mini

Punjab minister donates salary for coronavirus-hit




mini

Punjab NRI Affairs Minister thanks Centre for bringing back 113 Indians from Amsterdam




mini

Punjab Ministers, Akali MLAs donate salary to CM fund




mini

Punjab Vigilance Bureau ties up with District Administration to combat COVID-19




mini

Chandigarh administration to initiate action against those spreading rumours about COVID-19 patient




mini

COVID-19: Punjab to give parole to 6000 prisoners from jails to decongest prisons, says State Jail Minister




mini

No positive COVID-19 case reported in Punjab today: State Health Minister




mini

41 confirmed COVID-19 cases in Punjab: State Health Minister




mini

Punjab Minister appeals to Jathedar of Sri Akal Takht Sahib to ask Sikh community not to congregate on Vaisakhi




mini

Punjab village panchayats actively working to contain spread of coronavirus: Minister




mini

Punjab ministers set example on cremation of coronavirus victims




mini

Mohali administration, CU collaborate to establish Punjab's largest COVID-19 isolation facility




mini

To combat COVID-19, Amritsar administration installs disinfection tunnel in wholesale market




mini

58pc Indians might get infected: Punjab Chief Minister




mini

Health Ministry denies Punjab CM's claim of community transmission in State




mini

Punjab CM Amarinder Singh, Union Minister Harsimrat Kaur extend greetings on Vaisakhi




mini

ITI students offer to stitch masks free of cost in Punjab for administration, panchayats




mini

Punjab minister Bharat Bhushan Ashu visits Ludhiana mandi




mini

Punjab breaks Covid-19 chain in worst-hit district: Minister




mini

Punjab ministers not to take salaries for three months




mini

33,000 people enrolled at de-addiction centres in Punjab during lockdown: State Health Minister




mini

CM will decide about extension of lockdown: Punjab Health Minister




mini

Punjab Health Minister launches sanitisation drive via drones in Mohali




mini

76 Hazur Sahib devotees returned to Amritsar, test COVID-19 positive: Punjab Minister




mini

137 Hazur Sahib pilgrims returned to Amritsar test COVID-19 positive: Minister




mini

Punjab toll plazas to resume collection from May 4: State PWD Minister




mini

Chandigarh Administration eases lockdown norms, prohibits liquor, tobacco consumption at public spaces




mini

Nanded returnees satisfied with arrangements made by Ludhiana district administration




mini

Blame on Punjab drivers for corona infections misleading: Minister




mini

Punjab CM seeks Home Minister Shah's intervention to transport stranded workers back to their states




mini

Punjab Minister's campaign -- Ambassadors of Hope -- creates world record




mini

Punjab Minister directs police to tighten security after depot holder's brother beaten to death




mini

Erode administration clarifies on list of shops that can be opened

With confusion prevailing over opening of shops, the district administration has issued clarification and released list of shops that can be opened an




mini

Consume kabasura kudineer to boost immunity: Minister

Revenue Minister R. B. Udayakumar said that people must consume kabasura kudineer on an empty stomach everyday to boost their immunity. He said this





mini

6-Amino-2-iminiumyl-4-oxo-1,2,3,4-tetra­hydro­pyrimidin-5-aminium sulfate monohydrate

The title compound, C4H9N5O2+·SO42−·H2O, is the monohydrate of the commercially available compound `C4H7N5O·H2SO4·xH2O'. It is obtained by reprecipitation of C4H7N5O·H2SO4·xH2O from dilute sodium hydroxide solution with dilute sulfuric acid. The crystal structure of anhydrous 2,4,5-tri­amino-1,6-di­hydro­pyrimidin-6-one sulfate is known, although called by the authors 5-amminium-6-amino-isocytosinium sulfate [Bieri et al. (1993). Private communication (refcode HACDEU). CCDC, Cambridge, England]. In the structure, the sulfate group is deprotonated, whereas one of the amino groups is protonated (R2C—NH3+) and one is rearranged to a protonated imine group (R2C=NH2+). This arrangement is very similar to the known crystal structure of the anhydrate. Several tautomeric forms of the investigated mol­ecule are possible, which leads to questionable proton attributions. The measured data allowed the location of all hydrogen atoms from the residual electron density. In the crystal, ions and water mol­ecules are linked into a three-dimensional network by N—H⋯O and O—H⋯O hydrogen bonds.




mini

Dodecan-1-aminium sulfate trihydrate

The asymmetric unit of the title salt, 2C12H28N+·SO42−·3H2O, contains two n-do­decyl­ammonium cations, one sulfate anion and three water mol­ecules. In the crystal, N—H⋯O hydrogen bonds link the cations and anions into layers parallel to (100). These layers are further connected through O—H⋯O hydrogen-bonding inter­actions involving the sulfate ions and the isolated water mol­ecules. The three-dimensional structure can also be considered as the superposition of thin inorganic layers of SO42− anions and thick layers of alkyl­ammonium cations perpendicular to the c axis.




mini

N,N,N-Trimethyl-1-[4-(pyridin-2-yl)phen­yl]meth­anaminium hexa­fluorido­phosphate

In the cation of the title mol­ecular salt, C15H19N2+·PF6−, the dihedral angle between the benzene and pyridine rings is 38.21 (10)°. In the crystal, weak C—H⋯F inter­actions arising from methyl and methyl­ene groups adjacent to the quaternary N atom generate (001) sheets.




mini

Benzene-1,2-diaminium bis­(4-methyl­benzene-1-sulfonate)

The structure of the title salt, C6H10N22+·2C7H7O3S−, consists of a unique benzene-1,2-diaminium dication charge balanced by a pair of crystallographically independent 4-methyl­benzene-1-sulfonate anions. The cations and anions are inter­linked by several N—H⋯O hydrogen bonds.




mini

Structure and Hirshfeld surface analysis of the salt N,N,N-trimethyl-1-(4-vinyl­phen­yl)methanaminium 4-vinyl­benzene­sulfonate

In the title compound, the asymmetric unit comprises an N,N,N-trimethyl-1-(4-vinyl­phen­yl)methanaminium cation and a 4-vinyl­benzene­sulfonate anion, C12H18N+·C8H7O3S−. The salt has a polymerizable vinyl group attached to both the cation and the anion. The methanaminium and vinyl substituents on the benzene ring of the cation subtend angles of 86.6 (3) and 10.5 (9)° to the ring plane, while the anion is planar excluding the sulfonate O atoms. The vinyl substituent on the benzene ring of the cation is disordered over two sites with a refined occupancy ratio of 0.542 (11):0.458 (11). In the crystal, C—H⋯O hydrogen bonds dominate the packing and combine with a C—H⋯π(ring) contact to stack the cations and anions along the a-axis direction. Hirshfeld surface analysis of the salt and of the individual cation and anion components is also reported.




mini

Crystal structure and Hirshfeld surface analysis of (E)-3-[(4-chloro­benzyl­idene)amino]-5-phenyl­thia­zolidin-2-iminium bromide

The title salt, C16H15ClN3S+·Br−, is isotypic with (E)-3-[(4-fluoro­benzyl­idene)amino]-5-phenyl­thia­zolidin-2-iminium bromide [Khalilov et al. (2019). Acta Cryst. E75, 662–666]. In the cation of the title salt, the atoms of the phenyl ring attached to the central thia­zolidine ring and the atom joining the thia­zolidine ring to the benzene ring are disordered over two sets of sites with occupancies of 0.570 (3) and 0.430 (3). The major and minor components of the disordered thia­zolidine ring adopt slightly distorted envelope conformations, with the C atom bearing the phenyl ring as the flap atom. In the crystal, centrosymmetrically related cations and anions are linked into dimeric units via N—H⋯Br hydrogen bonds, which are further connected by weak C—H⋯Br contacts into chains parallel to the a axis. Furthermore, not existing in the earlier report of (E)-3-[(4-fluoro­benzyl­idene)amino]-5-phenyl­thia­zolidin-2-iminium bromide, C—H⋯π inter­actions and π–π stacking inter­actions [centroid-to-centroid distance = 3.897 (2) Å] between the major components of the disordered phenyl ring contribute to the stabilization of the mol­ecular packing. Hirshfeld surface analysis and two-dimensional fingerprint plots indicate that the most important contributions for the crystal packing are from H⋯H (30.5%), Br⋯H/H⋯Br (21.2%), C⋯H/H⋯C (19.2%), Cl⋯H/H⋯Cl (13.0%) and S⋯H/H⋯S (5.0%) inter­actions.




mini

The structure and Hirshfeld surface analysis of the salt 3-methacryl­amido-N,N,N-tri­methyl­propan-1-aminium 2-acryl­amido-2-methyl­propane-1-sulfonate

The title salt, C10H21N2O+·C7H12NO4S−, comprises a 3-methacryl­amido-N,N,N-tri­methyl­propan-1-aminium cation and a 2-acryl­amido-2-methyl­propane-1-sulfonate anion. The salt crystallizes with two unique cation–anion pairs in the asymmetric unit of the ortho­rhom­bic unit cell. The crystal studied was an inversion twin with a 0.52 (4):0.48 (4) domain ratio. In the crystal, the cations and anions stack along the b-axis direction and are linked by an extensive series of N—H⋯O and C—H⋯O hydrogen bonds, forming a three-dimensional network. Hirshfeld surface analysis was carried out on both the asymmetric unit and the two individual salts. The contribution of inter­atomic contacts to the surfaces of the individual cations and anions are also compared.




mini

Crystal structure and Hirshfeld surface analysis of 3-amino-5-phenyl­thia­zolidin-2-iminium bromide

In the cation of the title salt, C9H12N3S+·Br−, the thia­zolidine ring adopts an envelope conformation with the C atom adjacent to the phenyl ring as the flap. In the crystal, N—H⋯Br hydrogen bonds link the components into a three-dimensional network. Weak π–π stacking inter­actions between the phenyl rings of adjacent cations also contribute to the mol­ecular packing. A Hirshfeld surface analysis was conducted to qu­antify the contributions of the different inter­molecular inter­actions and contacts.




mini

Crystal structure and Hirshfeld surface analysis of (E)-3-(benzyl­idene­amino)-5-phenyl­thia­zolidin-2-iminium bromide

The central thia­zolidine ring of the title salt, C16H16N3S+·Br−, adopts an envelope conformation, with the C atom bearing the phenyl ring as the flap atom. In the crystal, the cations and anions are linked by N—H⋯Br hydrogen bonds, forming chains parallel to the b-axis direction. Hirshfeld surface analysis and two-dimensional fingerprint plots indicate that the most important contributions to the crystal packing are from H⋯H (46.4%), C⋯H/H⋯C (18.6%) and H⋯Br/Br⋯H (17.5%) inter­actions.




mini

A routine for the determination of the microstructure of stacking-faulted nickel cobalt aluminium hydroxide precursors for lithium nickel cobalt aluminium oxide battery materials

The microstructures of six stacking-faulted industrially produced cobalt- and aluminium-bearing nickel layered double hydroxide (LDH) samples that are used as precursors for Li(Ni1−x−yCoxAly)O2 battery materials were investigated. Shifts from the brucite-type (AγB)□(AγB)□ stacking pattern to the CdCl2-type (AγB)□(CβA)□(BαC)□ and the CrOOH-type (BγA)□(AβC)□(CαB)□ stacking order, as well as random intercalation of water molecules and carbonate ions, were found to be the main features of the microstructures. A recursive routine for generating and averaging supercells of stacking-faulted layered substances implemented in the TOPAS software was used to calculate diffraction patterns of the LDH phases as a function of the degree of faulting and to refine them against the measured diffraction data. The microstructures of the precursor materials were described by a model containing three parameters: transition probabilities for generating CdCl2-type and CrOOH-type faults and a transition probability for the random intercalation of water/carbonate layers. Automated series of simulations and refinements were performed, in which the transition probabilities were modified incrementally and thus the microstructures optimized by a grid search. All samples were found to exhibit the same fraction of CdCl2-type and CrOOH-type stacking faults, which indicates that they have identical Ni, Co and Al contents. Different degrees of interstratification faulting were determined, which could be correlated to different heights of intercalation-water-related mass-loss steps in the thermal analyses.




mini

Improving grazing-incidence small-angle X-ray scattering–computed tomography images by total variation minimization

Grazing-incidence small-angle X-ray scattering (GISAXS) coupled with computed tomography (CT) has enabled the visualization of the spatial distribution of nanostructures in thin films. 2D GISAXS images are obtained by scanning along the direction perpendicular to the X-ray beam at each rotation angle. Because the intensities at the q positions contain nanostructural information, the reconstructed CT images individually represent the spatial distributions of this information (e.g. size, shape, surface, characteristic length). These images are reconstructed from the intensities acquired at angular intervals over 180°, but the total measurement time is prolonged. This increase in the radiation dosage can cause damage to the sample. One way to reduce the overall measurement time is to perform a scanning GISAXS measurement along the direction perpendicular to the X-ray beam with a limited interval angle. Using filtered back-projection (FBP), CT images are reconstructed from sinograms with limited interval angles from 3 to 48° (FBP-CT images). However, these images are blurred and have a low image quality. In this study, to optimize the CT image quality, total variation (TV) regularization is introduced to minimize sinogram image noise and artifacts. It is proposed that the TV method can be applied to downsampling of sinograms in order to improve the CT images in comparison with the FBP-CT images.




mini

Orientational disorder of monomethyl-quinacridone investigated by Rietveld refinement, structure refinement to the pair distribution function and lattice-energy minimizations

The crystal structure of the organic pigment 2-monomethyl-quinacridone (Pigment Red 192, C21H14N2O2) was solved from X-ray powder diffraction data. The resulting average structure is described in space group Poverline 1, Z = 1 with the molecule on the inversion centre. The molecules are arranged in chains. The molecules, which have no inversion symmetry, show orientational head-to-tail disorder. In the average structure, the methyl group is disordered and found on both ends of the molecule with an occupancy of 0.5 each. The disorder and the local structure were investigated using various ordered structural models. All models were analysed by three approaches: Rietveld refinement, structure refinement to the pair distribution function (PDF) and lattice-energy minimization. All refinements converged well. The Rietveld refinement provided the average structure and gave no indication of a long-range ordering. The refinement to the PDF turned out to be very sensitive to small structural details, giving insight into the local structure. The lattice-energy minimizations revealed a significantly preferred local ordering of neighbouring molecules along the [0ar 11] direction. In conclusion, all methods indicate a statistical orientational disorder with a preferred parallel orientation of molecules in one direction. Additionally, electron diffraction revealed twinning and faint diffuse scattering.




mini

Orientational disorder of mono­methyl-quinacridone investigated by Rietveld refinement, structure refinement to the pair-distribution function and lattice-energy minimizations

The crystal structure of the nanocrystalline pigment mono­methyl-quinacridone was solved from X-ray powder data. The orientational disorder was investigated using Rietveld refinements, structure refinement to the pair-distribution function, and lattice-energy minimizations of various ordered structural models.




mini

New Hall of Human Origins points to environmental change as major force in evolution of hominins

Based on decades of cutting-edge research, the 15,000-square-foot Hall of Human Origins offers visitors an immersive, interactive journey through 6 million years of human evolution spelling out how defining characteristics of the human species have evolved during millions of years in response to a changing world.

The post New Hall of Human Origins points to environmental change as major force in evolution of hominins appeared first on Smithsonian Insider.




mini

Skeletal casts of early hominin ancestor from Africa donated to National Museum of Natural History

A. sediba was discovered in 2008 in the Malapa Cave at the Cradle of Humankind World Heritage Site located outside Johannesburg.

The post Skeletal casts of early hominin ancestor from Africa donated to National Museum of Natural History appeared first on Smithsonian Insider.