wit

Performance of digital PET compared to high-resolution conventional PET in patients with cancer

Recently introduced PET systems using silicon photomultipliers with digital readout (dPET) have an improved timing and spatial resolution, aiming at a better image quality, over conventional PET (cPET) systems. We prospectively evaluated the performance of a dPET system in patients with cancer, as compared to high-resolution (HR) cPET imaging. Methods: After a single FDG-injection, 66 patients underwent dPET (Vereos, Philips Healthcare) and cPET (Ingenuity TF, Philips Healthcare) imaging in a randomized order. We used HR-reconstructions (2x2x2 mm3 voxels) for both scanners and determined SUVmax, SUVmean, lesion-to-background ratio (LBR), metabolic tumor volume (MTV) and lesion diameter in up to 5 FDG-positive lesions per patient. Furthermore, we counted the number of visible and measurable lesions on each PET scan. Two nuclear medicine specialists blindly determined the Tumor Node Metastasis (TNM) score from both image sets in 30 patients referred for initial staging. For all 66 patients, these specialists separately and blindly evaluated image quality (4-point scale) and determined the scan preference. Results: We included 238 lesions that were visible and measurable on both PET scans. We found 37 additional lesions on dPET in 27 patients (41%), which were unmeasurable (n = 14) or invisible (n = 23) on cPET. SUVmean, SUVmax, LBR and MTV on cPET were 5.2±3.9 (mean±SD), 6.9±5.6, 5.0±3.6 and 2991±13251 mm3, respectively. On dPET SUVmean, SUVmax and LBR increased 24%, 23% and 27%, respectively (p<0.001) while MTV decreased 13% (p<0.001) compared to cPET. Visual analysis showed TNM upstaging with dPET in 13% of the patients (4/30). dPET images also scored higher in image quality (P = 0.003) and were visually preferred in the majority of cases (65%). Conclusion: Digital PET improved the detection of small lesions, upstaged the disease and images were visually preferred as compared to high-resolution conventional PET. More studies are necessary to confirm the superior diagnostic performance of digital PET.




wit

Quantification of PD-L1 expression with [18F]BMS-986192 PET/CT in patients with advanced stage non-small-cell lung cancer

The aim of this work was to quantify the uptake of [18F]BMS-986192, a PD-L1 adnectin PET tracer, in patients with non-small-cell lung cancer (NSCLC). To this end, plasma input kinetic modeling of dynamic tumor uptake data with online arterial blood sampling was performed. In addition, the accuracy of simplified uptake metrics such as standardized uptake value (SUV) was investigated. Methods: Data from a study with [18F]BMS-986192 in patients with advanced stage NSCLC eligible for nivolumab treatment were used if a dynamic scan was available and lesions were present in the field of view of the dynamic scan. After injection of [18F]BMS-986192, a 60-minutes dynamic PET-CT scan was started, followed by a 30-min whole body PET-CT scan. Continuous arterial and discrete arterial and venous blood sampling were performed to determine a plasma input function. Tumor time activity curves were fitted by several plasma input kinetic models. Simplified uptake parameters included tumor to blood ratio as well as several SUV measures. Results: Twenty two tumors in nine patients were analyzed. The arterial plasma input single-tissue reversible compartment model with fitted blood volume fraction seems to be the most preferred model as it best fitted 11 out of 18 tumor time activity curves. The distribution volume VT ranged from 0.4 to 4.8 mL·cm-3. Similar values were obtained with an image derived input function. From the simplified measures, SUV normalized for body weight (SUVBW) at 50 and 67 minutes post injection correlated best with VT, with an R2 > 0.9. Conclusion: A single tissue reversible model can be used for the quantification of tumor uptake of the PD-L1 PET tracer [18F]BMS-986192. SUVBW at 60 minutes post injection, normalized for body weight, is an accurate simplified parameter for uptake assessment of baseline studies. In order to assess its predictive value for response evaluation during PD-(L)1 immune checkpoint inhibition further validation of SUV against VT based on an image derived input function is recommended.




wit

Diagnosis of Hyper-progressive Disease in Patients Treated with Checkpoint Inhibitors using 18F-FDG PET/CT




wit

High Resolution Depth-Encoding PET Detector Module with Prismatoid Light Guide Array

Depth-encoding detectors with single-ended readout provide a practical, cost-effective approach for constructing high resolution and high sensitivity PET scanners. However, the current iteration of such detectors utilizes a uniform glass light guide to achieve depth-encoding, resulting in non-uniform performance throughout the detector array due to suboptimal intercrystal light sharing. We introduce Prism-PET, a single-ended readout PET detector module with a segmented light guide composed of an array of prismatoids that introduces enhanced, deterministic light sharing. Methods: High resolution PET detector modules were fabricated with single-ended readout of polished multicrystal lutetium yttrium orthosilicate (LYSO) scintillator arrays directly coupled 4-to-1 and 9-to-1 to arrays of 3.2 x 3.2 mm2 silicon photomultiplier pixels. Each scintillator array was coupled at the non-readout side to a light guide (one 4-to-1 module with a uniform glass light guide, one 4-to-1 Prism-PET module and one 9-to-1 Prism-PET module) to introduce intercrystal light sharing, which closely mimics the behavior of dual-ended readout with the additional benefit of improved crystal identification. Flood histogram data was acquired using a 3 MBq Na-22 source to characterize crystal identification and energy resolution. Lead collimation was used to acquire data at specific depths to determine depth-of-interaction (DOI) resolution. Results: The flood histogram measurements showed excellent and uniform crystal separation throughout the Prism-PET modules while the uniform glass light guide module had performance degradation at the edges and corners. A DOI resolution of 5.0 mm full width at half maximum (FWHM) and energy resolution of 13% were obtained in the uniform glass light guide module. By comparison, the 4-to-1 coupled Prism-PET module achieved 2.5 mm FWHM DOI resolution and 9% energy resolution. Conclusion: PET scanners based on our Prism-PET modules with segmented prismatoid light guide arrays can achieve high and uniform spatial resolution (9-to-1 coupling with ~ 1 mm crystals), high sensitivity, good energy and timing resolutions (using polished crystals and after applying DOI-correction), and compact size (depth-encoding eliminates parallax error and permits smaller ring-diameter).




wit

64Cu-DOTATATE PET/CT and prediction of overall and progression-free survival in patients with neuroendocrine neoplasms

Overexpression of somatostatin receptors in patients with neuroendocrine neoplasms (NEN) is utilized for both diagnosis and treatment. Receptor density may reflect tumor differentiation and thus be associated with prognosis. Non-invasive visualization and quantification of somatostatin receptor density is possible by somatostatin receptor imaging (SRI) using positron emission tomography (PET). Recently, we introduced 64Cu-DOTATATE for SRI and we hypothesized that uptake of this tracer could be associated with overall (OS) and progression-free survival (PFS). Methods: We evaluated patients with NEN that had a 64Cu-DOTATATE PET/CT SRI performed in two prospective studies. Tracer uptake was determined as the maximal standardized uptake value (SUVmax) for each patient. Kaplan-Meier analysis with log-rank was used to determine the predictive value of 64Cu-DOTATATE SUVmax for OS and PFS. Specificity, sensitivity and accuracy was calculated for prediction of outcome at 24 months after 64Cu-DOTATATE PET/CT. Results: A total of 128 patients with NEN were included and followed for a median of 73 (1-112) months. During follow-up, 112 experienced disease progression and 69 patients died. The optimal cutoff for 64Cu-DOTATATE SUVmax was 43.3 for prediction of PFS with a hazard ratio of 0.56 (95% CI: 0.38-0.84) for patients with SUVmax > 43.3. However, no significant cutoff was found for prediction of OS. In multiple Cox regression adjusted for age, sex, primary tumor site and tumor grade, the SUVmax cutoff hazard ratio was 0.50 (0.32-0.77) for PFS. The accuracy was moderate for predicting PFS (57%) at 24 months after 64Cu-DOTATATE PET/CT. Conclusion: In this first study to report the association of 64Cu-DOTATATE PET/CT and outcome in patients with NEN, tumor somatostatin receptor density visualized with 64Cu-DOTATATE PET/CT was prognostic for PFS but not OS. However, the accuracy of prediction of PFS at 24 months after 64Cu-DOTATATE PET/CT SRI was moderate limiting the value on an individual patient basis.




wit

Early prostate-specific antigen changes and clinical outcome following 177Lu-PSMA radionuclide treatment in patients with metastatic castration-resistant prostate cancer

Background: Prostate-specific antigen (PSA) is widely used to monitor treatment response in patients with metastatic castration-resistant prostate cancer (mCRPC). However, PSA measurements are considered only after 12 wk of treatment. We aimed to evaluate the prognostic value of early PSA changes following 177Lu-labelled prostate specific membrane antigen (LuPSMA) radionuclide treatment in mCRPC patients. Methods: Men who were treated under a compassionate access program with LuPSMA at our institution and had available PSA values at baseline, at 6 wk after treatment initiation were included in this retrospective analysis. Patients were assigned to three groups based on PSA changes: 1) response: ≥30% decline, 2) progression: ≥25% increase and 3) stable: <30% decline and <25% increase. The co-primary endpoints were overall survival and imaging-based progression-free survival. The secondary end points were PSA changes at 12 wk and PSA flare-up. Results: We identified 124 eligible patients with PSA values at 6 wk. A ≥30% decline in PSA at 6 wk was associated with longer overall survival (median 16.7 mo; 95%CI 14.4–19.0) compared with patients with stable PSA (median: 11.8 mo; 95%CI 8.6–15.1; P = 0.007) and progression (median: 6.5 mo; 95%CI 5.2–7.8; p<0.001). Patients with ≥30% decline in PSA at 6 wk also had a reduced risk of imaging-based progression compared with patients with stable PSA (HR: 0.60; 95%CI 0.38–0.94; P = 0.02), while patients with PSA progression had a higher risk of imaging-based progression compared with those showing stable PSA (HR: 3.18; 95%CI 1.95–5.21; p<0.001). The percentage changes of PSA at 6 wk and 12 wk were highly associated (r=0.90; p<0.001). 29 of 31 (94%) patients who experienced early PSA progression at 6 wk achieved biochemical progression at 12 wk. Overall, only 1 of 36 (3%) patients with PSA progression at 6 wk achieved any PSA decline at 12 wk (1% of the entire cohort). Limitations of the study included its retrospective nature and the single center experience. Conclusion: PSA changes at 6 wk after LuPSMA initiation are an early indicator of long-term clinical outcome. Patients progressing by PSA after 6 wk of treatment could benefit from a very early treatment switch decision. PSA flare-up during LuPSMA treatment is very uncommon. Prospective studies are now warranted to validate our findings and potentially inform clinicians earlier on the effectiveness of LuPSMA.




wit

Prognostic Value of 18F-FDG PET/CT in a Large Cohort of 495 Patients with Advanced Metastatic Neuroendocrine Neoplasms (NEN) Treated with Peptide Receptor Radionuclide Therapy (PRRT)

The objective of this retrospective study was to determine the role of 18F-FDG PET/CT in a large cohort of 495 patients with metastatic neuroendocrine neoplasms (NENs) who were treated with peptide receptor radionuclide therapy (PRRT) with a long-term follow-up. Methods: The 495 patients were treated with 177Lu- and/or 90Y- DOTATOC/DOTATATE PRRT between 2/2002 and 7/2018. All subjects received both 68Ga-DOTATOC/TATE/NOC and 18F-FDG PET/CT prior to treatment and were followed 3-189 months. Kaplan-Meier analysis, log-rank test (Mantel-Cox), and Cox regression analysis were performed for overall survival (OS) and progression-free survival (PFS). Results: 199 patients (40.2%) presented with pancreatic NEN, 49 with CUP (cancer of unknown primary), 139 with midgut NEN, whereas the primary tumor was present in the rectum in 20, in the lung in 38, in the stomach in 8 and other locations in 42 patients. FDG-PET/CT was positive in 382 (77.2%) patients and 113 (22.8%) were FDG-negative before PRRT, while 100% were 68Ga-DOTATOC/TATE/NOC positive. For all patients, the median PFS and OS, defined from start of PRRT, were 19.6 mo and 58.7 mo, respectively. Positive FDG predicted shorter PFS (18.5 mo vs 24.1 mo; P = 0.0015) and OS (53.2 mo vs 83.1 mo; P < 0.001) than negative FDG. Amongst the pancreatic NEN, the median OS was 52.8 mo in FDG positive and 114.3 mo in FDG negative subjects (P = 0.0006). For all patients with positive 18F-FDG uptake, and a ratio of the highest SUVmax on 68Ga-SSTR PET to the most 18F-FDG-avid tumor lesions >2, the median OS was 53.0 mo, compared to 43.4 mo in those patients with a ratio <2 (P = 0.030). For patients with no 18F-FDG uptake (complete "mismatch" imaging pattern), the median OS was 108.3 mo vs 76.9 mo for SUVmax >15.0 and ≤15.0 on 68Ga-SSTR PET/CT, respectively. Conclusion: The presence of positive lesions on 18F-FDG PET is an independent prognostic factor in patients with NEN treated with PRRT. Metabolic imaging with 18F-FDG PET/CT compliments the molecular imaging aspect of 68Ga-SSTR PET/CT for the prognosis of survival after PRRT. High SSTR expression combined with negative 18F-FDG PET/CT imaging is associated with the most favorable long-term prognosis.




wit

18F-DCFPyL PET/CT in Patients with Subclinical Recurrence of Prostate Cancer: Effect of Lesion Size, Smooth Filter and Partial Volume Correction on Prostate Cancer Molecular Imaging Standardized Evaluation (PROMISE) criteria

Purpose: To determine the effect of smooth filter and partial volume correction (PVC) method on measured prostate-specific membrane antigen (PSMA) activity in small metastatic lesions and to determine the impact of these changes on the molecular imaging (mi) PSMA scoring. Materials & Methods: Men with biochemical recurrence of prostate cancer with negative CT and bone scintigraphy were referred for 18F-DCFPyL PET/CT. Examinations were performed on one of 2 PET/CT scanners (GE Discovery 610 or Siemens mCT40). All suspected tumor sites were manually contoured on co-registered CT and PET images, and each was assigned a miPSMA score as per the PROMISE criteria. The PVC factors were calculated for every lesion using the anatomical CT and then applied to the unsmoothed PET images. The miPSMA scores, with and without the corrections, were compared, and a simplified "rule of thumb" (RoT) correction factor (CF) was derived for lesions at various sizes (<4mm, 4-7mm, 7-9mm, 9-12mm). This was then applied to the original dataset and miPSMA scores obtained using the RoT CF were compared to those found using the actual corrections. Results: There were 75 men (median age, 69 years; median serum PSA of 3.69 ug/L) with 232 metastatic nodes < 12 mm in diameter (mean lesion volume of 313.5 ± 309.6 mm3). Mean SUVmax before and after correction was 11.0 ± 9.3 and 28.5 ± 22.8, respectively (p<0.00001). The mean CF for lesions <4mm (n = 22), 4-7mm (n = 140), 7-9mm (n = 50), 9-12 mm (n = 20) was 4 (range: 2.5-6.4), 2.8 (range: 1.6-4.9), 2.3 (range: 1.6-3.3) and 1.8 (range 1.4-2.4), respectively. Overall miPSMA scores were concordant between the corrected dataset and RoT in 205/232 lesions (88.4%). Conclusion: There is a significant effect of smooth filter and partial volume correction on measured PSMA activity in small nodal metastases, impacting the miPSMA score.




wit

Benefit of improved performance with state-of-the art digital PET/CT for lesion detection in oncology

Latest digital whole-body PET scanners provide a combination of higher sensitivity and improved spatial and timing resolution. We performed a lesion detectability study on two generations of Siemens Biograph PET/CT scanners, the mCT and Vision, to study the impact of improved physical performance on clinical performance. Our hypothesis is that the improved performance of the Vision will result in improved lesion detectability, allowing shorter imaging times or equivalently, lower injected dose. Methods: Data were acquired with the Society of Nuclear Medicine and Molecular Imaging Clinical Trials Network torso phantom combined with a 20-cm diameter cylindrical phantom. Spherical lesions were emulated by acquiring spheres-in-air data, and combining it with the phantom data to generate combined datasets with embedded lesions of known contrast. Two sphere sizes and uptakes were used: 9.89 mm diameter spheres with 6:1 (lung) and 3:1 (cylinder) and 4.95 mm diameter spheres with 9.6:1 (lung) and 4.5:1 (cylinder) local activity concentration uptakes. Standard image reconstruction was performed: ordinary Poisson ordered subsets expectation maximization algorithm with point spread function and time-of-flight modeling and post-reconstruction smoothing with a 5 mm Gaussian filter. The Vision images were also generated without any post-reconstruction smoothing. Generalized scan statistics methodology was used to estimate the area under the localization receiver operating characteristic curve (ALROC). Results: Higher sensitivity and improved TOF performance of Vision leads to reduced contrast in the background noise nodule distribution. Measured lesion contrast is also higher on the Vision due to its improved spatial resolution. Hence, the ALROC values are noticeably higher for the Vision relative to the mCT. Conclusion: Improved overall performance of the Vision provides a factor of 4-6 reduction in imaging time (or injected dose) over the mCT when using the ALROC metric for lesions >9.89 mm in diameter. Smaller lesions are barely detected in the mCT, leading to even higher ALROC gains with the Vision. Improved spatial resolution of the Vision also leads to a higher measured contrast that is closer to the real uptake, implying improved quantification. Post-reconstruction smoothing, however, reduces this improvement in measured contrast, thereby reducing the ALROC values for small, high uptake lesions.




wit

Semi-automatically quantified tumor volume using Ga-68-PSMA-11-PET as biomarker for survival in patients with advanced prostate cancer

Prostate specific membrane antigen (PSMA) targeting Positron Emission Tomography (PET) imaging is becoming the reference standard for prostate cancer (PC) staging, especially in advanced disease. Yet, the implications of PSMA-PET derived whole-body tumor volume for overall survival are poorly elucidated to date. This might be due to the fact that (semi-) automated quantification of whole-body tumor volume as PSMA-PET biomarker is an unmet clinical challenge. Therefore, a novel semi-automated software is proposed and evaluated by the present study, which enables the semi-automated quantification of PSMA-PET biomarkers such as whole-body tumor volume. Methods: The proposed quantification is implemented as a research prototype (MI Whole Body Analysis Suite, v1.0, Siemens Medical Solutions USA, Inc., Knoxville, TN). PSMA accumulating foci were automatically segmented by a percental threshold (50% of local SUVmax). Neural networks were trained to segment organs in PET-CT acquisitions (training CTs: 8,632, validation CTs: 53). Thereby, PSMA foci within organs of physiologic PSMA uptake were semi-automatically excluded from the analysis. Pretherapeutic PSMA-PET-CTs of 40 consecutive patients treated with 177Lu-PSMA-617 therapy were evaluated in this analysis. The volumetric whole-body tumor volume (PSMATV50), SUVmax, SUVmean and other whole-body imaging biomarkers were calculated for each patient. Semi-automatically derived results were compared with manual readings in a sub-cohort (by one nuclear medicine physician using syngo.MM Oncology software, Siemens Healthineers, Knoxville, TN). Additionally, an inter-observer evaluation of the semi-automated approach was performed in a sub-cohort (by two nuclear medicine physicians). Results: Manually and semi automatically derived PSMA metrics were highly correlated (PSMATV50: R2=1.000; p<0.001; SUVmax: R2=0.988; p<0.001). The inter-observer agreement of the semi-automated workflow was also high (PSMATV50: R2=1.000; p<0.001; ICC=1.000; SUVmax: R2=0.988; p<0.001; ICC=0.997). PSMATV50 [ml] was a significant predictor of overall survival (HR: 1.004; 95%CI: 1.001-1.006, P = 0.002) and remained so in a multivariate regression including other biomarkers (HR: 1.004; 95%CI: 1.001-1.006 P = 0.004). Conclusion: PSMATV50 is a promising PSMA-PET biomarker that is reproducible and easily quantified by the proposed semi-automated software. Moreover, PSMATV50 is a significant predictor of overall survival in patients with advanced prostate cancer that receive 177Lu-PSMA-617 therapy.




wit

Radioiodine Ablation of Remaining Thyroid Lobe in Patients with Differentiated Thyroid Cancer Treated by Lobectomy. A systematic review and meta-analysis.

Purpose: We aimed to conduct a systematic review and meta-analysis of studies reporting the performance of radioactive iodine therapy (131-I therapy) in differentiating thyroid cancer (DTC) patients requiring a completion treatment following lobectomy. We also evaluated the response to 131-I therapy according to 2015ATA guidelines and the adverse events. Methods: A specific search strategy was designed to find articles evaluating the use of I-131 in patients with evidence of DTC after lobectomy. PubMed, CENTRAL, Scopus and Web of Science were searched. The search was updated until January 2020, without language restriction. Data were cross-checked and any discrepancy discussed. A proportion meta-analysis (with 95%CI) was performed using the random-effects model. Meta-regressions on I-131 success were attempted. Results: The pooled success ablation rate was 69% with better results in patients receiving a single administration of about 3.7 GBq; high heterogeneity was found (I2 85%), and publication bias was absent (Egger test: P = 0.57). Incomplete structural responses were recorded in only 14 of 695 (2%) patients enrolled in our analysis. Incomplete biochemical responses were observed in 8 to 24% of patients, with higher rates (24%) in patients receiving low radioiodine activities (~1.1 GBq) and lower rates (from 8 to 18%) in patients receiving higher activities of radioiodine (~3.7 Gbq). Neck pain due to thyroiditis was reported in up to 18% of patients but, in most cases, symptoms resolved after oral paracetamol or a short course of prednisone. Conclusion: Lobar ablation with 131-I is effective especially when high 131I activities are used. However, the rate of incomplete biochemical response to initial treatment appears to be slightly higher than the classical scheme of initial treatment of DTC. "Radioisotopic lobectomy" should be considered for patients with low-to-intermediate risk DTC requiring completion treatment after lobectomy due to specific individual risk factors and/or patient’s preferences.




wit

Integrity of neurocognitive networks in dementing disorders as measured with simultaneous PET/fMRI

Background: Functional magnetic resonance imaging (fMRI) studies have reported altered integrity of large-scale neurocognitive networks (NCNs) in dementing disorders. However, findings on specificity of these alterations in patients with Alzheimer’s disease (AD) and behavioral variant frontotemporal dementia (bvFTD) are still very limited. Recently, NCNs have been successfully captured using positron emission tomography (PET) with F18-fluordesoxyglucose (FDG). Methods: Network integrity was measured in 72 individuals (38 male) with mild AD, bvFTD, and healthy controls using a simultaneous resting state fMRI and FDG-PET. Indices of network integrity were calculated for each subject, network, and imaging modality. Results: In either modality, independent component analysis revealed four major NCNs: anterior default mode network (DMN), posterior DMN, salience network, and right central executive network (CEN). In fMRI data, integrity of posterior DMN was found to be significantly reduced in both patient groups relative to controls. In the AD group anterior DMN and CEN appeared to be additionally affected. In PET data, only integrity of posterior DMN in patients with AD was reduced, while three remaining networks appeared to be affected only in patients with bvFTD. In a logistic regression analysis, integrity of anterior DMN as measured with PET alone accurately differentiated between the patient groups. A correlation between indices of two imaging modalities was overall low. Conclusion: FMRI and FDG-PET capture partly different aspects of network integrity. A higher disease specificity of NCNs as derived from PET data supports metabolic connectivity imaging as a promising diagnostic tool.




wit

Molecular imaging of PD-L1 expression and dynamics with the adnectin-based PET tracer 18F-BMS-986192

18F-BMS-986192, an adnectin-based human programmed cell death ligand 1 (PD-L1) tracer, was developed to non-invasively determine whole-body PD-L1 expression by positron emission tomography (PET). We evaluated usability of 18F-BMS-986192 PET to detect different PD-L1 expression levels and therapy-induced changes of PD-L1 expression in tumors. Methods: In vitro binding assays with 18F-BMS-986192 were performed in human tumor cell lines with different total cellular and membrane PD-L1 protein expression levels. Subsequently, PET imaging was executed in immunodeficient mice xenografted with these cell lines. Mice were treated with interferon gamma (IFN) intraperitoneally for 3 days or with the mitogen-activated protein kinase kinase (MEK1/2) inhibitor selumetinib by oral gavage for 24 hours. Thereafter 18F-BMS-986192 was administered intravenously, followed by a 60-minute dynamic PET scan. Tracer uptake was expressed as percentage injected dose per gram tissue (%ID/g). Tissues were collected to evaluate ex vivo tracer biodistribution and to perform flow cytometric, Western blot, and immunohistochemical tumor analyses. Results: 18F-BMS-986192 uptake reflected PD-L1 membrane levels in tumor cell lines, and tumor tracer uptake in mice was associated with PD-L1 expression measured immunohistochemically. In vitro IFN treatment increased PD-L1 expression in the tumor cell lines and caused up to 12-fold increase in tracer binding. In vivo, IFN did neither affect PD-L1 tumor expression measured immunohistochemically nor 18F-BMS-986192 tumor uptake. In vitro, selumetinib downregulated cellular and membrane levels of PD-L1 of tumor cells by 50% as measured by Western blotting and flow cytometry. In mice, selumetinib lowered cellular, but not membrane PD-L1 levels of tumors and consequently no treatment-induced change in 18F-BMS-986192 tumor uptake was observed. Conclusion: 18F-BMS-986192 PET imaging allows detection of membrane-expressed PD-L1, as soon as 60 minutes after tracer injection. The tracer can discriminate a range of tumor cell PD-L1 membrane expression levels.




wit

177Lu-EB-PSMA radioligand therapy with escalating doses in patients with metastatic castration-resistant prostate cancer

Purpose: This study is designed to assess the safety and therapeutic response to 177Lu-EB-PSMA treatment with escalating doses in patients with metastatic castration-resistant prostate cancer (mCRPC). Methods: With institutional review board approval and informed consent, patients were randomly divided into three groups: Group A (n = 10) were treated with 1.18 ± 0.09 GBq/dose of 177Lu-EB-PSMA. Group B (n = 10) were treated with 2.12 ± 0.19 GBq/dose of 177Lu-EB-PSMA. Group C (n = 8) were treated with 3.52 ± 0.58 GBq/dose of 177Lu-EB-PSMA. Eligible patients received up to three cycles of 177Lu-EB-PSMA therapy, at eight-week intervals. Results: Due to disease progression or bone marrow suppression, 4 out of 10, 5 out of 10, and 5 out of 10 patients completed three cycles therapy as planned in Groups A, B, and C, respectively. The prostate-specific antigen (PSA) response was correlated with treatment dose, with PSA disease control rates in Group B (70%) and C (75%) being higher than that in Group A (10%) (P = 0.007), but no correlation between Group B and Group C was found. 68Ga-PSMA PET/CT showed response in all the treatment groups, however, there was no significant difference between the three groups. Hematologic toxicity study found that platelets in Group B and Group C decreased more than those in Group A, and that Grade 4 thrombocytopenia occurred in 2 (25.0%) patients in Group C. No serious nephritic or hepatic side effects were observed. Conclusion: This study demonstrates that 2.12 GBq/dose of 177Lu-EB-PSMA seems to be safe and adequate in tumor treatment. Further investigations with increased number of patients are warranted.




wit

NEMESIS: Non-inferiority, Individual Patient Meta-analysis of Selective Internal Radiation Therapy with Yttrium-90 Resin Microspheres versus Sorafenib in Advanced Hepatocellular Carcinoma

In randomized clinical trials (RCTs), no survival benefit has been observed for selective internal radiotherapy (SIRT) over sorafenib in patients with advanced hepatocellular carcinoma (aHCC). This study aimed to assess by means of a meta-analysis whether overall survival (OS) with SIRT, as monotherapy or followed by sorafenib, is non-inferior to sorafenib, and compare safety profiles for patients with aHCC. Methods: We searched MEDLINE, EMBASE, and the Cochrane Library up to February 2019 to identify RCTs comparing SIRT as monotherapy, or followed by sorafenib, to sorafenib monotherapy among patients with aHCC. The main outcomes were OS and frequency of treatment-related severe adverse events (AEs grade ≥3). The per-protocol population was the primary analysis population. A non-inferiority margin of 1.08 in terms of hazard ratio (HR) was pre-specified for the upper boundary of 95% confidence interval (CI) for OS. Pre-specified subgroup analyses were performed. Results: Three RCTs, involving 1,243 patients, comparing sorafenib with SIRT (SIRveNIB and SARAH) or SIRT followed by sorafenib (SORAMIC), were included. After randomization, 411/635 (64.7%) patients allocated to SIRT and 522/608 (85.8%) allocated to sorafenib completed the studies without major protocol deviations. Median OS with SIRT, whether or not followed by sorafenib, was non-inferior to sorafenib (10.2 and 9.2 months, [HR 0.91, 95% CI 0.78–1.05]). Treatment-related severe adverse events were reported in 149/515 patients (28.9%) who received SIRT and 249/575 (43.3%) who received sorafenib only (p<0.01). Conclusion: SIRT as initial therapy for aHCC is non-inferior to sorafenib in terms of OS, and offers a better safety profile.




wit

Confirmation of 123I-FP-CIT-SPECT (ioflupane) quantification methods in dementia with Lewy body and other neurodegenerative disorders

Rationale: To conduct a retrospective study comparing three 123I-FP-CIT-SPECT quantitative methods in patients with neurodegenerative syndromes as referenced to neuropathological findings. Methods: 123I-FP-CIT-SPECT and neuropathological findings among patients with neurodegenerative syndromes from the Mayo Alzheimer's Disease Research Center and Mayo Clinic Study of Aging were examined. Three 123I-FP-CIT-SPECT quantitative assessment Methods: MIMneuro (MIM Software Inc.), DaTQUANT (GE Healthcare), and manual region of interest (ROI) creation on an Advantage Workstation (GE Healthcare) were compared to neuropathological findings describing the presence or absence of Lewy body disease (LBD). Striatum to background ratios (SBRs) generated by DaTQUANT were compared to the calculated SBRs of the manual method and MIMneuro. The left and right SBRs for caudate, putamen and striatum were evaluated with the manual method. For DaTQUANT and MIMneuro the left, right, total and average SBRs and z-scores for whole striatum, caudate, putamen, anterior putamen, and posterior putamen were calculated. Results: The cohort included 24 patients [20 (83%) male, aged 75.4 +/- 10.0 at death]. The antemortem clinical diagnoses were Alzheimer’s disease dementia (ADem, N = 6), probable dementia with Lewy bodies (pDLB, N = 12), mixed ADem/pDLB (N = 1), Parkinson’s disease with mild cognitive impairment (N = 2), corticobasal syndrome (N = 1), idiopathic rapid eye movement sleep behavior disorder (iRBD) (N = 1) and behavioral variant frontotemporal dementia (N = 1). Seventeen (71%) had LBD pathology. All three 123I-FP-CIT-SPECT quantitative methods had area under the receiver operating characteristics (AUROC) values above 0.93 and up to 1.000 (p<0.001) and showed excellent discrimination between LBD and non-LBD patients in each region assessed, p<.001. There was no significant difference between the accuracy of the regions in discriminating the two groups, with good discrimination for both caudate and putamen. Conclusion: All three 123I-FP-CIT-SPECT quantitative methods showed excellent discrimination between LBD and non-LBD patients in each region assessed, using both SBRs and z-scores.




wit

The effects of monosodium glutamate on PSMA radiotracer uptake in men with recurrent prostate cancer: a prospective, randomized, double-blind, placebo-controlled intra-individual imaging study.

The prostate-specific membrane antigen (PSMA) is an excellent target for theranostic applications in prostate cancer (PCa). However, PSMA-targeted radioligand therapy can cause undesirable effects due to high accumulation of PSMA radiotracers in salivary glands and kidneys. This study assessed orally administered monosodium glutamate (MSG) as a potential means of reducing kidney and salivary gland radiation exposure using a PSMA targeting radiotracer. Methods: This prospective, double-blind, placebo-controlled study enrolled 10 biochemically recurrent PCa patients. Each subject served as his own control. [18F]DCFPyl PET/CT imaging sessions were performed 3 – 7 days apart, following oral administration of either 12.7 g of MSG or placebo. Data from the two sets of images were analyzed by placing regions of interest on lacrimal, parotid and submandibular glands, left ventricle, liver, spleen, kidneys, bowel, urinary bladder, gluteus muscle and malignant lesions. The results from MSG and placebo scans were compared by paired analysis of the ROI data. Results: A total of 142 pathological lesions along with normal tissues were analyzed. As hypothesized a priori, there was a significant decrease in maximal standardized uptake values corrected for lean body mass (SULmax) on images obtained following MSG administration in the parotids (24 ± 14%, P = 0.001), submandibular glands (35 ± 11%, P<0.001) and kidneys (23 ± 26%, P = 0.014). Significant decreases were also observed in lacrimal glands (49 ± 13%, P<0.001), liver (15 ± 6%, P<0.001), spleen (28 ± 13%, P = 0.001) and bowel (44 ± 13%, P<0.001). Mildly lower blood pool SULmean was observed after MSG administration (decrease of 11 ± 13%, P = 0.021). However, significantly lower radiotracer uptake in terms of SULmean, SULpeak, and SULmax was observed in malignant lesions on scans performed after MSG administration compared to the placebo studies (SULmax median decrease 33%, range -1 to 75%, P<0.001). No significant adverse events occurred and vital signs were stable following placebo or MSG administration. Conclusion: Orally administered MSG significantly decreased salivary gland, kidney and other normal organ PSMA radiotracer uptake in human subjects, using [18F]DCFPyL as an exemplar. However, MSG caused a corresponding reduction in tumor uptake, which may limit the benefits of this approach for diagnostic and therapeutic applications.




wit

Discussions with Leaders: A Conversation Between Johnese Spisso and Johannes Czernin




wit

Profiling the Surfaceome Identifies Therapeutic Targets for Cells with Hyperactive mTORC1 Signaling [Research]

Aberrantly high mTORC1 signaling is a known driver of many cancers and human disorders, yet pharmacological inhibition of mTORC1 rarely confers durable clinical responses. To explore alternative therapeutic strategies, herein we conducted a proteomics survey to identify cell surface proteins upregulated by mTORC1. A comparison of the surfaceome from Tsc1–/– versus Tsc1+/+ mouse embryonic fibroblasts revealed 59 proteins predicted to be significantly overexpressed in Tsc1–/– cells. Further validation of the data in multiple mouse and human cell lines showed that mTORC1 signaling most dramatically induced the expression of the proteases neprilysin (NEP/CD10) and aminopeptidase N (APN/CD13). Functional studies showed that constitutive mTORC1 signaling sensitized cells to genetic ablation of NEP and APN, as well as the biochemical inhibition of APN. In summary, these data show that mTORC1 signaling plays a significant role in the constitution of the surfaceome, which in turn may present novel therapeutic strategies.




wit

Interaction Proteomics Identifies ERbeta Association with Chromatin Repressive Complexes to Inhibit Cholesterol Biosynthesis and Exert An Oncosuppressive Role in Triple-negative Breast Cancer [Research]

Triple-negative breast cancer (TNBC) is characterized by poor response to therapy and low overall patient survival. Recently, Estrogen Receptor beta (ERβ) has been found to be expressed in a fraction of TNBCs where, because of its oncosuppressive actions on the genome, it represents a potential therapeutic target, provided a better understanding of its actions in these tumors becomes available. To this end, the cell lines Hs 578T, MDA-MB-468 and HCC1806, representing the claudin-low, basal-like 1 and 2 TNBC molecular subtypes respectively, were engineered to express ERβ under the control of a Tetracycline-inducible promoter and used to investigate the effects of this transcription factor on gene activity. The antiproliferative effects of ERβ in these cells were confirmed by multiple functional approaches, including transcriptome profiling and global mapping of receptor binding sites in the genome, that revealed direct negative regulation by ERβ of genes, encoding for key components of cellular pathways associated to TNBC aggressiveness representing novel therapeutic targets such as angiogenesis, invasion, metastasis and cholesterol biosynthesis. Supporting these results, interaction proteomics by immunoprecipitation coupled to nano LC-MS/MS mass spectrometry revealed ERβ association with several potential nuclear protein partners, including key components of regulatory complexes known to control chromatin remodeling, transcriptional and post-transcriptional gene regulation and RNA splicing. Among these, ERβ association with the Polycomb Repressor Complexes 1 and 2 (PRC1/2), known for their central role in gene regulation in cancer cells, was confirmed in all three TNBC subtypes investigated, suggesting its occurrence independently from the cellular context. These results demonstrate a significant impact of ERβ in TNBC genome activity mediated by its cooperation with regulatory multiprotein chromatin remodeling complexes, providing novel ground to devise new strategies for the treatment of these diseases based on ligands affecting the activity of this nuclear receptor or some of its protein partners.




wit

MaXLinker: Proteome-wide Cross-link Identifications with High Specificity and Sensitivity [Technological Innovation and Resources]

Protein-protein interactions play a vital role in nearly all cellular functions. Hence, understanding their interaction patterns and three-dimensional structural conformations can provide crucial insights about various biological processes and underlying molecular mechanisms for many disease phenotypes. Cross-linking mass spectrometry (XL-MS) has the unique capability to detect protein-protein interactions at a large scale along with spatial constraints between interaction partners. The inception of MS-cleavable cross-linkers enabled the MS2-MS3 XL-MS acquisition strategy that provides cross-link information from both MS2 and MS3 level. However, the current cross-link search algorithm available for MS2-MS3 strategy follows a "MS2-centric" approach and suffers from a high rate of mis-identified cross-links. We demonstrate the problem using two new quality assessment metrics ["fraction of mis-identifications" (FMI) and "fraction of interprotein cross-links from known interactions" (FKI)]. We then address this problem, by designing a novel "MS3-centric" approach for cross-link identification and implementing it as a search engine named MaXLinker. MaXLinker outperforms the currently popular search engine with a lower mis-identification rate, and higher sensitivity and specificity. Moreover, we performed human proteome-wide cross-linking mass spectrometry using K562 cells. Employing MaXLinker, we identified a comprehensive set of 9319 unique cross-links at 1% false discovery rate, comprising 8051 intraprotein and 1268 interprotein cross-links. Finally, we experimentally validated the quality of a large number of novel interactions identified in our study, providing a conclusive evidence for MaXLinker's robust performance.




wit

Peptidomic Analysis of Urine from Youths with Early Type 1 Diabetes Reveals Novel Bioactivity of Uromodulin Peptides In Vitro [Research]

Chronic hyperglycemia is known to disrupt the proteolytic milieu, initiating compensatory and maladaptive pathways in the diabetic kidney. Such changes in intrarenal proteolysis are captured by the urinary peptidome. To elucidate the early kidney response to chronic hyperglycemia, we conducted a peptidomic investigation into urines from otherwise healthy youths with type 1 diabetes and their non-diabetic peers using unbiased and targeted mass spectrometry-based techniques. This cross-sectional study included two separate cohorts for the discovery (n = 30) and internal validation (n = 30) of differential peptide excretion. Peptide bioactivity was predicted using PeptideRanker and subsequently verified in vitro. Proteasix and the Nephroseq database were used to identify putative proteases responsible for peptide generation and examine their expression in diabetic nephropathy. A total of 6550 urinary peptides were identified in the discovery analysis. We further examined the subset of 162 peptides, which were quantified across all thirty samples. Of the 15 differentially excreted peptides (p < 0.05), seven derived from a C-terminal region (589SGSVIDQSRVLNLGPITRK607) of uromodulin, a kidney-specific protein. Increased excretion of five uromodulin peptides was replicated in the validation cohort using parallel reaction monitoring (p < 0.05). One of the validated peptides (SGSVIDQSRVLNLGPI) activated NFB and AP-1 signaling, stimulated cytokine release, and enhanced neutrophil migration in vitro. In silico analyses highlighted several potential proteases such as hepsin, meprin A, and cathepsin B to be responsible for generating these peptides. In summary, we identified a urinary signature of uromodulin peptides associated with early type 1 diabetes before clinical manifestations of kidney disease and discovered novel bioactivity of uromodulin peptides in vitro. Our present findings lay the groundwork for future studies to validate peptide excretion in larger and broader populations, to investigate the role of bioactive uromodulin peptides in high glucose conditions, and to examine proteases that cleave uromodulin.




wit

The Challenge of Classifying Metastatic Cell Properties by Molecular Profiling Exemplified with Cutaneous Melanoma Cells and Their Cerebral Metastasis from Patient Derived Mouse Xenografts [Research]

The prediction of metastatic properties from molecular analyses still poses a major challenge. Here we aimed at the classification of metastasis-related cell properties by proteome profiling making use of cutaneous and brain-metastasizing variants from single melanomas sharing the same genetic ancestry. Previous experiments demonstrated that cultured cells derived from these xenografted variants maintain a stable phenotype associated with a differential metastatic behavior: The brain metastasizing variants produce more spontaneous micro-metastases than the corresponding cutaneous variants. Four corresponding pairs of cutaneous and metastatic cells were obtained from four individual patients, resulting in eight cell-lines presently investigated. Label free proteome profiling revealed significant differences between corresponding pairs of cutaneous and cerebellar metastases from the same patient. Indeed, each brain metastasizing variant expressed several apparently metastasis-associated proteomic alterations as compared with the corresponding cutaneous variant. Among the differentially expressed proteins we identified cell adhesion molecules, immune regulators, epithelial to mesenchymal transition markers, stem cell markers, redox regulators and cytokines. Similar results were observed regarding eicosanoids, considered relevant for metastasis, such as PGE2 and 12-HETE. Multiparametric morphological analysis of cells also revealed no characteristic alterations associated with the cutaneous and brain metastasis variants. However, no correct classification regarding metastatic potential was yet possible with the present data. We thus concluded that molecular profiling is able to classify cells according to known functional categories but is not yet able to predict relevant cell properties emerging from networks consisting of many interconnected molecules. The presently observed broad diversity of molecular patterns, irrespective of restricting to one tumor type and two main classes of metastasis, highlights the important need to develop meta-analysis strategies to predict cell properties from molecular profiling data. Such base knowledge will greatly support future individualized precision medicine approaches.




wit

Characterizing Patients with Recurrent Urinary Tract Infections in Vesicoureteral Reflux: A Pilot Study of the Urinary Proteome [Research]

Recurrent urinary tract infections (UTIs) pose a significant burden on the health care system. Underlying mechanisms predisposing children to UTIs and associated changes in the urinary proteome are not well understood. We aimed to investigate the urinary proteome of a subset of children who have vesicoureteral reflux (VUR) and recurrent UTIs because of their risk of developing infection-related renal damage. Improving diagnostic modalities to identify UTI risk factors would significantly alter the clinical management of children with VUR. We profiled the urinary proteomes of 22 VUR patients with low grade VUR (1–3 out of 5), a history of recurrent UTIs, and renal scarring, comparing them to those obtained from 22 age-matched controls. Urinary proteins were analyzed by mass spectrometry followed by protein quantitation based on spectral counting. Of the 2,551 proteins identified across both cohorts, 964 were robustly quantified, as defined by meeting criteria with spectral count (SC) ≥2 in at least 7 patients in either VUR or control cohort. Eighty proteins had differential expression between the two cohorts, with 44 proteins significantly up-regulated and 36 downregulated (q <0.075, FC ≥1.2). Urinary proteins involved in inflammation, acute phase response (APR), modulation of extracellular matrix (ECM), and carbohydrate metabolism were altered among the study cohort.




wit

Proteomic Analysis Reveals that Topoisomerase 2A is Associated with Defective Sperm Head Morphology [Research]

Male infertility is widespread and estimated to affect 1 in 20 men. Although in some cases the etiology of the condition is well understood, for at least 50% of men, the underlying cause is yet to be classified. Male infertility, or subfertility, is often diagnosed by looking at total sperm produced, motility of the cells and overall morphology. Although counting spermatozoa and their associated motility is routine, morphology assessment is highly subjective, mainly because of the procedure being based on microscopic examination. A failure to diagnose male-infertility or sub-fertility has led to a situation where assisted conception is often used unnecessarily. As such, biomarkers of male infertility are needed to help establish a more consistent diagnosis. In the present study, we compared nuclear extracts from both high- and low-quality spermatozoa by LC-MS/MS based proteomic analysis. Our data shows that nuclear retention of specific proteins is a common facet among low-quality sperm cells. We demonstrate that the presence of Topoisomerase 2A in the sperm head is highly correlated to poor head morphology. Topoisomerase 2A is therefore a potential new biomarker for confirming male infertility in clinical practice.




wit

A Compact Quadrupole-Orbitrap Mass Spectrometer with FAIMS Interface Improves Proteome Coverage in Short LC Gradients [Technological Innovation and Resources]

State-of-the-art proteomics-grade mass spectrometers can measure peptide precursors and their fragments with ppm mass accuracy at sequencing speeds of tens of peptides per second with attomolar sensitivity. Here we describe a compact and robust quadrupole-orbitrap mass spectrometer equipped with a front-end High Field Asymmetric Waveform Ion Mobility Spectrometry (FAIMS) Interface. The performance of the Orbitrap Exploris 480 mass spectrometer is evaluated in data-dependent acquisition (DDA) and data-independent acquisition (DIA) modes in combination with FAIMS. We demonstrate that different compensation voltages (CVs) for FAIMS are optimal for DDA and DIA, respectively. Combining DIA with FAIMS using single CVs, the instrument surpasses 2500 peptides identified per minute. This enables quantification of >5000 proteins with short online LC gradients delivered by the Evosep One LC system allowing acquisition of 60 samples per day. The raw sensitivity of the instrument is evaluated by analyzing 5 ng of a HeLa digest from which >1000 proteins were reproducibly identified with 5 min LC gradients using DIA-FAIMS. To demonstrate the versatility of the instrument, we recorded an organ-wide map of proteome expression across 12 rat tissues quantified by tandem mass tags and label-free quantification using DIA with FAIMS to a depth of >10,000 proteins.




wit

Correction: Diversity in the Protein N-Glycosylation Pathways Within the Campylobacter Genus. [Additions and Corrections]




wit

Discovery of a Redox Thiol Switch: Implications for Cellular Energy Metabolism [Research]

The redox-based modifications of cysteine residues in proteins regulate their function in many biological processes. The gas molecule H2S has been shown to persulfidate redox sensitive cysteine residues resulting in an H2S-modified proteome known as the sulfhydrome. Tandem Mass Tags (TMT) multiplexing strategies for large-scale proteomic analyses have become increasingly prevalent in detecting cysteine modifications. Here we developed a TMT-based proteomics approach for selectively trapping and tagging cysteine persulfides in the cellular proteomes. We revealed the natural protein sulfhydrome of two human cell lines, and identified insulin as a novel substrate in pancreatic beta cells. Moreover, we showed that under oxidative stress conditions, increased H2S can target enzymes involved in energy metabolism by switching specific cysteine modifications to persulfides. Specifically, we discovered a Redox Thiol Switch, from protein S-glutathioinylation to S-persulfidation (RTSGS). We propose that the RTSGS from S-glutathioinylation to S-persulfidation is a potential mechanism to fine tune cellular energy metabolism in response to different levels of oxidative stress.




wit

An Improved Boosting to Amplify Signal with Isobaric Labeling (iBASIL) Strategy for Precise Quantitative Single-cell Proteomics [Research]

Mass spectrometry (MS)-based proteomics has great potential for overcoming the limitations of antibody-based immunoassays for antibody-independent, comprehensive, and quantitative proteomic analysis of single cells. Indeed, recent advances in nanoscale sample preparation have enabled effective processing of single cells. In particular, the concept of using boosting/carrier channels in isobaric labeling to increase the sensitivity in MS detection has also been increasingly used for quantitative proteomic analysis of small-sized samples including single cells. However, the full potential of such boosting/carrier approaches has not been significantly explored, nor has the resulting quantitation quality been carefully evaluated. Herein, we have further evaluated and optimized our recent boosting to amplify signal with isobaric labeling (BASIL) approach, originally developed for quantifying phosphorylation in small number of cells, for highly effective analysis of proteins in single cells. This improved BASIL (iBASIL) approach enables reliable quantitative single-cell proteomics analysis with greater proteome coverage by carefully controlling the boosting-to-sample ratio (e.g. in general <100x) and optimizing MS automatic gain control (AGC) and ion injection time settings in MS/MS analysis (e.g. 5E5 and 300 ms, respectively, which is significantly higher than that used in typical bulk analysis). By coupling with a nanodroplet-based single cell preparation (nanoPOTS) platform, iBASIL enabled identification of ~2500 proteins and precise quantification of ~1500 proteins in the analysis of 104 FACS-isolated single cells, with the resulting protein profiles robustly clustering the cells from three different acute myeloid leukemia cell lines. This study highlights the importance of carefully evaluating and optimizing the boosting ratios and MS data acquisition conditions for achieving robust, comprehensive proteomic analysis of single cells.




wit

Human Hepatocyte Nuclear Factor 4-{alpha} Encodes Isoforms with Distinct Transcriptional Functions [Research]

HNF4α is a nuclear receptor produced as 12 isoforms from two promoters by alternative splicing. To characterize the transcriptional capacities of all 12 HNF4α isoforms, stable lines expressing each isoform were generated. The entire transcriptome associated with each isoform was analyzed as well as their respective interacting proteome. Major differences were noted in the transcriptional function of these isoforms. The α1 and α2 isoforms were the strongest regulators of gene expression whereas the α3 isoform exhibited significantly reduced activity. The α4, α5, and α6 isoforms, which use an alternative first exon, were characterized for the first time, and showed a greatly reduced transcriptional potential with an inability to recognize the consensus response element of HNF4α. Several transcription factors and coregulators were identified as potential specific partners for certain HNF4α isoforms. An analysis integrating the vast amount of omics data enabled the identification of transcriptional regulatory mechanisms specific to certain HNF4α isoforms, hence demonstrating the importance of considering all isoforms given their seemingly diverse functions.




wit

The Secretome Profiling of a Pediatric Airway Epithelium Infected with hRSV Identified Aberrant Apical/Basolateral Trafficking and Novel Immune Modulating (CXCL6, CXCL16, CSF3) and Antiviral (CEACAM1) Proteins [Research]

The respiratory epithelium comprises polarized cells at the interface between the environment and airway tissues. Polarized apical and basolateral protein secretions are a feature of airway epithelium homeostasis. Human respiratory syncytial virus (hRSV) is a major human pathogen that primarily targets the respiratory epithelium. However, the consequences of hRSV infection on epithelium secretome polarity and content remain poorly understood. To investigate the hRSV-associated apical and basolateral secretomes, a proteomics approach was combined with an ex vivo pediatric human airway epithelial (HAE) model of hRSV infection (data are available via ProteomeXchange and can be accessed at https://www.ebi.ac.uk/pride/ with identifier PXD013661). Following infection, a skewing of apical/basolateral abundance ratios was identified for several individual proteins. Novel modulators of neutrophil and lymphocyte activation (CXCL6, CSF3, SECTM1 or CXCL16), and antiviral proteins (BST2 or CEACAM1) were detected in infected, but not in uninfected cultures. Importantly, CXCL6, CXCL16, CSF3 were also detected in nasopharyngeal aspirates (NPA) from hRSV-infected infants but not healthy controls. Furthermore, the antiviral activity of CEACAM1 against RSV was confirmed in vitro using BEAS-2B cells. hRSV infection disrupted the polarity of the pediatric respiratory epithelial secretome and was associated with immune modulating proteins (CXCL6, CXCL16, CSF3) never linked with this virus before. In addition, the antiviral activity of CEACAM1 against hRSV had also never been previously characterized. This study, therefore, provides novel insights into RSV pathogenesis and endogenous antiviral responses in pediatric airway epithelium.




wit

Decreased Immunoglobulin G Core Fucosylation, A Player in Antibody-dependent Cell-mediated Cytotoxicity, is Associated with Autoimmune Thyroid Diseases [Research]

Autoimmune thyroid diseases (AITD) are the most common group of autoimmune diseases, associated with lymphocyte infiltration and the production of thyroid autoantibodies, like thyroid peroxidase antibodies (TPOAb), in the thyroid gland. Immunoglobulins and cell-surface receptors are glycoproteins with distinctive glycosylation patterns that play a structural role in maintaining and modulating their functions. We investigated associations of total circulating IgG and peripheral blood mononuclear cells glycosylation with AITD and the influence of genetic background in a case-control study with several independent cohorts and over 3,000 individuals in total. The study revealed an inverse association of IgG core fucosylation with TPOAb and AITD, as well as decreased peripheral blood mononuclear cells antennary α1,2 fucosylation in AITD, but no shared genetic variance between AITD and glycosylation. These data suggest that the decreased level of IgG core fucosylation is a risk factor for AITD that promotes antibody-dependent cell-mediated cytotoxicity previously associated with TPOAb levels.




wit

Biosynthesis of depsipeptides with a 3-hydroxybenzoate moiety and selective anticancer activities involves a chorismatase [Metabolism]

Neoantimycins are anticancer compounds of 15-membered ring antimycin-type depsipeptides. They are biosynthesized by a hybrid multimodular protein complex of nonribosomal peptide synthetase (NRPS) and polyketide synthase (PKS), typically from the starting precursor 3-formamidosalicylate. Examining fermentation extracts of Streptomyces conglobatus, here we discovered four new neoantimycin analogs, unantimycins B–E, in which 3-formamidosalicylates are replaced by an unusual 3-hydroxybenzoate (3-HBA) moiety. Unantimycins B–E exhibited levels of anticancer activities similar to those of the chemotherapeutic drug cisplatin in human lung cancer, colorectal cancer, and melanoma cells. Notably, they mostly displayed no significant toxicity toward noncancerous cells, unlike the serious toxicities generally reported for antimycin-type natural products. Using site-directed mutagenesis and heterologous expression, we found that unantimycin productions are correlated with the activity of a chorismatase homolog, the nat-hyg5 gene, from a type I PKS gene cluster. Biochemical analysis confirmed that the catalytic activity of Nat-hyg5 generates 3-HBA from chorismate. Finally, we achieved selective production of unantimycins B and C by engineering a chassis host. On the basis of these findings, we propose that unantimycin biosynthesis is directed by the neoantimycin-producing NRPS–PKS complex and initiated with the starter unit of 3-HBA. The elucidation of the biosynthetic unantimycin pathway reported here paves the way to improve the yield of these compounds for evaluation in oncotherapeutic applications.




wit

Australian public service's 'gap in capability' to deal with digital revolution

State of the Service report outlines the major hurdle to digital reform.




wit

Open government data to public use, and Australia may start to catch up with the world

Public servants need to ditch the control and encourage entrepreneurship.




wit

Centrelink wrongly hits 70,000 families with bills for up to $726

Computer glitch blamed as welfare agency hits tens of thousands with bills for money that is not owed.




wit

The great Chinese surprise: the rupture with the United States is real and is happening

4 March 2020 , Volume 96, Number 2

Xiangfeng Yang

Ample evidence exists that China was caught off guard by the Trump administration's onslaught of punishing acts—the trade war being a prime, but far from the only, example. This article, in addition to contextualizing their earlier optimism about the relations with the United States under President Trump, examines why Chinese leaders and analysts were surprised by the turn of events. It argues that three main factors contributed to the lapse of judgment. First, Chinese officials and analysts grossly misunderstood Donald Trump the individual. By overemphasizing his pragmatism while downplaying his unpredictability, they ended up underprepared for the policies he unleashed. Second, some ingrained Chinese beliefs, manifested in the analogies of the pendulum swing and the ‘bickering couple’, as well as the narrative of the ‘ballast’, lulled officials and scholars into undue optimism about the stability of the broader relationship. Third, analytical and methodological problems as well as political considerations prevented them from fully grasping the strategic shift against China in the US.




wit

IMF Needs New Thinking to Deal with Coronavirus

27 April 2020

David Lubin

Associate Fellow, Global Economy and Finance Programme
The IMF faces a big dilemma in its efforts to support the global economy at its time of desperate need. Simply put, the Fund’s problem is that most of the $1tn that it says it can lend is effectively unusable.

2020-04-27-IMF-Virtual-News

Kristalina Georgieva, managing director of the International Monetary Fund (IMF), speaks during a virtual news conference on April 15, 2020. Photo by Andrew Harrer/Bloomberg via Getty Images

There were several notable achievements during last week’s Spring meetings. The Fund’s frank set of forecasts for world GDP growth are a grim but valuable reminder of the scale of the crisis we are facing, and the Fund’s richer members will finance a temporary suspension on payments to the IMF for 29 very poor countries.

Most importantly, a boost to the Fund’s main emergency facilities - the Rapid Credit Facility and the Rapid Financing Instrument - now makes $100bn of proper relief available to a wide range of countries. But the core problem is that the vast bulk of the Fund’s firepower is effectively inert.

This is because of the idea of 'conditionality', which underpins almost all of the IMF’s lending relationships with member states. Under normal circumstances, when the IMF is the last-resort lender to a country, it insists that the borrowing government tighten its belt and exercise restraint in public spending.

This helps to achieve three objectives. One is to stabilise the public debt burden, to ensure that the resources made available are not wasted. The second is to limit the whole economy’s need for foreign exchange, a shortage of which had prompted a country to seek IMF help in the first place. And the third is to ensure that the IMF can get repaid.

Role within the international monetary system

Since the IMF does not take any physical collateral from countries to whom it is lending, the belt-tightening helps to act as a kind of collateral for the IMF. It helps to maximise the probability that the IMF does not suffer losses on its own loan portfolio — losses that would have bad consequences for the Fund’s role within the international monetary system.

This is a perfectly respectable goal. Walter Bagehot, the legendary editor of The Economist, established modern conventional wisdom about managing panics. Relying on a medical metaphor that feels oddly relevant today, he said that a panic 'is a species of neuralgia, and according to the rules of science you must not starve it.' 

Managing a panic, therefore, requires lending to stricken borrowers 'whenever the security is good', as Bagehot put it. The IMF has had to invent its own form of collateral, and conditionality is the result. The problem, though, is that belt-tightening is a completely inappropriate approach to managing the current crisis.

Countries are stricken not because they have indulged in any irresponsible spending sprees that led to a shortage of foreign exchange, but because of a virus beyond their control. Indeed, it would seem almost grotesque for the Fund to ask countries to cut spending at a time when, if anything, more spending is needed to stop people dying or from falling into a permanent trap of unemployment.

The obvious solution to this problem would be to increase the amount of money that any country can access from the Fund’s emergency facilities well beyond the $100bn now available. But that kind of solution would quickly run up against the IMF’s collateral problem.

The more the IMF makes available as 'true' emergency financing with few or no strings attached, the more it begins to undermine the quality of its loan portfolio. And if the IMF’s senior creditor status is undermined, then an important building block of the international monetary system would be at risk.

One way out of this might have been an emergency allocation of Special Drawing Rights, a tool last used in 2009. This would credit member countries’ accounts with new, unconditional liquidity that could be exchanged for the five currencies that underpin the SDR: the dollar, the yen, the euro, sterling and the renminbi. That will not be happening, though, since the US is firmly opposed, for reasons bad and good.

So in the end the IMF and its shareholders face a huge problem. It either lends more money on easy terms without the 'collateral' of conditionality, at the expense of undermining its own balance sheet - or it remains, in systemic terms, on the sidelines of this crisis.

And since the legacy of this crisis will be some eye-watering increases in the public debt burdens of many emerging economies, the IMF’s struggle to find a way to administer its medicine will certainly outlive this round of the coronavirus outbreak.

This article is a version of a piece which was originally published in the Financial Times




wit

Heritability of 596 lipid species and genetic correlation with cardiovascular traits in the Busselton Family Heart Study

Gemma Cadby
Apr 1, 2020; 61:537-545
Patient-Oriented and Epidemiological Research




wit

Circulating oxidized LDL increased in patients with acute myocardial infarction is accompanied by heavily modified HDL.

Naoko Sawada
Apr 14, 2020; 0:jlr.RA119000312v1-jlr.RA119000312
Research Articles




wit

An LC/MS/MS method for analyzing the steroid metabolome with high accuracy and from small serum samples

Teng-Fei Yuan
Apr 1, 2020; 61:580-586
Methods




wit

Skin barrier lipid enzyme activity in Netherton patients is associated with protease activity and ceramide abnormalities

Jeroen van Smeden
Apr 7, 2020; 0:jlr.RA120000639v1-jlr.RA120000639
Research Articles




wit

Lipid-tuned Zinc Transport Activity of Human ZnT8 Protein Correlates with Risk for Type-2 Diabetes [Molecular Bases of Disease]

Zinc is a critical element for insulin storage in the secretory granules of pancreatic beta cells. The islet-specific zinc transporter ZnT8 mediates granular sequestration of zinc ions. A genetic variant of human ZnT8 arising from a single nonsynonymous nucleotide change contributes to increased susceptibility to type-2 diabetes (T2D), but it remains unclear how the high risk variant (Arg-325), which is also a higher frequency (>50%) allele, is correlated with zinc transport activity. Here, we compared the activity of Arg-325 with that of a low risk ZnT8 variant (Trp-325). The Arg-325 variant was found to be more active than the Trp-325 form following induced expression in HEK293 cells. We further examined the functional consequences of changing lipid conditions to mimic the impact of lipid remodeling on ZnT8 activity during insulin granule biogenesis. Purified ZnT8 variants in proteoliposomes exhibited more than 4-fold functional tunability by the anionic phospholipids, lysophosphatidylcholine and cholesterol. Over a broad range of permissive lipid compositions, the Arg-325 variant consistently exhibited accelerated zinc transport kinetics versus the Trp-form. In agreement with the human genetic finding that rare loss-of-function mutations in ZnT8 are associated with reduced T2D risk, our results suggested that the common high risk Arg-325 variant is hyperactive, and thus may be targeted for inhibition to reduce T2D risk in the general populations.




wit

Episode 16 - The internet of the Apple iBoards (IoAi) Pebble, death of Hoverboards and Twitter

This week host Matt Egan is joined by producer Chris to talk about the recent batch of new Pebble devices and the smartwatch market. Staff writer at PC Advisor Lewis Painter joins in to talk about the death of the hoverboard (13:00). Finally, regular podder David Price comes on to talk about Appl...oh Twitter, specifically changes to the character limit and the sad loss of the @ (24:00).  


See acast.com/privacy for privacy and opt-out information.




wit

Episode 24 – The Internet of David’s Rules (IoDR) ARM, graphics cards & Twitter’s crackdown

Macworld UK’s Acting Editor David Price takes the reins for this edition, and is joined by Online Editor of Computerworld UK Scott Carey to chat about billions and billions of pounds and the acquisition of ARM by SoftBank. Second up, Staff Writer at PC Advisor and Macworld UK Christopher Minasians plugs in to the haunting world of graphics cards and makes sense of it all for the rest of us. Digital Arts Staff Writer Mimi Launder then explains why Twitter has slapped a troll right in the face in order to stand up to Internet bullying.  


See acast.com/privacy for privacy and opt-out information.




wit

Episode 48 - The Internet of the International Ruling Class (IotIRC) Nintendo Switch, Davos and app prices

Host Matt Egan clips us round the ear and tells us to listen up as we chat yet more tech and then some other stuff about tech. Consumer tech editor at PC Advisor Chris Martin lays down his definitive opinion after he went hands on with the Nintendo Switch this week, and why the company really should have had their star plumber ready in time for launch. Tamlin Magee, Online Editor at Computerworld UK then takes us through the odd goings on at Davos, and whether or not the elite can identify with what tech actually means to real working people. To round us up, Acting Macworld UK Editor David Price explains why app prices are going up in the UK for iOS users, and why it might - might - not be UKIP's fault. Sort of.  


See acast.com/privacy for privacy and opt-out information.




wit

Episode 55 - The Internet of Leaking Everything (IoLE) New iPads, Vault 7 and Nintendo Switch woes

The big story of the week is Wikileaks' CIA data dump, and we sandwich that topic between Apple's upcoming event and Nintendo Switch hardware issues. Lewis Painter kicks things off with Apple's (fingers crossed) late March event where we hope to see iPads, iMacs and get our six monthly fix of Jony Ive product videos. Then (13 minutes) Tamlin Magee tackles Vault 7 and the CIA's apparent ability to take control of iPhones and TVs, bypassing encryption. Will continuous leaks change anything? Finally (26 minutes) Dom Preston talks about his time over the last few weeks playing Zelda on the Nintendo Switch and why we should be a bit concerned about dodgy controllers.  


See acast.com/privacy for privacy and opt-out information.




wit

Episode 75 - The Internet of Driverless Pods (IoDP) Hands on with the iPhone X, FairPhone and Driverless Car design

After a lengthy hiatus we are back to FINALLY talk about the iPhone X. Computerworld UK editor Scott Carey is in the hosting chair to chat with Chris Martin, reviews editor at Tech Advisor and Macworld UK, now that we have got our hands on one. Chris talks us through what he likes and dislikes so far about the pricey smartphone.


Then Miriam Harris, staff writer at Digital Arts jumps in to discuss the design principles behind driverless cars and what we can expect in the future (17:00).


Finally, pod debutante Caroline Vanier, senior staff writer at Tech Advisor France talks about the FairPhone and if it is a new model for the smart phone industry (28:00).

 

See acast.com/privacy for privacy and opt-out information.




wit

Episode 78 - The Internet of the pod before Christmas (IotPBC) iMac Pro, Netflix's Twitter misstep and Apple buys Shazam

Once more for 2017 as Henry Burrell, Karen Khan and Scott Carey bid farewell to this wonderful year (ahem) with musings on Apple's sexy new iMac Pro. Who is it for, how much is it and does this mean there is no Mac Pro in 2018?


We then tackle Netflix's Twitter shaming of its users and why Spotify got away with it earlier in the year. How comfortable are we all when we realise how much data companies really have on us?


In light of this, Apple bought Shazam - most likely for the data sets as much as the tech and the talent. What form will it take in Apple as another UK tech company is acquired?

 

See acast.com/privacy for privacy and opt-out information.




wit

Episode 88 - The Internet of Google I/O (IoGIO) I/O with Microsoft Build thrown in

Scott Carey leads veteran Henry Burrell and first time podder Hannah Williams down the rabbit hole of Google I/O. We discuss which was the most frightening announcement and which was the best - could that actually be the same thing?


We then chat Android P, the beta for Google next OS - cool changes, yes, but how many people will actually ever get it?


Scott and Hannah also weigh in on why Google gets the headlines despite Facebook, Microsoft and Amazon announcements this week.

 

See acast.com/privacy for privacy and opt-out information.