un

Compressible Euler limit from Boltzmann equation with complete diffusive boundary condition in half-space

Ning Jiang, Yi-Long Luo and Shaojun Tang
Trans. Amer. Math. Soc. 377 (), 5323-5359.
Abstract, references and article information




un

Smoothness and Lévy concentration function inequalities for distributions of random diagonal sums

Bero Roos
Theor. Probability and Math. Statist. 111 (), 137-151.
Abstract, references and article information




un

A Markovian Gauss inequality for asymmetric deviations from the mode of symmetric unimodal distributions

Chris A.J. Klaassen
Theor. Probability and Math. Statist. 111 (), 9-19.
Abstract, references and article information




un

Unconditional Cesàro convergence of sequences of super-reflexive valued random variables

Abdessamad Dehaj and Mohamed Guessous
Theor. Probability and Math. Statist. 111 (), 1-8.
Abstract, references and article information




un

????²-spectrum, growth indicator function and critical exponent on locally symmetric spaces

Lasse L. Wolf and Hong-Wei Zhang
Proc. Amer. Math. Soc. 152 (), 5445-5453.
Abstract, references and article information










un

Even singular integral operators that are well behaved on a purely unrectifiable set

Benjamin Jaye and Manasa N. Vempati
Proc. Amer. Math. Soc. 152 (), 5105-5116.
Abstract, references and article information





un

Threshold approximations for the exponential of a factorized operator family with correctors taken into account

T. A. Suslina
St. Petersburg Math. J. 35 (), 537-570.
Abstract, references and article information





un

Remembering Richard Kenneth Guy: Games and Taking on Mountains




un

Am I really uninfected? COVID-19 and rapid testing




un

Lost (and found) in space





un

Reply to The Rainbow Round Game

outrageous toes posted a reply:

Hi everyone I am Emily Naomi wanna give a big thanks to this wonderful psychic for bringing my husband back to me.. I never really believed in magic spells or anything spiritual but a trusted friend opened my eyes to the truth about life. My marriage was heading to divorce a few months ago. I was so confused and devastated with no clue or help on how to prevent it, till I was introduced to this psychic Priest Ray that did a love spell and broke every spiritual distraction from my marriage. A day later my husband started showing me love and care even better than it used to be, he’s ready to talk things through and find ways for us to stay happy. It’s such a miracle that my marriage can be saved so quickly without stress. You can also contact him for help by email psychicspellshrine@gmail.com or you can also visit his website: psychicspellshrine.wixsite.com/my-site




un

Ferrini-Mundy Named to National Science Board

Math educator Joan Ferrini-Mundy was one of eight new members named to the National Science Board, announced by President Biden on October 15.

Joan Ferrini-Mundy
Credit: University of Maine

Ferrini-Mundy is the 21st president of the University of Maine and its regional campus, the University of Maine at Machias. She is also Vice Chancellor for Research and Innovation for the University of Maine System. Prior to her presidency, Ferrini-Mundy was the chief operating officer of the National Science Foundation (NSF), which followed six years leading NSF’s Directorate for Education and Human Resources.

An active leader in the math community, Ferrini-Mundy is immediate past chair of the Conference Board of the Mathematical Sciences (CBMS) and a member of the Transforming Post-Secondary Education in Mathematics (TPSE) board.

The National Science Board was established via 1950 legislation that created the National Science Foundation. The Board, together with the NSF Director, helps determine the NSF’s strategic direction. It also serves as an independent body of advisors to both the President and the Congress on policy matters related to science and engineering, including education in science and engineering. The Board consists of 25 members, appointed by the President. Members serve six-year terms and one-third are appointed every two years.

Contact: AMS Communications

* * * * *

The American Mathematical Society is dedicated to advancing research and connecting the diverse global mathematical community through our publications, meetings and conferences, MathSciNet, professional services, advocacy, and awareness programs.




un

If You Think Blocking People Over Political Views Is Petty, Just Wait Until You See The Other Reasons People Shared




un

US Navy destroyers unscathed after fighting off a complex attack of cruise and ballistic missiles and exploding drones




un

Warren Buffett Told Young Investors To Buy Homes Instead Of Stocks, Calling 30-Year Mortgages 'A Terrific Deal'




un

Woman tells Dave Ramsey that her husband has been unemployed for 13 years — and he delivered some hard truths




un

Apple to announce AI wall tablet as soon as March, Bloomberg News reports




un

Community scrambles after top insurance company refuses to pay out homeowners following destructive hurricane: 'Denied or closed with no payment'




un

Scientists uncover a magnetic misunderstanding about Uranus




un

Passenger Sees Worker Unscrewing Plane Part Before Takeoff




un

Ski resort announces immediate closure as relentless threat brings fewer visitors and increases debts: 'I feel like I'm in mourning'




un

Northern California man goes missing after Uber ride from Bay Area to Placer County




un

DJ Specs gives up university to juggle music

In 2020, when Anthony Parker, known to his fans as DJ Specs, decided to trade his textbooks for turntables, he didn't just pivot his career -- he pivoted his entire life. At just 25 years old, this Kingston-born DJ has already carved out a space...




un

Childhood rape survivor earns university degree

Earlier this month when Alicea Samaru-Brown walked across the stage at The University of the West Indies (UWI) graduation, she beamed with pride. Her husband, Dennis Brown, and her son, Orlando Brown, cheered the loudest from the audience and this...




un

Gunmen shoot 18-y-o in leg

An 18-year-old woman has been left with a gunshot wound to her left leg following a shooting incident in Central Village in St Catherine Sunday night.




un

‘Dead has no power’ - Mortician speaks on faith and ‘spirits’ in the funeral home

As I walked into the embalming room at Jones Funeral Home and Supplies in Kingston on Sunday, I immediately felt the weight of the room. The air was thick with the scent of various chemicals used in the trade permeating the space. Tools such as...




un

St Thomas residents plan proper funeral for Donovan

In a touching display of compassion and solidarity, a group of St Thomas residents has come together to organise the funeral of a a well-known and beloved man with intellectual challenges. For years, Donovan Sinclair was a familiar face in the...




un

SAS Notes for SAS®9 - 66562: Negative values appear for distinct counts in SAS Visual Analytics reports

When using the distinct count function in SAS Visual Analytics reports, you might find that a negative value is displayed instead of the actual distinct count: imgalt="distinct_count" src="{fusion_66562_1_disti




un

A trade-off switch of two immunological memories in Caenorhabditis elegans reinfected by bacterial pathogens [Microbiology]

Recent studies have suggested that innate immune responses exhibit characteristics associated with memory linked to modulations in both vertebrates and invertebrates. However, the diverse evolutionary paths taken, particularly within the invertebrate taxa, should lead to similarly diverse innate immunity memory processes. Our understanding of innate immune memory in invertebrates primarily comes from studies of the fruit fly Drosophila melanogaster, the generality of which is unclear. Caenorhabditis elegans typically inhabits soil harboring a variety of fatal microbial pathogens; for this invertebrate, the innate immune system and aversive behavior are the major defensive strategies against microbial infection. However, their characteristics of immunological memory remains infantile. Here we discovered an immunological memory that promoted avoidance and suppressed innate immunity during reinfection with bacteria, which we revealed to be specific to the previously exposed pathogens. During this trade-off switch of avoidance and innate immunity, the chemosensory neurons AWB and ADF modulated production of serotonin and dopamine, which in turn decreased expression of the innate immunity-associated genes and led to enhanced avoidance via the downstream insulin-like pathway. Therefore, our current study profiles the immune memories during C. elegans reinfected by pathogenic bacteria and further reveals that the chemosensory neurons, the neurotransmitter(s), and their associated molecular signaling pathways are responsible for a trade-off switch between the two immunological memories.




un

Development of a novel mammalian display system for selection of antibodies against membrane proteins [Immunology]

Reliable, specific polyclonal and monoclonal antibodies are important tools in research and medicine. However, the discovery of antibodies against their targets in their native forms is difficult. Here, we present a novel method for discovery of antibodies against membrane proteins in their native configuration in mammalian cells. The method involves the co-expression of an antibody library in a population of mammalian cells that express the target polypeptide within a natural membrane environment on the cell surface. Cells that secrete a single-chain fragment variable (scFv) that binds to the target membrane protein thereby become self-labeled, enabling enrichment and isolation by magnetic sorting and FRET-based flow sorting. Library sizes of up to 109 variants can be screened, thus allowing campaigns of naïve scFv libraries to be selected against membrane protein antigens in a Chinese hamster ovary cell system. We validate this method by screening a synthetic naïve human scFv library against Chinese hamster ovary cells expressing the oncogenic target epithelial cell adhesion molecule and identify a panel of three novel binders to this membrane protein, one with a dissociation constant (KD) as low as 0.8 nm. We further demonstrate that the identified antibodies have utility for killing epithelial cell adhesion molecule–positive cells when used as a targeting domain on chimeric antigen receptor T cells. Thus, we provide a new tool for identifying novel antibodies that act against membrane proteins, which could catalyze the discovery of new candidates for antibody-based therapies.




un

Quantitative phosphoproteomic analysis reveals involvement of PD-1 in multiple T cell functions [Signal Transduction]

Programmed cell death protein 1 (PD-1) is a critical inhibitory receptor that limits excessive T cell responses. Cancer cells have evolved to evade these immunoregulatory mechanisms by upregulating PD-1 ligands and preventing T cell–mediated anti-tumor responses. Consequently, therapeutic blockade of PD-1 enhances T cell–mediated anti-tumor immunity, but many patients do not respond and a significant proportion develop inflammatory toxicities. To improve anti-cancer therapy, it is critical to reveal the mechanisms by which PD-1 regulates T cell responses. We performed global quantitative phosphoproteomic interrogation of PD-1 signaling in T cells. By complementing our analysis with functional validation assays, we show that PD-1 targets tyrosine phosphosites that mediate proximal T cell receptor signaling, cytoskeletal organization, and immune synapse formation. PD-1 ligation also led to differential phosphorylation of serine and threonine sites within proteins regulating T cell activation, gene expression, and protein translation. In silico predictions revealed that kinase/substrate relationships engaged downstream of PD-1 ligation. These insights uncover the phosphoproteomic landscape of PD-1–triggered pathways and reveal novel PD-1 substrates that modulate diverse T cell functions and may serve as future therapeutic targets. These data are a useful resource in the design of future PD-1–targeting therapeutic approaches.




un

Carnosine synthase deficiency is compatible with normal skeletal muscle and olfactory function but causes reduced olfactory sensitivity in aging mice [Developmental Biology]

Carnosine (β-alanyl-l-histidine) and anserine (β-alanyl-3-methyl-l-histidine) are abundant peptides in the nervous system and skeletal muscle of many vertebrates. Many in vitro and in vivo studies demonstrated that exogenously added carnosine can improve muscle contraction, has antioxidant activity, and can quench various reactive aldehydes. Some of these functions likely contribute to the proposed anti-aging activity of carnosine. However, the physiological role of carnosine and related histidine-containing dipeptides (HCDs) is not clear. In this study, we generated a mouse line deficient in carnosine synthase (Carns1). HCDs were undetectable in the primary olfactory system and skeletal muscle of Carns1-deficient mice. Skeletal muscle contraction in these mice, however, was unaltered, and there was no evidence for reduced pH-buffering capacity in the skeletal muscle. Olfactory tests did not reveal any deterioration in 8-month-old mice lacking carnosine. In contrast, aging (18–24-month-old) Carns1-deficient mice exhibited olfactory sensitivity impairments that correlated with an age-dependent reduction in the number of olfactory receptor neurons. Whereas we found no evidence for elevated levels of lipoxidation and glycation end products in the primary olfactory system, protein carbonylation was increased in the olfactory bulb of aged Carns1-deficient mice. Taken together, these results suggest that carnosine in the olfactory system is not essential for information processing in the olfactory signaling pathway but does have a role in the long-term protection of olfactory receptor neurons, possibly through its antioxidant activity.




un

12th International Forum on Illegal, Unreported and Unregulated Fishing

12th International Forum on Illegal, Unreported and Unregulated Fishing 18 May 2020 TO 22 May 2020 — 2:00PM TO 3:30PM Anonymous (not verified) 27 September 2019

The Chatham House 12th International Forum on Illegal, Unreported and Unregulated (IUU) Fishing took place over the week of 18–22 May 2020.

Due to COVID-19, it took the form of a series of daily webinars. The digital conference, which comprised six sessions and three keynote speeches, brought together more than 750 representatives of international organizations, governments, civil society organizations, businesses and academia – from 87 different countries – to discuss the latest initiatives, regulations and research in the areas of fisheries governance and trade in illegal fish products.




un

Identification and biochemical characterization of Asp t 36, a new fungal allergen from Aspergillus terreus [Protein Structure and Folding]

Aspergillus terreus is an allergenic fungus, in addition to causing infections in both humans and plants. However, the allergens in this fungus are still unknown, limiting the development of diagnostic and therapeutic strategies. We used a proteomic approach to search for allergens, identifying 16 allergens based on two-dimensional immunoblotting with A. terreus susceptible patient sera. We further characterized triose-phosphate isomerase (Asp t 36), one of the dominant IgE (IgE)-reactive proteins. The gene was cloned and expressed in Escherichia coli. Phylogenetic analysis showed Asp t 36 to be highly conserved with close similarity to the triose-phosphate isomerase protein sequence from Dermatophagoides farinae, an allergenic dust mite. We identified four immunodominant epitopes using synthetic peptides, and mapped them on a homology-based model of the tertiary structure of Asp t 36. Among these, two were found to create a continuous surface patch on the 3D structure, rendering it an IgE-binding hotspot. Biophysical analysis indicated that Asp t 36 shows similar secondary structure content and temperature sensitivity with other reported triose-phosphate isomerase allergens. In vivo studies using a murine model displayed that the recombinant Asp t 36 was able to stimulate airway inflammation, as demonstrated by an influx of eosinophils, goblet cell hyperplasia, elevated serum Igs, and induction of Th2 cytokines. Collectively, our results reveal the immunogenic property of Asp t 36, a major allergen from A. terreus, and define a new fungal allergen more broadly. This allergen could serve as a potent candidate for investigating component resolved diagnosis and immunotherapy.




un

A structural and kinetic survey of GH5_4 endoglucanases reveals determinants of broad substrate specificity and opportunities for biomass hydrolysis [Protein Structure and Folding]

Broad-specificity glycoside hydrolases (GHs) contribute to plant biomass hydrolysis by degrading a diverse range of polysaccharides, making them useful catalysts for renewable energy and biocommodity production. Discovery of new GHs with improved kinetic parameters or more tolerant substrate-binding sites could increase the efficiency of renewable bioenergy production even further. GH5 has over 50 subfamilies exhibiting selectivities for reaction with β-(1,4)–linked oligo- and polysaccharides. Among these, subfamily 4 (GH5_4) contains numerous broad-selectivity endoglucanases that hydrolyze cellulose, xyloglucan, and mixed-linkage glucans. We previously surveyed the whole subfamily and found over 100 new broad-specificity endoglucanases, although the structural origins of broad specificity remained unclear. A mechanistic understanding of GH5_4 substrate specificity would help inform the best protein design strategies and the most appropriate industrial application of broad-specificity endoglucanases. Here we report structures of 10 new GH5_4 enzymes from cellulolytic microbes and characterize their substrate selectivity using normalized reducing sugar assays and MS. We found that GH5_4 enzymes have the highest catalytic efficiency for hydrolysis of xyloglucan, glucomannan, and soluble β-glucans, with opportunistic secondary reactions on cellulose, mannan, and xylan. The positions of key aromatic residues determine the overall reaction rate and breadth of substrate tolerance, and they contribute to differences in oligosaccharide cleavage patterns. Our new composite model identifies several critical structural features that confer broad specificity and may be readily engineered into existing industrial enzymes. We demonstrate that GH5_4 endoglucanases can have broad specificity without sacrificing high activity, making them a valuable addition to the biomass deconstruction toolset.




un

Unique active-site and subsite features in the arabinogalactan-degrading GH43 exo-{beta}-1,3-galactanase from Phanerochaete chrysosporium [Enzymology]

Arabinogalactan proteins (AGPs) are plant proteoglycans with functions in growth and development. However, these functions are largely unexplored, mainly because of the complexity of the sugar moieties. These carbohydrate sequences are generally analyzed with the aid of glycoside hydrolases. The exo-β-1,3-galactanase is a glycoside hydrolase from the basidiomycete Phanerochaete chrysosporium (Pc1,3Gal43A), which specifically cleaves AGPs. However, its structure is not known in relation to its mechanism bypassing side chains. In this study, we solved the apo and liganded structures of Pc1,3Gal43A, which reveal a glycoside hydrolase family 43 subfamily 24 (GH43_sub24) catalytic domain together with a carbohydrate-binding module family 35 (CBM35) binding domain. GH43_sub24 is known to lack the catalytic base Asp conserved among other GH43 subfamilies. Our structure in combination with kinetic analyses reveals that the tautomerized imidic acid group of Gln263 serves as the catalytic base residue instead. Pc1,3Gal43A has three subsites that continue from the bottom of the catalytic pocket to the solvent. Subsite −1 contains a space that can accommodate the C-6 methylol of Gal, enabling the enzyme to bypass the β-1,6–linked galactan side chains of AGPs. Furthermore, the galactan-binding domain in CBM35 has a different ligand interaction mechanism from other sugar-binding CBM35s, including those that bind galactomannan. Specifically, we noted a Gly → Trp substitution, which affects pyranose stacking, and an Asp → Asn substitution in the binding pocket, which recognizes β-linked rather than α-linked Gal residues. These findings should facilitate further structural analysis of AGPs and may also be helpful in engineering designer enzymes for efficient biomass utilization.




un

Seeded fibrils of the germline variant of human {lambda}-III immunoglobulin light chain FOR005 have a similar core as patient fibrils with reduced stability [Molecular Biophysics]

Systemic antibody light chains (AL) amyloidosis is characterized by deposition of amyloid fibrils derived from a particular antibody light chain. Cardiac involvement is a major risk factor for mortality. Using MAS solid-state NMR, we studied the fibril structure of a recombinant light chain fragment corresponding to the fibril protein from patient FOR005, together with fibrils formed by protein sequence variants that are derived from the closest germline (GL) sequence. Both analyzed fibril structures were seeded with ex-vivo amyloid fibrils purified from the explanted heart of this patient. We find that residues 11-42 and 69-102 adopt β-sheet conformation in patient protein fibrils. We identify arginine-49 as a key residue that forms a salt bridge to aspartate-25 in the patient protein fibril structure. In the germline sequence, this residue is replaced by a glycine. Fibrils from the GL protein and from the patient protein harboring the single point mutation R49G can be both heterologously seeded using patient ex-vivo fibrils. Seeded R49G fibrils show an increased heterogeneity in the C-terminal residues 80-102, which is reflected by the disappearance of all resonances of these residues. By contrast, residues 11-42 and 69-77, which are visible in the MAS solid-state NMR spectra, show 13Cα chemical shifts that are highly like patient fibrils. The mutation R49G thus induces a conformational heterogeneity at the C terminus in the fibril state, whereas the overall fibril topology is retained. These findings imply that patient mutations in FOR005 can stabilize the fibril structure.




un

Determinants of replication protein A subunit interactions revealed using a phosphomimetic peptide [Molecular Biophysics]

Replication protein A (RPA) is a eukaryotic ssDNA-binding protein and contains three subunits: RPA70, RPA32, and RPA14. Phosphorylation of the N-terminal region of the RPA32 subunit plays an essential role in DNA metabolism in processes such as replication and damage response. Phosphorylated RPA32 (pRPA32) binds to RPA70 and possibly regulates the transient RPA70-Bloom syndrome helicase (BLM) interaction to inhibit DNA resection. However, the structural details and determinants of the phosphorylated RPA32–RPA70 interaction are still unknown. In this study, we provide molecular details of the interaction between RPA70 and a mimic of phosphorylated RPA32 (pmRPA32) using fluorescence polarization and NMR analysis. We show that the N-terminal domain of RPA70 (RPA70N) specifically participates in pmRPA32 binding, whereas the unphosphorylated RPA32 does not bind to RPA70N. Our NMR data revealed that RPA70N binds pmRPA32 using a basic cleft region. We also show that at least 6 negatively charged residues of pmRPA32 are required for RPA70N binding. By introducing alanine mutations into hydrophobic positions of pmRPA32, we found potential points of contact between RPA70N and the N-terminal half of pmRPA32. We used this information to guide docking simulations that suggest the orientation of pmRPA32 in complex with RPA70N. Our study demonstrates detailed features of the domain-domain interaction between RPA70 and RPA32 upon phosphorylation. This result provides insight into how phosphorylation tunes transient bindings between RPA and its partners in DNA resection.