. We show that nitric oxide protects β-cells against virally mediated lysis by limiting EMCV replication. This protection requires low micromolar, or iNOS-derived, levels of nitric oxide. At these concentrations nitric oxide inhibits the Krebs enzyme aconitase and complex IV of the electron transport chain. Like nitric oxide, pharmacological inhibition of mitochondrial oxidative metabolism attenuates EMCV-mediated β-cell lysis by inhibiting viral replication. These findings provide novel evidence that cytokine signaling in β-cells functions to limit viral replication and subsequent β-cell lysis by attenuating mitochondrial oxidative metabolism in a nitric oxide–dependent manner.




met

CDKN2A/p16INK4a suppresses hepatic fatty acid oxidation through the AMPK{alpha}2-SIRT1-PPAR{alpha} signaling pathway [Metabolism]

In addition to their well-known role in the control of cellular proliferation and cancer, cell cycle regulators are increasingly identified as important metabolic modulators. Several GWAS have identified SNPs near CDKN2A, the locus encoding for p16INK4a (p16), associated with elevated risk for cardiovascular diseases and type-2 diabetes development, two pathologies associated with impaired hepatic lipid metabolism. Although p16 was recently shown to control hepatic glucose homeostasis, it is unknown whether p16 also controls hepatic lipid metabolism. Using a combination of in vivo and in vitro approaches, we found that p16 modulates fasting-induced hepatic fatty acid oxidation (FAO) and lipid droplet accumulation. In primary hepatocytes, p16-deficiency was associated with elevated expression of genes involved in fatty acid catabolism. These transcriptional changes led to increased FAO and were associated with enhanced activation of PPARα through a mechanism requiring the catalytic AMPKα2 subunit and SIRT1, two known activators of PPARα. By contrast, p16 overexpression was associated with triglyceride accumulation and increased lipid droplet numbers in vitro, and decreased ketogenesis and hepatic mitochondrial activity in vivo. Finally, gene expression analysis of liver samples from obese patients revealed a negative correlation between CDKN2A expression and PPARA and its target genes. Our findings demonstrate that p16 represses hepatic lipid catabolism during fasting and may thus participate in the preservation of metabolic flexibility.




met

The glucose-sensing transcription factor ChREBP is targeted by proline hydroxylation [Metabolism]

Cellular energy demands are met by uptake and metabolism of nutrients like glucose. The principal transcriptional regulator for adapting glycolytic flux and downstream pathways like de novo lipogenesis to glucose availability in many cell types is carbohydrate response element–binding protein (ChREBP). ChREBP is activated by glucose metabolites and post-translational modifications, inducing nuclear accumulation and regulation of target genes. Here we report that ChREBP is modified by proline hydroxylation at several residues. Proline hydroxylation targets both ectopically expressed ChREBP in cells and endogenous ChREBP in mouse liver. Functionally, we found that specific hydroxylated prolines were dispensable for protein stability but required for the adequate activation of ChREBP upon exposure to high glucose. Accordingly, ChREBP target gene expression was rescued by re-expressing WT but not ChREBP that lacks hydroxylated prolines in ChREBP-deleted hepatocytes. Thus, proline hydroxylation of ChREBP is a novel post-translational modification that may allow for therapeutic interference in metabolic diseases.




met

Methylarginine metabolites are associated with attenuated muscle protein synthesis in cancer-associated muscle wasting [Protein Synthesis and Degradation]

Cancer cachexia is characterized by reductions in peripheral lean muscle mass. Prior studies have primarily focused on increased protein breakdown as the driver of cancer-associated muscle wasting. Therapeutic interventions targeting catabolic pathways have, however, largely failed to preserve muscle mass in cachexia, suggesting that other mechanisms might be involved. In pursuit of novel pathways, we used untargeted metabolomics to search for metabolite signatures that may be linked with muscle atrophy. We injected 7-week–old C57/BL6 mice with LLC1 tumor cells or vehicle. After 21 days, tumor-bearing mice exhibited reduced body and muscle mass and impaired grip strength compared with controls, which was accompanied by lower synthesis rates of mixed muscle protein and the myofibrillar and sarcoplasmic muscle fractions. Reductions in protein synthesis were accompanied by mitochondrial enlargement and reduced coupling efficiency in tumor-bearing mice. To generate mechanistic insights into impaired protein synthesis, we performed untargeted metabolomic analyses of plasma and muscle and found increased concentrations of two methylarginines, asymmetric dimethylarginine (ADMA) and NG-monomethyl-l-arginine, in tumor-bearing mice compared with control mice. Compared with healthy controls, human cancer patients were also found to have higher levels of ADMA in the skeletal muscle. Treatment of C2C12 myotubes with ADMA impaired protein synthesis and reduced mitochondrial protein quality. These results suggest that increased levels of ADMA and mitochondrial changes may contribute to impaired muscle protein synthesis in cancer cachexia and could point to novel therapeutic targets by which to mitigate cancer cachexia.




met

Ascertaining the biochemical function of an essential pectin methylesterase in the gut microbe Bacteroides thetaiotaomicron [Metabolism]

Pectins are a major dietary nutrient source for the human gut microbiota. The prominent gut microbe Bacteroides thetaiotaomicron was recently shown to encode the founding member (BT1017) of a new family of pectin methylesterases essential for the metabolism of the complex pectin rhamnogalacturonan-II (RG-II). However, biochemical and structural knowledge of this family is lacking. Here, we showed that BT1017 is critical for the metabolism of an RG-II–derived oligosaccharide ΔBT1017oligoB generated by a BT1017 deletion mutant (ΔBT1017) during growth on carbohydrate extract from apple juice. Structural analyses of ΔBT1017oligoB using a combination of enzymatic, mass spectrometric, and NMR approaches revealed that it is a bimethylated nonaoligosaccharide (GlcA-β1,4-(2-O-Me-Xyl-α1,3)-Fuc-α1,4-(GalA-β1,3)-Rha-α1,3-Api-β1,2-(Araf-α1,3)-(GalA-α1,4)-GalA) containing components of the RG-II backbone and its side chains. We showed that the catalytic module of BT1017 adopts an α/β-hydrolase fold, consisting of a central twisted 10-stranded β-sheet sandwiched by several α-helices. This constitutes a new fold for pectin methylesterases, which are predominantly right-handed β-helical proteins. Bioinformatic analyses revealed that the family is dominated by sequences from prominent genera of the human gut microbiota, including Bacteroides and Prevotella. Our re-sults not only highlight the critical role played by this family of enzymes in pectin metabolism but also provide new insights into the molecular basis of the adaptation of B. thetaiotaomicron to the human gut.




met

Methylated PP2A stabilizes Gcn4 to enable a methionine-induced anabolic program [Metabolism]

Methionine, through S-adenosylmethionine, activates a multifaceted growth program in which ribosome biogenesis, carbon metabolism, and amino acid and nucleotide biosynthesis are induced. This growth program requires the activity of the Gcn4 transcription factor (called ATF4 in mammals), which facilitates the supply of metabolic precursors that are essential for anabolism. However, how Gcn4 itself is regulated in the presence of methionine is unknown. Here, we discover that Gcn4 protein levels are increased by methionine, despite conditions of high cell growth and translation (in which the roles of Gcn4 are not well-studied). We demonstrate that this mechanism of Gcn4 induction is independent of transcription, as well as the conventional Gcn2/eIF2α-mediated increased translation of Gcn4. Instead, when methionine is abundant, Gcn4 phosphorylation is decreased, which reduces its ubiquitination and therefore degradation. Gcn4 is dephosphorylated by the protein phosphatase 2A (PP2A); our data show that when methionine is abundant, the conserved methyltransferase Ppm1 methylates and alters the activity of the catalytic subunit of PP2A, shifting the balance of Gcn4 toward a dephosphorylated, stable state. The absence of Ppm1 or the loss of the PP2A methylation destabilizes Gcn4 even when methionine is abundant, leading to collapse of the Gcn4-dependent anabolic program. These findings reveal a novel, methionine-dependent signaling and regulatory axis. Here methionine directs the conserved methyltransferase Ppm1 via its target phosphatase PP2A to selectively stabilize Gcn4. Through this, cells conditionally modify a major phosphatase to stabilize a metabolic master regulator and drive anabolism.




met

In crystallo screening for proline analog inhibitors of the proline cycle enzyme PYCR1 [Metabolism]

Pyrroline-5-carboxylate reductase 1 (PYCR1) catalyzes the biosynthetic half-reaction of the proline cycle by reducing Δ1-pyrroline-5-carboxylate (P5C) to proline through the oxidation of NAD(P)H. Many cancers alter their proline metabolism by up-regulating the proline cycle and proline biosynthesis, and knockdowns of PYCR1 lead to decreased cell proliferation. Thus, evidence is growing for PYCR1 as a potential cancer therapy target. Inhibitors of cancer targets are useful as chemical probes for studying cancer mechanisms and starting compounds for drug discovery; however, there is a notable lack of validated inhibitors for PYCR1. To fill this gap, we performed a small-scale focused screen of proline analogs using X-ray crystallography. Five inhibitors of human PYCR1 were discovered: l-tetrahydro-2-furoic acid, cyclopentanecarboxylate, l-thiazolidine-4-carboxylate, l-thiazolidine-2-carboxylate, and N-formyl l-proline (NFLP). The most potent inhibitor was NFLP, which had a competitive (with P5C) inhibition constant of 100 μm. The structure of PYCR1 complexed with NFLP shows that inhibitor binding is accompanied by conformational changes in the active site, including the translation of an α-helix by 1 Å. These changes are unique to NFLP and enable additional hydrogen bonds with the enzyme. NFLP was also shown to phenocopy the PYCR1 knockdown in MCF10A H-RASV12 breast cancer cells by inhibiting de novo proline biosynthesis and impairing spheroidal growth. In summary, we generated the first validated chemical probe of PYCR1 and demonstrated proof-of-concept for screening proline analogs to discover inhibitors of the proline cycle.




met

Serum lipoprotein-derived fatty acids regulate hypoxia-inducible factor [Metabolism]

Oxygen regulates hypoxia-inducible factor (HIF) transcription factors to control cell metabolism, erythrogenesis, and angiogenesis. Whereas much has been elucidated about how oxygen regulates HIF, whether lipids affect HIF activity is un-known. Here, using cultured cells and two animal models, we demonstrate that lipoprotein-derived fatty acids are an independent regulator of HIF. Decreasing extracellular lipid supply inhibited HIF prolyl hydroxylation, leading to accumulation of the HIFα subunit of these heterodimeric transcription factors comparable with hypoxia with activation of downstream target genes. The addition of fatty acids to culture medium suppressed this signal, which required an intact mitochondrial respiratory chain. Mechanistically, fatty acids and oxygen are distinct signals integrated to control HIF activity. Finally, we observed lipid signaling to HIF and changes in target gene expression in developing zebrafish and adult mice, and this pathway operates in cancer cells from a range of tissues. This study identifies fatty acids as a physiological modulator of HIF, defining a mechanism for lipoprotein regulation that functions in parallel to oxygen.




met

The bacterial cell division protein fragment EFtsN binds to and activates the major peptidoglycan synthase PBP1b [Metabolism]

Peptidoglycan (PG) is an essential constituent of the bacterial cell wall. During cell division, the machinery responsible for PG synthesis localizes mid-cell, at the septum, under the control of a multiprotein complex called the divisome. In Escherichia coli, septal PG synthesis and cell constriction rely on the accumulation of FtsN at the division site. Interestingly, a short sequence of FtsN (Leu75–Gln93, known as EFtsN) was shown to be essential and sufficient for its functioning in vivo, but what exactly this sequence is doing remained unknown. Here, we show that EFtsN binds specifically to the major PG synthase PBP1b and is sufficient to stimulate its biosynthetic glycosyltransferase (GTase) activity. We also report the crystal structure of PBP1b in complex with EFtsN, which demonstrates that EFtsN binds at the junction between the GTase and UB2H domains of PBP1b. Interestingly, mutations to two residues (R141A/R397A) within the EFtsN-binding pocket reduced the activation of PBP1b by FtsN but not by the lipoprotein LpoB. This mutant was unable to rescue the ΔponB-ponAts strain, which lacks PBP1b and has a thermosensitive PBP1a, at nonpermissive temperature and induced a mild cell-chaining phenotype and cell lysis. Altogether, the results show that EFtsN interacts with PBP1b and that this interaction plays a role in the activation of its GTase activity by FtsN, which may contribute to the overall septal PG synthesis and regulation during cell division.




met

Inhibition of oxidative metabolism by nitric oxide restricts EMCV replication selectively in pancreatic beta-cells [Enzymology]

Environmental factors, such as viral infection, are proposed to play a role in the initiation of autoimmune diabetes. In response to encephalomyocarditis virus (EMCV) infection, resident islet macrophages release the pro-inflammatory cytokine IL-1β, to levels that are sufficient to stimulate inducible nitric oxide synthase (iNOS) expression and production of micromolar levels of the free radical nitric oxide in neighboring β-cells. We have recently shown that nitric oxide inhibits EMCV replication and EMCV-mediated β-cell lysis and that this protection is associated with an inhibition of mitochondrial oxidative metabolism. Here we show that the protective actions of nitric oxide against EMCV infection are selective for β-cells and associated with the metabolic coupling of glycolysis and mitochondrial oxidation that is necessary for insulin secretion. Inhibitors of mitochondrial respiration attenuate EMCV replication in β-cells, and this inhibition is associated with a decrease in ATP levels. In mouse embryonic fibroblasts (MEFs), inhibition of mitochondrial metabolism does not modify EMCV replication or decrease ATP levels. Like most cell types, MEFs have the capacity to uncouple the glycolytic utilization of glucose from mitochondrial respiration, allowing for the maintenance of ATP levels under conditions of impaired mitochondrial respiration. It is only when MEFs are forced to use mitochondrial oxidative metabolism for ATP generation that mitochondrial inhibitors attenuate viral replication. In a β-cell selective manner, these findings indicate that nitric oxide targets the same metabolic pathways necessary for glucose stimulated insulin secretion for protection from viral lysis.




met

Coronavirus infection and PARP expression dysregulate the NAD metabolome: An actionable component of innate immunity [Molecular Bases of Disease]

Poly(ADP-ribose) polymerase (PARP) superfamily members covalently link either a single ADP-ribose (ADPR) or a chain of ADPR units to proteins using NAD as the source of ADPR. Although the well-known poly(ADP-ribosylating) (PARylating) PARPs primarily function in the DNA damage response, many noncanonical mono(ADP-ribosylating) (MARylating) PARPs are associated with cellular antiviral responses. We recently demonstrated robust up-regulation of several PARPs following infection with murine hepatitis virus (MHV), a model coronavirus. Here we show that SARS-CoV-2 infection strikingly up-regulates MARylating PARPs and induces the expression of genes encoding enzymes for salvage NAD synthesis from nicotinamide (NAM) and nicotinamide riboside (NR), while down-regulating other NAD biosynthetic pathways. We show that overexpression of PARP10 is sufficient to depress cellular NAD and that the activities of the transcriptionally induced enzymes PARP7, PARP10, PARP12 and PARP14 are limited by cellular NAD and can be enhanced by pharmacological activation of NAD synthesis. We further demonstrate that infection with MHV induces a severe attack on host cell NAD+ and NADP+. Finally, we show that NAMPT activation, NAM, and NR dramatically decrease the replication of an MHV that is sensitive to PARP activity. These data suggest that the antiviral activities of noncanonical PARP isozyme activities are limited by the availability of NAD and that nutritional and pharmacological interventions to enhance NAD levels may boost innate immunity to coronaviruses.




met

Will Africans’ calls for better democracy be met?

Will Africans’ calls for better democracy be met? The World Today mhiggins.drupal 29 July 2022

Voters want the continent’s ageing leaders to step aside to usher in a new age of political engagement and robust democracy, say the experts of Afrobarometer.

Across Africa, recent years have been marked by both encouraging democratic highs and troubling anti-democratic lows. Notable advances from last year include the Gambia’s successful presidential election, a ruling-party transition in Zambia and the first democratic transfer of power in Niger. In the lead up to this, add Malawi’s retake of its flawed presidential election in 2020 and an earlier succession of oustings of long-serving autocrats in Sudan, Zimbabwe and the Gambia. 

Contrast these gains, though, with setbacks elsewhere, including increasing restrictions on opposition parties in Benin, Senegal and Tanzania; the use of violence and intimidation during elections in Côte d’Ivoire and Uganda; and military coups, with the latest in Burkina Faso this year and last year in Chad, Mali, Sudan and Guinea.


These contradictory developments join dire warnings from experts that democracy is losing ground on the continent. But what can we learn about the state of democracy on the continent from Africans themselves?

Afrobarometer, a pan-African, non-partisan research network, has been surveying people about their views on democracy, governance and quality of life for more than 20 years. After interviewing nearly 50,000 citizens across 34 countries during Afrobarometer Round 8, which spans 2019-2021, we find that despite the efforts of some leaders to undermine democratic norms, Africans remain committed to democracy and democratic institutions.

They believe that the military should stay out of politics, that political parties should freely compete for power, that elections are an imperfect but essential tool for choosing their leaders, and that it is time for the old men who cling to power to step aside.

But their political reality falls short of these expectations. The perception of widespread and worsening corruption is particularly corrosive, leaving people increasingly dissatisfied with political systems that are yet to deliver on their aspirations to live in societies that are democratically and accountably governed. And although citizens find myriad ways to voice their concerns, they feel that their governments are not listening.

Simply put, Africans want more democratic and accountable governance than they think they are getting.

Africans’ democratic aspirations

Over the past decade, democracy watchers have been alarmed by declining trends in Africa. Concerns have been exacerbated in the past two years as some governments have taken advantage of the Covid pandemic to limit freedoms, restrict fair campaigning or postpone elections. Activists fear that supposedly temporary rollbacks in hard-won governance reforms could become permanent.

But for the most part, African citizens remain committed to democracy and democratic institutions. Across 30 countries that Afrobarometer has surveyed consistently since Round 5 (2011–2013), most indicators are strong and quite steady.


For example, seven in 10 Africans say that ‘democracy is preferable to any other kind of government’. While this is down modestly from 73 per cent a decade ago, more specific indicators seem to affirm popular commitment to democracy. Large and steady majorities consistently reject authoritarian alternatives, including one-person or ‘strongman’ rule (82 per cent), one-party rule (77 per cent) and military rule (75 per cent), which is clearly rejected even in many of the countries rocked by recent military coups.

Africans also express strong support for a limit to presidential terms, a feature of democratic governance that researchers and activists argue nurtures political participation, demonstrates that change via the ballot box is possible, and reduces the risk of personality cults, authoritarianism, corruption and coups. Across 34 countries, an average of 76 per cent favour limiting their presidents to two terms, including a majority (54 per cent) who ‘strongly’ support this rule. Term limits enjoy majority support in every surveyed country. 

The public’s democratic commitment is undergirded by strong and in some cases growing support for core democratic institutions. Support for multiparty competition and parliamentary oversight of leaders remains steady, while expectations that governments should be accountable to the courts have increased significantly over the past decade.

In addition, growing numbers of people say it is more important to have a government that is accountable to the people rather than one that just ‘gets things done’, an especially strong indicator of deepening commitment to democratic norms among citizens. 

Trouble at the polling booth

Elections remain a central, though controversial, institution of democracy for Africans. They have served as the foundation for real change, as in Zambia last year. But in other cases, such as Uganda’s January 2021 poll, they have been marred by violence and human rights abuses, as well as the weaponization of Covid to justify restrictions on campaigning.

The public is also sceptical about the capacity of elections to bring about real change: fully 50 per cent say they do not think elections are effective in enabling voters ‘to remove from office leaders who do not do what the people want’.

At the same time, large majorities report positively on their country’s election environment. Asked about their most recent election, at least eight in 10 say they did not observe intimidation (87 per cent) or interference (81 per cent) by security forces and did not fear violence (80 per cent).

We must keep in mind that these encouraging averages can obscure deep problems in some countries. For example, while only 3 per cent of Namibians say votes are ‘often’ not counted fairly, between a quarter and one-third cite inaccurate counts as a frequent problem in Zimbabwe, Sudan and Gabon. 


In addition, confidence in the fairness of the media environment is drastically lower, on average just 36 per cent.

But perhaps most importantly, almost nine in 10 Africans (87 per cent) say they are free to vote as they choose, including sizeable majorities in every surveyed country. And a solid majority of 63 per cent rate their most recent election as completely or mostly free and fair. 

All of this may help to explain still-strong support for competitive elections as the best system for selecting leaders. A robust three-quarters confirm their commitment to elections, though this has fallen slightly over the past decade, probably reflecting disillusionment with electoral processes that are too often torn by violence and produce contested results. 

A growing number of people may also be recognizing that elections, especially poor-quality ones, are not enough to guarantee democracy and better governance, and that a healthy democracy must include such other features as government accountability, respect for the rule of law, responsiveness and citizen participation.

The ‘democratic disappointment’ gap

To what extent does political reality align with Africans’ democratic aspirations? Our findings suggest that it is falling well short of expectations.

While a slim majority has steadily reported that their country is a ‘full democracy’ or one ‘with minor problems’ over the past decade, satisfaction, however, has dropped to 43 per cent in that time. 

What explains this growing dissatisfaction? Other indicators of democratic supply offer some clues. While ratings of election quality have held steady, favourable public assessments of presidential accountability to parliament and to the courts have both declined.

The rising scourge of corruption

But one of the most significant driving factors may be burgeoning corruption, a trend that appears to parallel declining democratic satisfaction. On average across 34 countries, around six in 10 say both that corruption in their country increased over the past year, and that their government is doing a poor job of controlling it.

These perceptions matter. Over time, when perceptions of corruption rise or fall, levels of dissatisfaction with democracy tend to follow suit. 

In South Africa, dissatisfaction with democracy grew steadily alongside scandals involving President Jacob Zuma, and has continued to rise under his successor, Cyril Ramaphosa, whose office has been tainted by ‘Farmgate’ and a major Covid-relief scandal. The ‘Fishrot’ scandal in Namibia has had similar consequences.

Are governments listening?

African citizens are raising their voices, calling on their governments to fulfil their democratic aspirations. Since April 2017, the Carnegie Endowment for International Peace has recorded more than 70 episodes in 35 African countries of protests focused on issues ranging from demands for democracy in eSwatini to resisting police brutality, presidential third-term attempts and Covid restrictions. 

Citizen participation and government responsiveness are cornerstones of democracy. But are governments listening?

Voting is the most obvious and popular way for citizens to express themselves, and Africans take advantage of this opportunity. Two-thirds said they voted in their most recent national election. But elections occur only occasionally, and they force individuals to compress a wide array of views into very few choices. How do Africans find their voice during the long intervals between elections?

Many invest in personal efforts to act as agents of change. In fact, nearly half say they joined with others to raise an issue at least once in the past year, and a third contacted a political leader. A quarter report they acted with others to request government action. Less common but still important modes of engagement include asking for help from or lodging a complaint with government, contacting the media, and joining a demonstration.


These robust levels of citizen engagement suggest that people feel they can make a difference. Unfortunately, decision-makers aren’t always receptive or responsive to citizen voices. Less than a quarter of people think local government officials listen to them – and even fewer think their members of parliament do. 

What is more troubling is that fully two-thirds say they are at risk of retaliation or some form of negative consequences if they take action by reporting incidents of corruption. 

Lack of government responsiveness and respect for popular voices may have direct implications for both citizen engagement and citizen satisfaction. For example, we find that people are more likely to contact leaders or take other actions to solve problems if they believe that government officials respect and listen to them; that they will get a response if they raise an issue; and if they do not need to fear retaliation. 

Similarly, when we compare country averages for government responsiveness to the percentage of citizens who are satisfied with democracy, we again find positive associations. 

When governments are responsive, citizens are more likely to engage in addressing community needs and to be satisfied with their political system and optimistic about the future. Respectful and responsive governance has the potential to spur citizen action to solve critical development challenges – and may be the cure for what ails democracy.




met

The Translation of Dosimetry into Clinical Practice: What It Takes to Make Dosimetry a Mandatory Part of Clinical Practice




met

Comparison of Posttherapy 4- and 24-Hour [177Lu]Lu-PSMA SPECT/CT and Pretherapy PSMA PET/CT in Assessment of Disease in Men with Metastatic Castration-Resistant Prostate Cancer

Visual Abstract




met

Outcomes for Patients with Metastatic Castration-Resistant Prostate Cancer and Liver Metastasis Receiving [177Lu]Lu-PSMA-617

Visual Abstract




met

Clinical, Pathologic, and Imaging Variables Associated with Prostate Cancer Detection by PSMA PET/CT and Multiparametric MRI

Visual Abstract




met

Kinetic Analysis and Metabolism of Poly(Adenosine Diphosphate-Ribose) Polymerase-1-Targeted 18F-Fluorthanatrace PET in Breast Cancer

Visual Abstract




met

Feasibility, Tolerability, and Preliminary Clinical Response of Fractionated Radiopharmaceutical Therapy with 213Bi-FAPI-46: Pilot Experience in Patients with End-Stage, Progressive Metastatic Tumors

Visual Abstract




met

SPECT/CT in Early Response Assessment of Patients with Metastatic Castration-Resistant Prostate Cancer Receiving 177Lu-PSMA-617

Visual Abstract




met

International Metabolic Prognostic Index Is Superior to Other Metabolic Tumor Volume-Based Prognostication Methods in a Real-Life Cohort of Diffuse Large B-Cell Lymphoma

Visual Abstract




met

Global lysine acetylation and 2-hydroxyisobutyrylation reveal the metabolism conversion mechanism in Giardia lamblia

Wenhe Zhu
Dec 29, 2020; 0:RA120.002353v1-mcp.RA120.002353
Research




met

Separation and identification of permethylated glycan isomers by reversed phase nanoLC-NSI-MS

Simone Kurz
Dec 29, 2020; 0:RA120.002266v1-mcp.RA120.002266
Research




met

Stoichiometry of Nucleotide Binding to Proteasome AAA+ ATPase Hexamer Established by Native Mass Spectrometry

Yadong Yu
Dec 1, 2020; 19:1997-2014
Research




met

Multi-sample mass spectrometry-based approach for discovering injury markers in chronic kidney disease

Ji Eun Kim
Dec 20, 2020; 0:RA120.002159v1-mcp.RA120.002159
Research




met

Kinome Profiling of Primary Endometrial Tumors Using Multiplexed Inhibitor Beads and Mass Spectrometry Identifies SRPK1 as Candidate Therapeutic Target

Alison M. Kurimchak
Dec 1, 2020; 19:2068-2089
Research




met

Identification of Microorganisms by Liquid Chromatography-Mass Spectrometry (LC-MS1) and in Silico Peptide Mass Libraries

Peter Lasch
Dec 1, 2020; 19:2125-2138
Technological Innovation and Resources




met

Imaging Mass Spectrometry and Lectin Analysis of N-linked Glycans in Carbohydrate Antigen Defined Pancreatic Cancer Tissues

Colin T. McDowell
Nov 24, 2020; 0:RA120.002256v1-mcp.RA120.002256
Research




met

Accelerating the field of epigenetic histone modification through mass spectrometry-based approaches

Congcong Lu
Nov 17, 2020; 0:R120.002257v1-mcp.R120.002257
Review




met

AggreCount: an unbiased image analysis tool for identifying and quantifying cellular aggregates in a spatially defined manner [Methods and Resources]

Protein quality control is maintained by a number of integrated cellular pathways that monitor the folding and functionality of the cellular proteome. Defects in these pathways lead to the accumulation of misfolded or faulty proteins that may become insoluble and aggregate over time. Protein aggregates significantly contribute to the development of a number of human diseases such as amyotrophic lateral sclerosis, Huntington's disease, and Alzheimer's disease. In vitro, imaging-based, cellular studies have defined key biomolecular components that recognize and clear aggregates; however, no unifying method is available to quantify cellular aggregates, limiting our ability to reproducibly and accurately quantify these structures. Here we describe an ImageJ macro called AggreCount to identify and measure protein aggregates in cells. AggreCount is designed to be intuitive, easy to use, and customizable for different types of aggregates observed in cells. Minimal experience in coding is required to utilize the script. Based on a user-defined image, AggreCount will report a number of metrics: (i) total number of cellular aggregates, (ii) percentage of cells with aggregates, (iii) aggregates per cell, (iv) area of aggregates, and (v) localization of aggregates (cytosol, perinuclear, or nuclear). A data table of aggregate information on a per cell basis, as well as a summary table, is provided for further data analysis. We demonstrate the versatility of AggreCount by analyzing a number of different cellular aggregates including aggresomes, stress granules, and inclusion bodies caused by huntingtin polyglutamine expansion.




met

Visualizing, quantifying, and manipulating mitochondrial DNA in vivo [Methods and Resources]

Mitochondrial DNA (mtDNA) encodes proteins and RNAs that support the functions of mitochondria and thereby numerous physiological processes. Mutations of mtDNA can cause mitochondrial diseases and are implicated in aging. The mtDNA within cells is organized into nucleoids within the mitochondrial matrix, but how mtDNA nucleoids are formed and regulated within cells remains incompletely resolved. Visualization of mtDNA within cells is a powerful means by which mechanistic insight can be gained. Manipulation of the amount and sequence of mtDNA within cells is important experimentally and for developing therapeutic interventions to treat mitochondrial disease. This review details recent developments and opportunities for improvements in the experimental tools and techniques that can be used to visualize, quantify, and manipulate the properties of mtDNA within cells.




met

Therapeutic targeting of pancreatic cancer stem cells by dexamethasone modulation of the MKP-1-JNK axis [Cell Biology]

Postoperative recurrence from microscopic residual disease must be prevented to cure intractable cancers, including pancreatic cancer. Key to this goal is the elimination of cancer stem cells (CSCs) endowed with tumor-initiating capacity and drug resistance. However, current therapeutic strategies capable of accomplishing this are insufficient. Using in vitro models of CSCs and in vivo models of tumor initiation in which CSCs give rise to xenograft tumors, we show that dexamethasone induces expression of MKP-1, a MAPK phosphatase, via glucocorticoid receptor activation, thereby inactivating JNK, which is required for self-renewal and tumor initiation by pancreatic CSCs as well as for their expression of survivin, an anti-apoptotic protein implicated in multidrug resistance. We also demonstrate that systemic administration of clinically relevant doses of dexamethasone together with gemcitabine prevents tumor formation by CSCs in a pancreatic cancer xenograft model. Our study thus provides preclinical evidence for the efficacy of dexamethasone as an adjuvant therapy to prevent postoperative recurrence in patients with pancreatic cancer.




met

NSun2 promotes cell migration through methylating autotaxin mRNA [Cell Biology]

NSun2 is an RNA methyltransferase introducing 5-methylcytosine into tRNAs, mRNAs, and noncoding RNAs, thereby influencing the levels or function of these RNAs. Autotaxin (ATX) is a secreted glycoprotein and is recognized as a key factor in converting lysophosphatidylcholine into lysophosphatidic acid (LPA). The ATX-LPA axis exerts multiple biological effects in cell survival, migration, proliferation, and differentiation. Here, we show that NSun2 is involved in the regulation of cell migration through methylating ATX mRNA. In the human glioma cell line U87, knockdown of NSun2 decreased ATX protein levels, whereas overexpression of NSun2 elevated ATX protein levels. However, neither overexpression nor knockdown of NSun2 altered ATX mRNA levels. Further studies revealed that NSun2 methylated the 3'-UTR of ATX mRNA at cytosine 2756 in vitro and in vivo. Methylation by NSun2 enhanced ATX mRNA translation. In addition, NSun2-mediated 5-methylcytosine methylation promoted the export of ATX mRNA from nucleus to cytoplasm in an ALYREF-dependent manner. Knockdown of NSun2 suppressed the migration of U87 cells, which was rescued by the addition of LPA. In summary, we identify NSun2-mediated methylation of ATX mRNA as a novel mechanism in the regulation of ATX.




met

When Taxol met tubulin [Classics]

When the drug Taxol® was approved by the United States Food and Drug Administration in 1993, it was a game changer for cancer patients. The compound, which arrests cell division by preventing the disassembly of tubulin microfibers, has been used over the past three decades to treat millions of cases of breast, lung, and ovarian cancer as well as Kaposi's sarcoma. In 1990, Bristol Myers Squibb applied to trademark the name Taxol, which was approved in 1992, changing the drug's generic name to paclitaxel.At the time that Taxol was entering clinical trials in the late 1970s, it also proved to be a valuable tool for cytoskeletal research. Tubulin had been discovered in the late 1960s, but it was still unclear how the soluble protein dimer polymerized (Fig. 1) to form the long, complex structures of the cytoskeleton.jbc;295/41/13994/F1F1F1Figure 1.Strands of tubulin, a protein in the cell's skeleton, photographed using a high-resolution microscopy technique. Image made by Pakorn Kanchanawong (National University of Singapore) and Clare Waterman (NHLBI, National Institutes of Health).“Back then, people were just discovering the most basic functions of tubulin and how it polymerized, and then they found a drug that affected this,” said Velia Fowler, a cell biologist at the University of Delaware and former Associate Editor at the Journal of Biological Chemistry.The drug and its cytoskeletal activity intersected in the 1981 JBC paper “Taxol-induced polymerization of purified tubulin” (1), the subject of this JBC Classic. In the single-author paper, Nirbhay Kumar, then a postdoctoral fellow at the National...




met

Spatial profiling of gangliosides in mouse brain by mass spectrometry imaging

Douglas A. Andres
Dec 1, 2020; 61:1537-1537
Images in Lipid Research




met

LDL apheresis as an alternate method for plasma LPS purification in healthy volunteers and dyslipidemic and septic patients

Auguste Dargent
Dec 1, 2020; 61:1776-1783
Research Articles




met

Lipid signature of advanced human carotid atherosclerosis assessed by mass spectrometry imaging

Astrid M. Moerman
Dec 23, 2020; 0:jlr.RA120000974v1-jlr.RA120000974
Research Articles




met

Cholesterol transport between red blood cells and lipoproteins contributes to cholesterol metabolism in blood

Ryunosuke Ohkawa
Dec 1, 2020; 61:1577-1588
Research Articles




met

Lipid metabolism dysregulation in diabetic retinopathy

Julia V Busik
Dec 23, 2020; 0:jlr.TR120000981v1-jlr.TR120000981
Thematic Reviews




met

Perilipin 5 S155 phosphorylation by PKA is required for the control of hepatic lipid metabolism and glycemic control

Stacey N Keenan
Dec 17, 2020; 0:jlr.RA120001126v1-jlr.RA120001126
Research Articles




met

Mass spectrometry characterization of light chain fragmentation sites in cardiac AL amyloidosis: insights into the timing of proteolysis [Genomics and Proteomics]

Amyloid fibrils are polymeric structures originating from aggregation of misfolded proteins. In vivo, proteolysis may modulate amyloidogenesis and fibril stability. In light chain (AL) amyloidosis, fragmented light chains (LCs) are abundant components of amyloid deposits; however, site and timing of proteolysis are debated. Identification of the N and C termini of LC fragments is instrumental to understanding involved processes and enzymes. We investigated the N and C terminome of the LC proteoforms in fibrils extracted from the hearts of two AL cardiomyopathy patients, using a proteomic approach based on derivatization of N- and C-terminal residues, followed by mapping of fragmentation sites on the structures of native and fibrillar relevant LCs. We provide the first high-specificity map of proteolytic cleavages in natural AL amyloid. Proteolysis occurs both on the LC variable and constant domains, generating a complex fragmentation pattern. The structural analysis indicates extensive remodeling by multiple proteases, largely taking place on poorly folded regions of the fibril surfaces. This study adds novel important knowledge on amyloid LC processing: although our data do not exclude that proteolysis of native LC dimers may destabilize their structure and favor fibril formation, the data show that LC deposition largely precedes the proteolytic events documentable in mature AL fibrils.




met

Problem Notes for SAS®9 - 66540: SAS Management Console and SAS Data Integration Studio might return the message "table failed to update" when you use the Update Metadata tool

You encounter this issue when the table metadata matches the data source. In this scenario, no metadata update is required.




met

Problem Notes for SAS®9 - 66391: Opening a database table returns a Segmentation Violation when you use the Metadata LIBNAME engine (META)

You might receive a Segmentation Violation when opening a database table in SAS. The SAS Log contains the error and traceback:


met

Problem Notes for SAS®9 - 66401: Using SAS Model Manager to publish a model to SAS Metadata Repository fails and generates an error

When you publish a model to SAS Metadata Repository by using SAS Model Manager, the publishing process fails and the following error is generated: "The model model-name has a function of ';Transformation';, which is not supported for




met

Fatty acid oxidation and photoreceptor metabolic needs [Thematic Reviews]

Photoreceptors have high energy-demands and a high density of mitochondria that produce adenosine triphosphate (ATP) through oxidative phosphorylation (OXPHOS) of fuel substrates. Although glucose is the major fuel for central nervous system (CNS) brain neurons, in photoreceptors (also CNS), most glucose is not metabolized through OXPHOS but is instead metabolized into lactate by aerobic glycolysis. The major fuel sources for photoreceptor mitochondria remained unclear for almost six decades. Similar to other tissues (like heart and skeletal muscle) with high metabolic rates, photoreceptors were recently found to metabolize fatty acids (palmitate) through OXPHOS. Disruption of lipid entry into photoreceptors leads to extracellular lipid accumulation, suppressed glucose transporter expression, and a duel lipid/glucose fuel shortage. Modulation of lipid metabolism helps restore photoreceptor function. However, further elucidation of the types of lipids used as retinal energy sources, the metabolic interaction with other fuel pathways, as well as the crosstalk among retinal cells to provide energy to photoreceptors is not yet known. In this review, we will focus on the current understanding of photoreceptor energy demand and sources, and potential future investigations of photoreceptor metabolism.




met

Lipid and Metabolic Syndrome Traits in Coronary Artery Disease: A Mendelian Randomization Study [Patient-Oriented and Epidemiological Research]

Mendelian randomization (MR) of lipid traits in coronary artery disease (CAD) has provided evidence for causal associations of low-density lipoprotein cholesterol (LDL-C) and triglycerides (TG) in CAD, but many lipid trait genetic variants have pleiotropic effects on other cardiovascular risk factors that may bias MR associations. The goal of this study was to evaluate pleiotropic effects of lipid trait genetic variants and to account for these effects in MR of lipid traits in CAD. We performed multivariable MR using inverse variance-weighted (IVW) and MR-Egger methods in large (n ≥ 300,000) GWAS datasets. We found that 30% of lipid trait genetic variants have effects on metabolic syndrome traits, including body mass index (BMI), type 2 diabetes (T2D), and systolic blood pressure (SBP). Nonetheless, in multivariable MR analysis, LDL-C, high-density lipoprotein cholesterol (HDL-C), TG, BMI, T2D, and SBP are independently associated with CAD, and each of these associations is robust to adjustment for directional pleiotropy. MR at loci linked to direct effects on HDL-C and TG suggests locus- and mechanism-specific causal effects of these factors on CAD.