tal

Redetermination of germacrone type II based on single-crystal X-ray data

The extraction and purification procedures, crystallization and crystal structure refinement (single-crystal X-ray data) of germacrone type II, C15H22O, are presented. The structural results are compared with a previous powder X-ray synchrotron study [Kaduk et al. (2022). Powder Diffr. 37, 98–104], revealing significant improvements in terms of accuracy and precision. Hirshfeld atom refinement (HAR), as well as Hirshfeld surface analysis, give insight into the inter­molecular inter­actions of germacrone type II.




tal

α-d-2'-De­oxy­adenosine, an irradiation product of canonical DNA and a com­ponent of anomeric nucleic acids: crystal structure, packing and Hirshfeld surface analysis

α-d-2'-De­oxy­ribonucleosides are products of the γ-irradiation of DNA under oxygen-free conditions and are constituents of anomeric DNA. They are not found as natural building blocks of canonical DNA. Reports on their conformational properties are limited. Herein, the single-crystal X-ray structure of α-d-2'-de­oxy­adenosine (α-dA), C10H13N5O3, and its conformational parameters were determined. In the crystalline state, α-dA forms two conformers in the asymmetric unit which are connected by hydro­gen bonds. The sugar moiety of each conformer is arranged in a `clamp'-like fashion with respect to the other conformer, forming hydro­gen bonds to its nucleobase and sugar residue. For both conformers, a syn conformation of the nucleobase with respect to the sugar moiety was found. This is contrary to the anti conformation usually preferred by α-nucleosides. The sugar conformation of both conformers is C2'-endo, and the 5'-hydroxyl groups are in a +sc orientation, probably due to the hydro­gen bonds formed by the conformers. The formation of the supra­molecular assembly of α-dA is controlled by hydro­gen bonding and stacking inter­actions, which was verified by a Hirshfeld and curvedness surface analysis. Chains of hydro­gen-bonded nucleobases extend parallel to the b direction and are linked to equivalent chains by hydro­gen bonds involving the sugar moieties to form a sheet. A com­parison of the solid-state structures of the anomeric 2'-de­oxy­adenosines revealed significant differences of their conformational parameters.




tal

Crystal structure and analytical profile of 1,2-di­phenyl-2-pyrrolidin-1-yl­ethanone hydro­chloride or `α-D2PV': a synthetic cathinone seized by law enforcement, along with its diluent sugar, myo-inositol

A confiscated package of street drugs was characterized by the usual mass spectral (MS) and FT–IR analyses. The confiscated powder material was highly crystalline and was found to consist of two very different species, accidentally of sizes convenient for X-ray diffraction. Thus, one each was selected and redundant com­plete sets of data were collected at 100 K using Cu Kα radiation. The selected crystals contained: (a) 1,2-diphenyl-2-(pyrrolidin-1-yl)ethanone hy­dro­chloride hemihydrate or 1-(2-oxo-1,2-di­phenyl­eth­yl)pyrrolidin-1-ium chloride hemihydrate, C18H20NO+·Cl−·0.5H2O, (I), a synthetic cathinone called `α-D2PV', and (b) the sugar myo-inositol, C6H12O6, (II), probably the only instance in which the drug and its diluent have been fully characterized from a single confiscated sample. Moreover, the structural details of both are rather attractive showing: (i) inter­esting hydrogen bonding observed in pairwise inter­actions by the drug mol­ecules, mediated by the chloride counter-anions and the waters of crystallization, and (ii) π–π inter­actions in the case of the phenyl rings of the drug which are of two different types, namely, π–π stacking and edge-to-π. Finally, the inositol crystallizes with Z' = 2 and the resulting diastereoisomers were examined by overlay techniques.




tal

Using synchrotron high-resolution powder X-ray diffraction for the structure determination of a new cocrystal formed by two active principle ingredients

The crystal structure of a new 1:1 cocrystal of carbamazepine and S-naproxen (C15H12N2O·C14H14O3) was solved from powder X-ray diffraction (PXRD). The PXRD pattern was measured at the high-resolution beamline CRISTAL at synchrotron SOLEIL (France). The structure was solved using Monte Carlo simulated annealing, then refined with Rietveld refinement. The positions of the H atoms were obtained from density functional theory (DFT) ground-state calculations. The symmetry is ortho­rhom­bic with the space group P212121 (No. 19) and the following lattice parameters: a = 33.5486 (9), b = 26.4223 (6), c = 5.3651 (10) Å and V = 4755.83 (19) Å3.




tal

Synthesis, crystal structure and in-silico evaluation of aryl­sul­fon­amide Schiff bases for potential activity against colon cancer

This report presents a comprehensive investigation into the synthesis and characterization of Schiff base com­pounds derived from benzene­sul­fon­amide. The synthesis process, involved the reaction between N-cyclo­amino-2-sulf­anil­amide and various substituted o-salicyl­aldehydes, resulted in a set of com­pounds that were subjected to rigorous characterization using advanced spectral techniques, including 1H NMR, 13C NMR and FT–IR spectroscopy, and single-crystal X-ray diffraction. Furthermore, an in-depth assessment of the synthesized com­pounds was conducted through Absorption, Distribution, Metabolism, Excretion and Toxicity (ADMET) analysis, in conjunction with docking studies, to elucidate their pharmacokinetic profiles and potential. Impressively, the ADMET analysis showcased encouraging drug-likeness properties of the newly synthesized Schiff bases. These computational findings were substanti­ated by mol­ecular properties derived from density functional theory (DFT) calculations using the B3LYP/6-31G* method within the Jaguar Module of Schrödinger 2023-2 from Maestro (Schrodinger LLC, New York, USA). The ex­plor­ation of frontier mol­ecular orbitals (HOMO and LUMO) enabled the computation of global reactivity descriptors (GRDs), encompassing charge separation (Egap) and global softness (S). Notably, within this analysis, one Schiff base, namely, 4-bromo-2-{N-[2-(pyr­rol­idine-1-sul­fonyl)phenyl]car­box­imid­oyl}phenol, 20, em­erged with the smallest charge separation (ΔEgap = 3.5780 eV), signifying heightened potential for biological properties. Conversely, 4-bromo-2-{N-[2-(piper­idine-1-sul­fonyl)phenyl]car­box­imid­oyl}phenol, 17, exhibited the largest charge separation (ΔEgap = 4.9242 eV), implying a relatively lower propensity for biological activity. Moreover, the synthesized Schiff bases displayed re­marke­able inhibition of tankyrase poly(ADP-ribose) polymerase enzymes, integral in colon cancer, surpassing the efficacy of a standard drug used for the same purpose. Additionally, their bioavailability scores aligned closely with established medications such as trifluridine and 5-fluoro­uracil. The ex­plor­ation of mol­ecular electrostatic potential through colour mapping delved into the electronic behaviour and reactivity tendencies intrinsic to this diverse range of mol­ecules.




tal

Relationship between synthesis method–crystal structure–melting properties in co­crystals: the case of caffeine–citric acid

The influence of the crystal synthesis method on the crystallographic structure of caffeine–citric acid co­crystals was analyzed thanks to the synthesis of a new polymorphic form of the cocrystal. In order to com­pare the new form to the already known forms, the crystal structure of the new cocrystal (C8H10N4O2·C6H8O7) was solved by powder X-ray diffraction thanks to synchrotron experiments. The structure determination was performed using `GALLOP', a recently developed hybrid approach based on a local optimization with a particle swarm optimizer, particularly powerful when applied to the structure resolution of materials of pharmaceutical inter­est, com­pared to classical Monte-Carlo simulated annealing. The final structure was obtained through Rietveld refinement, and first-principles density functional theory (DFT) calculations were used to locate the H atoms. The symmetry is triclinic with the space group Poverline{1} and contains one mol­ecule of caffeine and one mol­ecule of citric acid per asymmetric unit. The crystallographic structure of this cocrystal involves different hydrogen-bond associations com­pared to the already known structures. The analysis of these hydrogen bonds indicates that the cocrystal obtained here is less stable than the co­crystals already identified in the literature. This analysis is confirmed by the determination of the melting point of this cocrystal, which is lower than that of the previously known co­crystals.




tal

Crystal structures, electron spin resonance, and thermogravimetric analysis of three mixed-valence copper cyanide polymers

The crystal structures of three mixed-valence copper cyanide alkanolamine polymers are presented, together with thermogravimetric analysis (TGA) and electron spin resonance (ESR) data. In all three structures, a CuII moiety on a crystallographic center of symmetry is coordinated by two alkanolamines and links two CuICN chains via cyanide bridging groups to form diperiodic sheets. The sheets are linked together by cuprophilic CuI–CuI inter­actions to form a three-dimensional network. In poly[bis­(μ-3-amino­propano­lato)tetra-μ-cyan­ido-dicopper(I)dicopper(II)], [Cu4(CN)4(C3H8NO)2]n, 1, propano­lamine bases have lost their hydroxyl H atoms and coordinate as chelates to two CuII atoms to form a dimeric CuII moiety bridged by the O atoms of the bases with CuII atoms in square-planar coordination. The ESR spectrum is very broad, indicating exchange between the two CuII centers. In poly[bis­(2-amino­pro­pan­ol)tetra-μ-cyanido-dicopper(I)copper(II)], [Cu3(CN)4(C3H9NO)2]n, 2, and poly[bis­(2-amino­ethanol)tetra-μ-cyanido-dicopper(I)copper(II)], [Cu3(CN)4(CH7NO)2]n, 3, a single CuII atom links the CuICN chains together via CN bridges. The chelating alkanolamines are not ionized, and the OH groups form rather long bonds in the axial positions of the octa­hedrally coordinated CuII atoms. The coordination geometries of CuII in 2 and 3 are almost identical, except that the Cu—O distances are longer in 2 than in 3, which may explain their somewhat different ESR spectra. Thermal decom­position in 2 and 3, but not in 1, begins with the loss of HCN(g), and this can be correlated with the presence of OH protons on the ligands in 2 and 3, which are not present in 1.




tal

Rebuttal to the article Pathological crystal structures

A section in the Acta Crystallographica Section C article by Raymond & Girolami [Acta Cryst. (2023), C79, 445–455] stated that the product of the reaction of [(Cp*Rh)2(μ-OH)3]+ (Cp* is 1,2,3,4,5-penta­methyl­cyclo­penta­diene) with 1-methyl­thymine (1-MT) at pH 10 and 60 °C, to synthesize the anionic com­ponent [RhI(η1-N3-1-MT)2]−, was not an RhI com­plex, but rather an AgI com­plex, due to the use of silver triflate (AgOTf) to remove Cl− from [Cp*RhCl2]2 to synthesize [Cp*Rh(H2O)3](OTf)2, a water-soluble crystalline com­plex. We will clearly show that this premise, as stated, is invalid, while the authors have simply avoided several important facts, including that Cp*OH, a reductive elimination product, at pH 10 and 60 °C, was unequivocally identified, thus leading to the RhI anionic com­ponent [RhI(η1-N3-1-MT)2]−. More importantly, AgOH, from the reaction of NaOH at pH 10 with any potentially remaining AgOTf, after the AgCl was filtered off, would be insoluble in water. Furthermore, a control experiment with the inorganic com­plex Rh(OH)3, reacting with 1-methyl­thymine at pH 10, provided no product, and this bodes well for a similar fate with AgOTf and 1-methyl­thymine, i.e. at pH 10, AgOTf would again be converted to the water-insoluble AgOH; therefore, no reaction would occur! Finally, a 1H NMR spectroscopy experiment was carried out with synthesized and crystallized [Cp*Rh(H2O)3](OTf)2 in D2O at various pD values; at pD 8.65 no reaction took place, while at pD 13.6, and at 60 °C for 2 h, a reductive elimination reaction caused the precipitation of Cp*OH. The subsequent 1H NMR spectrum clearly demonstrated, in the absence of any AgI com­plexes, that the solution structure and the X-ray crystals in D2O were similar. A postulated mechanism for this novel anionic com­ponent structure, as published previously [Smith et al. (2014). Organometallics, 33, 2389–2404], will be presented, along with the experimental data, to insure the credibility of our results. We will also answer the comments in the response of Drs Raymond and Girolami to this rebuttal.




tal

Response to the rebuttal of the article Pathological crystal structures

We stand fully behind our earlier suggestion [Raymond & Girolami (2023). Acta Cryst. C79, 445–455] that the claim by Fish and co-workers [Chen et al. (1995). J. Am. Chem. Soc. 117, 9097–9098; Smith et al. (2014). Organometallics, 33, 2389–2404] of a linear two-coordinate rhodium(I) species is incorrect, and that the putative rhodium atom is in fact silver.




tal

Synthesis, characterization and structural analysis of com­plexes from 2,2':6',2''-terpyridine derivatives with transition metals

The synthesis and structural characterization of three families of coordination com­plexes synthesized from 4'-phenyl-2,2':6',2''-terpyridine (8, Ph-TPY), 4'-(4-chloro­phen­yl)-2,2':6',2''-terpyridine (9, ClPh-TPY) and 4'-(4-meth­oxy­phen­yl)-2,2':6',2''-terpyridine (10, MeOPh-TPY) ligands with the divalent metals Co2+, Fe2+, Mn2+ and Ni2+ are reported. The com­pounds were synthesized from a 1:2 mixture of the metal and ligand, resulting in a series of com­plexes with the general formula [M(R-TPY)2](ClO4)2 (where M = Co2+, Fe2+, Mn2+ and Ni2+, and R-TPY = Ph-TPY, ClPh-TPY and MeOPh-TPY). The general formula and structural and supra­molecular features were determinated by single-crystal X-ray diffraction for bis­(4'-phenyl-2,2':6',2''-terpyridine)­nickel(II) bis­(per­chlo­rate), [Ni(C21H15N3)2](ClO4)2 or [Ni(Ph-TPY)2](ClO4)2, bis­[4'-(4-meth­oxy­phen­yl)-2,2':6',2''-terpyridine]­manganese(II) bis­(per­chlo­rate), [Mn(C22H17N3O)2](ClO4)2 or [Mn(MeOPh-TPY)2](ClO4)2, and bis­(4'-phenyl-2,2':6',2''-ter­py­ridine)­manganese(II) bis­(per­chlo­rate), [Mn(C21H15N3)2](ClO4)2 or [Mn(Ph-TPY)2](ClO4)2. In all three cases, the com­plexes present distorted octa­hedral coordination polyhedra and the crystal packing is determined mainly by weak C—H⋯π inter­actions. All the com­pounds (except for the Ni derivatives, for which FT–IR, UV–Vis and thermal analysis are reported) were fully characterized by spectroscopic (FT–IR, UV–Vis and NMR spectroscopy) and thermal (TGA–DSC, thermogravimetric analysis–differential scanning calorimetry) methods.




tal

Using cocrystals as a tool to study non-crystallizing mol­ecules: crystal structure, Hirshfeld surface analysis and com­putational study of the 1:1 cocrystal of (E)-N-(3,4-di­fluoro­phen­yl)-1-(pyridin-4-yl)methanimine and acetic

Using a 1:1 cocrystal of (E)-N-(3,4-di­fluoro­phen­yl)-1-(pyridin-4-yl)methanimine with acetic acid, C12H8F2N2·C2H4O2, we investigate the influence of F atoms introduced to the aromatic ring on promoting π–π inter­actions. The cocrystal crystallizes in the triclinic space group P1. Through crystallographic analysis and com­putational studies, we reveal the mol­ecular arrangement within this co­crystal, demonstrating the presence of hydrogen bonding between the acetic acid mol­ecule and the pyridyl group, along with π–π inter­actions between the aromatic rings. Our findings highlight the importance of F atoms in promoting π–π inter­actions without necessitating full halogenation of the aromatic ring.




tal

Crystal structure elucidation of a geminal and vicinal bis­(tri­fluoro­methane­sulfonate) ester

Geminal and vicinal bis­(tri­fluoro­methane­sulfonate) esters are highly reactive alkyl­ene synthons used as potent electrophiles in the macrocyclization of imid­azoles and the transformation of bypyridines to diquat derivatives via nucleophilic substitution reactions. Herein we report the crystal structures of methyl­ene (C3H2F6O6S2) and ethyl­ene bis­(tri­fluoro­methane­sulfonate) (C4H4F6O6S2), the first examples of a geminal and vicinal bis­(tri­fluoro­methane­sulfonate) ester characterized by single-crystal X-ray diffraction (SC-XRD). With melting points slightly below ambient temperature, both reported bis­(tri­fluoro­methane­sulfonate)s are air- and moisture-sensitive oils and were crys­tallized at 277 K to afford two-com­ponent non-merohedrally twinned crystals. The dominant inter­actions present in both com­pounds are non-classical C—H⋯O hydrogen bonds and inter­molecular C—F⋯F—C inter­actions between tri­fluoro­methyl groups. Mol­ecular electrostatic potential (MEP) cal­culations by DFT-D3 helped to qu­antify the polarity between O⋯H and F⋯F contacts to rationalize the self-sorting of both bis­(tri­fluoro­methane­sulfonate) esters in polar (non-fluorous) and non-polar (fluorous) domains within the crystal structure.




tal

TAAM refinement on high-resolution experimental and simulated 3D ED/MicroED data for organic mol­ecules

3D electron diffraction (3D ED), or microcrystal electron diffraction (MicroED), has become an alternative technique for determining the high-resolution crystal structures of compounds from sub-micron-sized crystals. Here, we considered l-alanine, α-glycine and urea, which are known to form good-quality crystals, and collected high-resolution 3D ED data on our in-house TEM instrument. In this study, we present a comparison of independent atom model (IAM) and transferable aspherical atom model (TAAM) kinematical refinement against experimental and simulated data. TAAM refinement on both experimental and simulated data clearly improves the model fitting statistics (R factors and residual electrostatic potential) compared to IAM refinement. This shows that TAAM better represents the experimental electrostatic potential of organic crystals than IAM. Furthermore, we compared the geometrical parameters and atomic displacement parameters (ADPs) resulting from the experimental refinements with the simulated refinements, with the periodic density functional theory (DFT) calculations and with published X-ray and neutron crystal structures. The TAAM refinements on the 3D ED data did not improve the accuracy of the bond lengths between the non-H atoms. The experimental 3D ED data provided more accurate H-atom positions than the IAM refinements on the X-ray diffraction data. The IAM refinements against 3D ED data had a tendency to lead to slightly longer X—H bond lengths than TAAM, but the difference was statistically insignificant. Atomic displacement parameters were too large by tens of percent for l-alanine and α-glycine. Most probably, other unmodelled effects were causing this behaviour, such as radiation damage or dynamical scattering.




tal

The crystal structure of the ammonium salt of 2-amino­malonic acid

The salt ammonium 2-am­ino­mal­on­ate (systematic name: ammonium 2-aza­niumyl­propane­dioate), NH4+·C3H4NO4−, was synthesized in diethyl ether from the starting materials malonic acid, ammonia and bromine. The salt was recrystallized from water as colourless blocks. In the solid state, intra­molecular medium–strong N—H⋯O, weak C—H⋯O and weak C—H⋯N hydrogen bonds build a three-dimensional network.




tal

Crystal structure and cryomagnetic study of a mononuclear erbium(III) ox­am­ate inclusion com­plex

The synthesis, crystal structure and magnetic properties of an ox­am­ate-con­taining erbium(III) com­plex, namely, tetra­butyl­ammonium aqua­[N-(2,4,6-tri­methyl­phen­yl)oxamato]erbium(III)–di­methyl sulfoxide–water (1/3/1.5), (C16H36N)[Er(C11H12NO3)4(H2O)]·3C2H6OS·1.5H2O or n-Bu4N[Er(Htmpa)4(H2O)]·3DMSO·1.5H2O (1), are reported. The crystal structure of 1 reveals the occurrence of an erbium(III) ion, which is surrounded by four N-phenyl-substituted ox­am­ate ligands and one water mol­ecule in a nine-coordinated environment, together with one tetra­butyl­ammonium cation acting as a counter-ion, and one water and three dimethyl sulfoxide (DMSO) mol­ecules of crystallization. Variable-temperature static (dc) and dynamic (ac) magnetic mea­sure­ments were carried out for this mononuclear com­plex, revealing that it behaves as a field-induced single-ion magnet (SIM) below 5.0 K.




tal

Synthesis, spectroscopic and crystallographic characterization of various cymantrenyl thio­ethers [Mn{C5HxBry(SMe)z}(PPh3)(CO)2]

Starting from [Mn(C5H4Br)(PPh3)(CO)2] (1a), the cymantrenyl thio­ethers [Mn(C5H4SMe)(PPh3)(CO)2] (1b) and [Mn{C5H4–nBr(SMe)n}(PPh3)(CO)2] (n = 1 for com­pound 2, n = 2 for 3 and n = 3 for 4) were obtained, using either n-butyllithium (n-BuLi), lithium diiso­propyl­amide (LDA) or lithium tetra­methyl­piperidide (LiTMP) as base, followed by electrophilic quenching with MeSSMe. Stepwise consecutive reaction of [Mn(C5Br5)(PPh3)(CO)2] with n-BuLi and MeSSMe led finally to [Mn{C5(SMe)5}(PPh3)(CO)2] (11), only the fifth com­plex to be reported containing a perthiol­ated cyclo­penta­dienyl ring. The mol­ecular and crystal structures of 1b, 3, 4 and 11 were determined and were studied for the occurrence of S⋯S and S⋯Br inter­actions. It turned out that although some inter­actions of this type occurred, they were of minor importance for the arrangement of the mol­ecules in the crystal.




tal

Crystal structure of the cytotoxic macrocyclic trichothecene Isororidin A

The highly cytotoxic macrocyclic trichothecene Isororidin A (C29H40O9) was isolated from the fungus Myrothesium verrucaria endophytic on the wild medicinal plant `Datura' (Datura stramonium L.) and was characterized by one- (1D) and two-dimensional (2D) NMR spectroscopy. The three-dimensional structure of Isororidin A has been confirmed by X-ray crystallography at 0.81 Å resolution from crystals grown in the ortho­rhom­bic space group P212121, with one mol­ecule per asymmetric unit. Isororidin A is the epimer of previously described (by X-ray crystallography) Roridin A at position C-13' of the macrocyclic ring.




tal

How to grow crystals for X-ray crystallography

Growing high-quality crystals remains a necessary part of crystallography and many other techniques. This article tabulates and describes several techniques and variations that will help individuals grow high-quality crystals in preparation for crystallographic techniques and other endeavors, such as form screening. The discussion is organized to focus on low-tech approaches available in any laboratory.




tal

Synthesis of organotin(IV) heterocycles containing a xanthenyl group by a Barbier approach via ultrasound activation: synthesis, crystal structure and Hirshfeld surface analysis

A series of organotin heterocycles of general formula [{Me2C(C6H3CH2)2O}SnR2] [R = methyl (Me, 4), n-butyl (n-Bu, 5), benzyl (Bn, 6) and phenyl (Ph, 7)] was easily synthesized by a Barbier-type reaction assisted by the sonochemical activation of metallic magnesium. The 119Sn{1H} NMR data for all four com­pounds confirm the presence of a central Sn atom in a four-coordinated environment in solution. Single-crystal X-ray diffraction studies for 17,17-dimethyl-7,7-di­phenyl-15-oxa-7-stanna­tetra­cyclo­[11.3.1.05,16.09,14]hepta­deca-1,3,5(16),9(14),10,12-hexa­­ene, [Sn(C6H5)2(C17H16O)], 7, at 100 and 295 K con­firmed the formation of a mono­nuclear eight-membered heterocycle, with a conformation depicted as boat–chair, resulting in a weak Sn⋯O inter­action. The Sn and O atoms are surrounded by hydro­phobic C—H bonds. A Hirshfeld surface analysis of 7 showed that the eight-membered heterocycles are linked by weak C—H⋯π, π–π and H⋯H noncovalent inter­actions. The pairwise inter­action energies showed that the cohesion between the heterocycles are mainly due to dispersion forces.




tal

The influence of the axial group on the crystal structures of boron sub­phthalo­cy­an­ines

The crystal structures of 16 boron sub­phthalo­cy­an­ines (BsubPcs) with structurally diverse axial groups were analyzed and com­pared to elucidate the impact of the axial group on the inter­molecular π–π inter­actions, axial-group inter­actions, axial bond length and BsubPc bowl depth. π–π inter­actions between the iso­indole units of adjacent BsubPc mol­ecules most often involve concave–concave packing, whereas axial-group inter­actions with adjacent BsubPc mol­ecules tend to favour the convex side of the BsubPc bowl. Furthermore, axial groups that contain O and/or F atoms tend to have significant hy­dro­gen-bonding inter­actions, while axial groups containing arene site(s) can participate in π–π inter­actions with the BsubPc bowl, both of which can strongly influence the crystal packing. Bulky axial groups did tend to disrupt the π–π inter­actions and/or axial-group inter­actions, preventing some of the close packing that is seen in BsubPcs with less bulky axial groups. The atomic radius of the heteroatom bonded to boron directly influences the axial bond length, whereas the axial group has minimal impact on the BsubPc bowl depth. Finally, the crystal growth method did not generally appear to have a significant impact on the solid-state arrangement, with the exception of water occasionally being incorporated into crystal structures when hygroscopic solvents were used. These insights can help with the design and fine-tuning of the solid-state structures of BsubPcs as they continue to be developed as functional materials in organic electronics.




tal

2,4-Di­aryl­pyrroles: synthesis, characterization and crystallographic insights

Three 2,4-di­aryl­pyrroles were synthesized starting from 4-nitro­butano­nes and the crystal structures of two derivatives were analysed. These are 4-(4-meth­oxy­phen­yl)-2-(thio­phen-2-yl)-1H-pyrrole, C15H13NOS, and 3-(4-bromo­phen­yl)-2-nitroso-5-phenyl-1H-pyrrole, C16H11BrN2O. Although pyrroles without sub­stituents at the α-position with respect to the N atom are very air sensitive and tend to polymerize, we succeeded in growing an adequate crystal for X-ray diffraction analysis. Further derivatization using sodium nitrite afforded a nitrosyl pyrrole derivative, which crystallized in the triclinic space group Poverline{1} with Z = 6. Thus, herein we report the first crystal structure of a nitrosyl pyrrole. Inter­estingly, the co-operative hydrogen bonds in this NO-substituted pyrrole lead to a trimeric structure with bifurcated halogen bonds at the ends, forming a two-dimensional (2D) layer with inter­stitial voids having a radius of 5 Å, similar to some reported macrocyclic porphyrins.




tal

Crystal structures of two unexpected products of vicinal di­amines left to crystallize in acetone

Herein we report the crystal structures of two ben­zo­di­az­e­pines obtained by reacting N,N'-(4,5-di­amino-1,2-phenyl­ene)bis­(4-methyl­ben­zene­sul­fon­am­ide) (1) or 4,5-(4-methyl­ben­zene­sul­fon­am­ido)­ben­zene-1,2-diaminium dichloride (1·2HCl) with acetone, giving 2,2,4-trimethyl-8,9-bis­(4-methyl­ben­zene­sul­fon­am­ido)-2,3-di­hydro-5H-1,5-ben­zo­di­az­e­pine, C26H30N4O4S2 (2), and 2,2,4-tri­methyl-8,9-bis­(4-methyl­ben­zene­sul­fon­am­ido)-2,3-di­hydro-5H-1,5-ben­zo­di­az­e­pin-1-ium chloride 0.3-hydrate, C26H31N4O4S2+·Cl−·0.3H2O (3). Compounds 2 and 3 were first obtained in attempts to recrystallize 1 and 1·2HCl using acetone as solvent. This solvent reacted with the vicinal di­amines present in the mol­ecular structures, forming a 5H-1,5-ben­zo­di­az­e­pine ring. In the crystal structure of 2, the seven-membered ring of ben­zo­di­az­e­pine adopts a boat-like conformation, while upon protonation, observed in the crystal structure of 3, it adopts an envelope-like conformation. In both crystalline com­pounds, the tosyl­amide N atoms are not in resonance with the arene ring, mainly due to hy­dro­gen bonds and steric hindrance caused by the large vicinal groups in the aromatic ring. At a supra­molecular level, the crystal structure is maintained by a combination of hy­dro­gen bonds and hydro­phobic inter­actions. In 2, amine-to-tosyl N—H⋯O and amide-to-imine N—H⋯N hy­dro­gen bonds can be observed. In contrast, in 3, the chloride counter-ion and water mol­ecule result in most of the hy­dro­gen bonds being of the amide-to-chloride and ammonium-to-chloride N—H⋯Cl types, while the amine inter­acts with the tosyl group, as seen in 2. In conclusion, we report the synthesis of 1, 1·2HCl and 2, as well as their chemical characterization. For 2, two synthetic methods are described, i.e. solvent-mediated crystallization and synthesis via a more efficient and cleaner route as a polycrystalline material. Salt 3 was only obtained as presented, with only a few crystals being formed.




tal

Methods in mol­ecular photocrystallography

Over the last three decades, the technology that makes it possible to follow chemical processes in the solid state in real time has grown enormously. These studies have important implications for the design of new functional materials for applications in optoelectronics and sensors. Light–matter inter­actions are of particular importance, and photocrystallography has proved to be an important tool for studying these inter­actions. In this technique, the three-dimensional structures of light-activated mol­ecules, in their excited states, are determined using single-crystal X-ray crystallography. With advances in the design of high-power lasers, pulsed LEDs and time-gated X-ray detectors, the increased availability of synchrotron facilities, and most recently, the development of XFELs, it is now possible to determine the structures of mol­ecules with lifetimes ranging from minutes down to picoseconds, within a single crystal, using the photocrystallographic technique. This review discusses the procedures for conducting successful photocrystallographic studies and outlines the different methodologies that have been developed to study structures with specific lifetime ranges. The com­plexity of the methods required increases considerably as the lifetime of the excited state shortens. The discussion is supported by examples of successful photocrystallographic studies across a range of timescales and emphasises the importance of the use of com­plementary analytical techniques in order to understand the solid-state processes fully.




tal

On the importance of crystal structures for organic thin film transistors

Historically, knowledge of the mol­ecular packing within the crystal structures of organic semi­con­duc­tors has been instrumental in understanding their solid-state electronic properties. Nowadays, crystal structures are thus becoming increasingly important for enabling engineering properties, understanding poly­mor­phism in bulk and in thin films, exploring dynamics and elucidating phase-transition mech­a­nisms. This review article introduces the most salient and recent results of the field.




tal

The challenges of growing great crystals – or at least good enough ones!




tal

Mol­ecular and crystal structures of six poly(arylsulfin­yl)- and poly(aryl­sulfan­yl)fer­ro­cenes

Starting from (p-tolyl­sulfin­yl)fer­ro­cene (1), a mixture of the complete series [CpFe{C5H5–n(SOTol-p)n}] (n = 2–4) (2–4) in all regioisomers was obtained. After chromatographic separation, crystals of 1,2-bis­[(4-methyl­benzene)­sulfin­yl]fer­ro­cene, 2a, and 1,3-bis­[(4-methyl­benzene)­sulfin­yl]fer­ro­cene, 2b, both [Fe(C5H5)(C19H17O2S2)], as well as of 1,2,3-tris­[(4-methyl­benzene)­sulfin­yl]fer­ro­cene, [Fe(C5H5)(C26H23O3S3)], 3a, and 1,2,3,4-tetra­kis­[(4-methyl­benzene)­sul­fin­yl]fer­ro­cene ethyl acetate 0.75-solvate, [Fe(C5H5)(C33H29O4S4)]·0.75C4H8O2, 4, could be isolated. Their mol­ecular and crystal structures are compared with each other and also with the so far un­reported structures of related 1,2-bis­(phenyl­sulfan­yl)fer­ro­cene, [Fe(C5H5)(C17H13S2)], 5, and 1,2,3,4-tetra­kis­(phenyl­sulfan­yl)fer­ro­cene, [Fe(C5H5)(C29H21S4)], 6. In all the sulfinyl structures, the O atoms of the S=O groups are in equatorial positions, except for that in tetrasubstituted 4. All the arene rings of these com­pounds (except for one ring in 4) are in axial positions directed away from the Fe atom, mostly in a near perpendicular orientation with respect to the plane of the cyclo­penta­di­en­yl ring. The main inter­molecular inter­actions in the crystals are C—H⋯H—C, C—H⋯π and C—H⋯O, while C—H⋯S inter­actions are much less important, except for tetra­sul­fan­yl com­pound 6. π–π inter­actions (intra­molecular) are only important in com­pound 3a. Hirshfeld analysis shows that dispersion terms are dominant for the inter­action energies of all six com­pounds. In general, the calculated total inter­action energies increase with increasing number of substituents and are higher for the sulfinyl than for the sul­fan­yl groups.




tal

Introducing the Best practice in crystallography series

 




tal

Photocrystallography – common or exclusive?

 




tal

Crystal clear: the impact of crystal structure in the development of high-performance organic semiconductors

 




tal

The TR-icOS setup at the ESRF: time-resolved microsecond UV–Vis absorption spectroscopy on protein crystals

The technique of time-resolved macromolecular crystallography (TR-MX) has recently been rejuvenated at synchrotrons, resulting in the design of dedicated beamlines. Using pump–probe schemes, this should make the mechanistic study of photoactive proteins and other suitable systems possible with time resolutions down to microseconds. In order to identify relevant time delays, time-resolved spectroscopic experiments directly performed on protein crystals are often desirable. To this end, an instrument has been built at the icOS Lab (in crystallo Optical Spectroscopy Laboratory) at the European Synchrotron Radiation Facility using reflective focusing objectives with a tuneable nanosecond laser as a pump and a microsecond xenon flash lamp as a probe, called the TR-icOS (time-resolved icOS) setup. Using this instrument, pump–probe spectra can rapidly be recorded from single crystals with time delays ranging from a few microseconds to seconds and beyond. This can be repeated at various laser pulse energies to track the potential presence of artefacts arising from two-photon absorption, which amounts to a power titration of a photoreaction. This approach has been applied to monitor the rise and decay of the M state in the photocycle of crystallized bacteriorhodopsin and showed that the photocycle is increasingly altered with laser pulses of peak fluence greater than 100 mJ cm−2, providing experimental laser and delay parameters for a successful TR-MX experiment.




tal

Deep residual networks for crystallography trained on synthetic data

The use of artificial intelligence to process diffraction images is challenged by the need to assemble large and precisely designed training data sets. To address this, a codebase called Resonet was developed for synthesizing diffraction data and training residual neural networks on these data. Here, two per-pattern capabilities of Resonet are demonstrated: (i) interpretation of crystal resolution and (ii) identification of overlapping lattices. Resonet was tested across a compilation of diffraction images from synchrotron experiments and X-ray free-electron laser experiments. Crucially, these models readily execute on graphics processing units and can thus significantly outperform conventional algorithms. While Resonet is currently utilized to provide real-time feedback for macromolecular crystallography users at the Stanford Synchrotron Radiation Lightsource, its simple Python-based interface makes it easy to embed in other processing frameworks. This work highlights the utility of physics-based simulation for training deep neural networks and lays the groundwork for the development of additional models to enhance diffraction collection and analysis.




tal

The High-Pressure Freezing Laboratory for Macromolecular Crystallography (HPMX), an ancillary tool for the macromolecular crystallography beamlines at the ESRF

This article describes the High-Pressure Freezing Laboratory for Macromolecular Crystallography (HPMX) at the ESRF, and highlights new and complementary research opportunities that can be explored using this facility. The laboratory is dedicated to investigating interactions between macromolecules and gases in crystallo, and finds applications in many fields of research, including fundamental biology, biochemistry, and environmental and medical science. At present, the HPMX laboratory offers the use of different high-pressure cells adapted for helium, argon, krypton, xenon, nitrogen, oxygen, carbon dioxide and methane. Important scientific applications of high pressure to macromolecules at the HPMX include noble-gas derivatization of crystals to detect and map the internal architecture of proteins (pockets, tunnels and channels) that allows the storage and diffusion of ligands or substrates/products, the investigation of the catalytic mechanisms of gas-employing enzymes (using oxygen, carbon dioxide or methane as substrates) to possibly decipher intermediates, and studies of the conformational fluctuations or structure modifications that are necessary for proteins to function. Additionally, cryo-cooling protein crystals under high pressure (helium or argon at 2000 bar) enables the addition of cryo-protectant to be avoided and noble gases can be employed to produce derivatives for structure resolution. The high-pressure systems are designed to process crystals along a well defined pathway in the phase diagram (pressure–temperature) of the gas to cryo-cool the samples according to the three-step `soak-and-freeze method'. Firstly, crystals are soaked in a pressurized pure gas atmosphere (at 294 K) to introduce the gas and facilitate its inter­actions within the macromolecules. Samples are then flash-cooled (at 100 K) while still under pressure to cryo-trap macromolecule–gas complexation states or pressure-induced protein modifications. Finally, the samples are recovered after depressurization at cryo-temperatures. The final section of this publication presents a selection of different typical high-pressure experiments carried out at the HPMX, showing that this technique has already answered a wide range of scientific questions. It is shown that the use of different gases and pressure conditions can be used to probe various effects, such as mapping the functional internal architectures of enzymes (tunnels in the haloalkane dehalogenase DhaA) and allosteric sites on membrane-protein surfaces, the interaction of non-inert gases with proteins (oxygen in the hydrogenase ReMBH) and pressure-induced structural changes of proteins (tetramer dissociation in urate oxidase). The technique is versatile and the provision of pressure cells and their application at the HPMX is gradually being extended to address new scientific questions.




tal

From femtoseconds to minutes: time-resolved macromolecular crystallography at XFELs and synchrotrons

Over the last decade, the development of time-resolved serial crystallography (TR-SX) at X-ray free-electron lasers (XFELs) and synchrotrons has allowed researchers to study phenomena occurring in proteins on the femtosecond-to-minute timescale, taking advantage of many technical and methodological breakthroughs. Protein crystals of various sizes are presented to the X-ray beam in either a static or a moving medium. Photoactive proteins were naturally the initial systems to be studied in TR-SX experiments using pump–probe schemes, where the pump is a pulse of visible light. Other reaction initiations through small-molecule diffusion are gaining momentum. Here, selected examples of XFEL and synchrotron time-resolved crystallography studies will be used to highlight the specificities of the various instruments and methods with respect to time resolution, and are compared with cryo-trapping studies.




tal

Investigation of how gate residues in the main channel affect the catalytic activity of Scytalidium thermophilum catalase

Catalase is an antioxidant enzyme that breaks down hydrogen peroxide (H2O2) into molecular oxygen and water. In all monofunctional catalases the pathway that H2O2 takes to the catalytic centre is via the `main channel'. However, the structure of this channel differs in large-subunit and small-subunit catalases. In large-subunit catalases the channel is 15 Å longer and consists of two distinct parts, including a hydrophobic lower region near the heme and a hydrophilic upper region where multiple H2O2 routes are possible. Conserved glutamic acid and threonine residues are located near the intersection of these two regions. Mutations of these two residues in the Scytalidium thermophilum catalase had no significant effect on catalase activity. However, the secondary phenol oxidase activity was markedly altered, with kcat and kcat/Km values that were significantly increased in the five variants E484A, E484I, T188D, T188I and T188F. These variants also showed a lower affinity for inhibitors of oxidase activity than the wild-type enzyme and a higher affinity for phenolic substrates. Oxidation of heme b to heme d did not occur in most of the studied variants. Structural changes in solvent-chain integrity and channel architecture were also observed. In summary, modification of the main-channel gate glutamic acid and threonine residues has a greater influence on the secondary activity of the catalase enzyme, and the oxidation of heme b to heme d is predominantly inhibited by their conversion to aliphatic and aromatic residues.




tal

AlphaFold-assisted structure determination of a bacterial protein of unknown function using X-ray and electron crystallography

Macromolecular crystallography generally requires the recovery of missing phase information from diffraction data to reconstruct an electron-density map of the crystallized molecule. Most recent structures have been solved using molecular replacement as a phasing method, requiring an a priori structure that is closely related to the target protein to serve as a search model; when no such search model exists, molecular replacement is not possible. New advances in computational machine-learning methods, however, have resulted in major advances in protein structure predictions from sequence information. Methods that generate predicted structural models of sufficient accuracy provide a powerful approach to molecular replacement. Taking advantage of these advances, AlphaFold predictions were applied to enable structure determination of a bacterial protein of unknown function (UniProtKB Q63NT7, NCBI locus BPSS0212) based on diffraction data that had evaded phasing attempts using MIR and anomalous scattering methods. Using both X-ray and micro-electron (microED) diffraction data, it was possible to solve the structure of the main fragment of the protein using a predicted model of that domain as a starting point. The use of predicted structural models importantly expands the promise of electron diffraction, where structure determination relies critically on molecular replacement.




tal

The crystal structure of mycothiol disulfide reductase (Mtr) provides mechanistic insight into the specific low-molecular-weight thiol reductase activity of Actinobacteria

Low-molecular-weight (LMW) thiols are involved in many processes in all organisms, playing a protective role against reactive species, heavy metals, toxins and antibiotics. Actinobacteria, such as Mycobacterium tuberculosis, use the LMW thiol mycothiol (MSH) to buffer the intracellular redox environment. The NADPH-dependent FAD-containing oxidoreductase mycothiol disulfide reductase (Mtr) is known to reduce oxidized mycothiol disulfide (MSSM) to MSH, which is crucial to maintain the cellular redox balance. In this work, the first crystal structures of Mtr are presented, expanding the structural knowledge and understanding of LMW thiol reductases. The structural analyses and docking calculations provide insight into the nature of Mtrs, with regard to the binding and reduction of the MSSM substrate, in the context of related oxidoreductases. The putative binding site for MSSM suggests a similar binding to that described for the homologous glutathione reductase and its respective substrate glutathione disulfide, but with distinct structural differences shaped to fit the bulkier MSSM substrate, assigning Mtrs as uniquely functioning reductases. As MSH has been acknowledged as an attractive antitubercular target, the structural findings presented in this work may contribute towards future antituberculosis drug development.




tal

EMinsight: a tool to capture cryoEM microscope configuration and experimental outcomes for analysis and deposition

The widespread adoption of cryoEM technologies for structural biology has pushed the discipline to new frontiers. A significant worldwide effort has refined the single-particle analysis (SPA) workflow into a reasonably standardized procedure. Significant investments of development time have been made, particularly in sample preparation, microscope data-collection efficiency, pipeline analyses and data archiving. The widespread adoption of specific commercial microscopes, software for controlling them and best practices developed at facilities worldwide has also begun to establish a degree of standardization to data structures coming from the SPA workflow. There is opportunity to capitalize on this moment in the maturation of the field, to capture metadata from SPA experiments and correlate the metadata with experimental outcomes, which is presented here in a set of programs called EMinsight. This tool aims to prototype the framework and types of analyses that could lead to new insights into optimal microscope configurations as well as to define methods for metadata capture to assist with the archiving of cryoEM SPA data. It is also envisaged that this tool will be useful to microscope operators and facilities looking to rapidly generate reports on SPA data-collection and screening sessions.




tal

Efficient in situ screening of and data collection from microcrystals in crystallization plates

A considerable bottleneck in serial crystallography at XFEL and synchrotron sources is the efficient production of large quantities of homogenous, well diffracting microcrystals. Efficient high-throughput screening of batch-grown microcrystals and the determination of ground-state structures from different conditions is thus of considerable value in the early stages of a project. Here, a highly sample-efficient methodology to measure serial crystallography data from microcrystals by raster scanning within standard in situ 96-well crystallization plates is described. Structures were determined from very small quantities of microcrystal suspension and the results were compared with those from other sample-delivery methods. The analysis of a two-dimensional batch crystallization screen using this method is also described as a useful guide for further optimization and the selection of appropriate conditions for scaling up microcrystallization.




tal

Mononuclear binding and catalytic activity of europium(III) and gadolinium(III) at the active site of the model metalloenzyme phosphotriesterase

Lanthanide ions have ideal chemical properties for catalysis, such as hard Lewis acidity, fast ligand-exchange kinetics, high coordination-number preferences and low geometric requirements for coordination. As a result, many small-molecule lanthanide catalysts have been described in the literature. Yet, despite the ability of enzymes to catalyse highly stereoselective reactions under gentle conditions, very few lanthanoenzymes have been investigated. In this work, the mononuclear binding of europium(III) and gadolinium(III) to the active site of a mutant of the model enzyme phosphotriesterase are described using X-ray crystallography at 1.78 and 1.61 Å resolution, respectively. It is also shown that despite coordinating a single non-natural metal cation, the PTE-R18 mutant is still able to maintain esterase activity.




tal

A database overview of metal-coordination distances in metalloproteins

Metalloproteins are ubiquitous in all living organisms and take part in a very wide range of biological processes. For this reason, their experimental characterization is crucial to obtain improved knowledge of their structure and biological functions. The three-dimensional structure represents highly relevant information since it provides insight into the interaction between the metal ion(s) and the protein fold. Such interactions determine the chemical reactivity of the bound metal. The available PDB structures can contain errors due to experimental factors such as poor resolution and radiation damage. A lack of use of distance restraints during the refinement and validation process also impacts the structure quality. Here, the aim was to obtain a thorough overview of the distribution of the distances between metal ions and their donor atoms through the statistical analysis of a data set based on more than 115 000 metal-binding sites in proteins. This analysis not only produced reference data that can be used by experimentalists to support the structure-determination process, for example as refinement restraints, but also resulted in an improved insight into how protein coordination occurs for different metals and the nature of their binding interactions. In particular, the features of carboxylate coordination were inspected, which is the only type of interaction that is commonly present for nearly all metals.




tal

Identifying and avoiding radiation damage in macromolecular crystallography

Radiation damage remains one of the major impediments to accurate structure solution in macromolecular crystallography. The artefacts of radiation damage can manifest as structural changes that result in incorrect biological interpretations being drawn from a model, they can reduce the resolution to which data can be collected and they can even prevent structure solution entirely. In this article, we discuss how to identify and mitigate against the effects of radiation damage at each stage in the macromolecular crystal structure-solution pipeline.




tal

New insights into the domain of unknown function (DUF) of EccC5, the pivotal ATPase providing the secretion driving force to the ESX-5 secretion system

Type VII secretion (T7S) systems, also referred to as ESAT-6 secretion (ESX) systems, are molecular machines that have gained great attention due to their implications in cell homeostasis and in host–pathogen interactions in mycobacteria. The latter include important human pathogens such as Mycobacterium tuberculosis (Mtb), the etiological cause of human tuberculosis, which constitutes a pandemic accounting for more than one million deaths every year. The ESX-5 system is exclusively found in slow-growing pathogenic mycobacteria, where it mediates the secretion of a large family of virulence factors: the PE and PPE proteins. The secretion driving force is provided by EccC5, a multidomain ATPase that operates using four globular cytosolic domains: an N-terminal domain of unknown function (EccC5DUF) and three FtsK/SpoIIIE ATPase domains. Recent structural and functional studies of ESX-3 and ESX-5 systems have revealed EccCDUF to be an ATPase-like fold domain with potential ATPase activity, the functionality of which is essential for secretion. Here, the crystal structure of the MtbEccC5DUF domain is reported at 2.05 Å resolution, which reveals a nucleotide-free structure with degenerated cis-acting and trans-acting elements involved in ATP binding and hydrolysis. This crystallographic study, together with a biophysical assessment of the interaction of MtbEccC5DUF with ATP/Mg2+, supports the absence of ATPase activity proposed for this domain. It is shown that this degeneration is also present in DUF domains from other ESX and ESX-like systems, which are likely to exhibit poor or null ATPase activity. Moreover, based on an in silico model of the N-terminal region of MtbEccC5DUF, it is hypothesized that MtbEccC5DUF is a degenerated ATPase domain that may have retained the ability to hexamerize. These observations draw attention to DUF domains as structural elements with potential implications in the opening and closure of the membrane pore during the secretion process via their involvement in inter-protomer interactions.




tal

Deep-learning map segmentation for protein X-ray crystallographic structure determination

When solving a structure of a protein from single-wavelength anomalous diffraction X-ray data, the initial phases obtained by phasing from an anomalously scattering substructure usually need to be improved by an iterated electron-density modification. In this manuscript, the use of convolutional neural networks (CNNs) for segmentation of the initial experimental phasing electron-density maps is proposed. The results reported demonstrate that a CNN with U-net architecture, trained on several thousands of electron-density maps generated mainly using X-ray data from the Protein Data Bank in a supervised learning, can improve current density-modification methods.




tal

A snapshot love story: what serial crystallography has done and will do for us

Serial crystallography, born from groundbreaking experiments at the Linac Coherent Light Source in 2009, has evolved into a pivotal technique in structural biology. Initially pioneered at X-ray free-electron laser facilities, it has now expanded to synchrotron-radiation facilities globally, with dedicated experimental stations enhancing its accessibility. This review gives an overview of current developments in serial crystallography, emphasizing recent results in time-resolved crystallography, and discussing challenges and shortcomings.




tal

Managing macromolecular crystallographic data with a laboratory information management system

Protein crystallography is an established method to study the atomic structures of macromolecules and their complexes. A prerequisite for successful structure determination is diffraction-quality crystals, which may require extensive optimization of both the protein and the conditions, and hence projects can stretch over an extended period, with multiple users being involved. The workflow from crystallization and crystal treatment to deposition and publication is well defined, and therefore an electronic laboratory information management system (LIMS) is well suited to management of the data. Completion of the project requires key information on all the steps being available and this information should also be made available according to the FAIR principles. As crystallized samples are typically shipped between facilities, a key feature to be captured in the LIMS is the exchange of metadata between the crystallization facility of the home laboratory and, for example, synchrotron facilities. On completion, structures are deposited in the Protein Data Bank (PDB) and the LIMS can include the PDB code in its database, completing the chain of custody from crystallization to structure deposition and publication. A LIMS designed for macromolecular crystallography, IceBear, is available as a standalone installation and as a hosted service, and the implementation of key features for the capture of metadata in IceBear is discussed as an example.




tal

The crystal structure of Shethna protein II (FeSII) from Azotobacter vinelandii suggests a domain swap

The Azotobacter vinelandii FeSII protein forms an oxygen-resistant complex with the nitrogenase MoFe and Fe proteins. FeSII is an adrenodoxin-type ferredoxin that forms a dimer in solution. Previously, the crystal structure was solved [Schlesier et al. (2016), J. Am. Chem. Soc. 138, 239–247] with five copies in the asymmetric unit. One copy is a normal adrenodoxin domain that forms a dimer with its crystallographic symmetry mate. The other four copies are in an `open' conformation with a loop flipped out exposing the 2Fe–2S cluster. The open and closed conformations were interpreted as oxidized and reduced, respectively, and the large conformational change in the open configuration allowed binding to nitrogenase. Here, the structure of FeSII was independently solved in the same crystal form. The positioning of the atoms in the unit cell is similar to the earlier report. However, the interpretation of the structure is different. The `open' conformation is interpreted as the product of a crystallization-induced domain swap. The 2Fe–2S cluster is not exposed to solvent, but in the crystal its interacting helix is replaced by the same helix residues from a crystal symmetry mate. The domain swap is complicated, as it is unusual in being in the middle of the protein rather than at a terminus, and it creates arrangements of molecules that can be interpreted in multiple ways. It is also cautioned that crystal structures should be interpreted in terms of the contents of the entire crystal rather than of one asymmetric unit.




tal

Crystallographic fragment-binding studies of the Mycobacterium tuberculosis trifunctional enzyme suggest binding pockets for the tails of the acyl-CoA substrates at its active sites and a potential substrate-channeling path between them

The Mycobacterium tuberculosis trifunctional enzyme (MtTFE) is an α2β2 tetrameric enzyme in which the α-chain harbors the 2E-enoyl-CoA hydratase (ECH) and 3S-hydroxyacyl-CoA dehydrogenase (HAD) active sites, and the β-chain provides the 3-ketoacyl-CoA thiolase (KAT) active site. Linear, medium-chain and long-chain 2E-enoyl-CoA molecules are the preferred substrates of MtTFE. Previous crystallographic binding and modeling studies identified binding sites for the acyl-CoA substrates at the three active sites, as well as the NAD binding pocket at the HAD active site. These studies also identified three additional CoA binding sites on the surface of MtTFE that are different from the active sites. It has been proposed that one of these additional sites could be of functional relevance for the substrate channeling (by surface crawling) of reaction intermediates between the three active sites. Here, 226 fragments were screened in a crystallographic fragment-binding study of MtTFE crystals, resulting in the structures of 16 MtTFE–fragment complexes. Analysis of the 121 fragment-binding events shows that the ECH active site is the `binding hotspot' for the tested fragments, with 41 binding events. The mode of binding of the fragments bound at the active sites provides additional insight into how the long-chain acyl moiety of the substrates can be accommodated at their proposed binding pockets. In addition, the 20 fragment-binding events between the active sites identify potential transient binding sites of reaction intermediates relevant to the possible channeling of substrates between these active sites. These results provide a basis for further studies to understand the functional relevance of the latter binding sites and to identify substrates for which channeling is crucial.




tal

Cryo2RT: a high-throughput method for room-temperature macromolecular crystallography from cryo-cooled crystals

Advances in structural biology have relied heavily on synchrotron cryo-crystallography and cryogenic electron microscopy to elucidate biological processes and for drug discovery. However, disparities between cryogenic and room-temperature (RT) crystal structures pose challenges. Here, Cryo2RT, a high-throughput RT data-collection method from cryo-cooled crystals that leverages the cryo-crystallography workflow, is introduced. Tested on endothiapepsin crystals with four soaked fragments, thaumatin and SARS-CoV-2 3CLpro, Cryo2RT reveals unique ligand-binding poses, offers a comparable throughput to cryo-crystallography and eases the exploration of structural dynamics at various temperatures.




tal

Surface-mutagenesis strategies to enable structural biology crystallization platforms

A key prerequisite for the successful application of protein crystallography in drug discovery is to establish a robust crystallization system for a new drug-target protein fast enough to deliver crystal structures when the first inhibitors have been identified in the hit-finding campaign or, at the latest, in the subsequent hit-to-lead process. The first crucial step towards generating well folded proteins with a high likelihood of crystallizing is the identification of suitable truncation variants of the target protein. In some cases an optimal length variant alone is not sufficient to support crystallization and additional surface mutations need to be introduced to obtain suitable crystals. In this contribution, four case studies are presented in which rationally designed surface modifications were key to establishing crystallization conditions for the target proteins (the protein kinases Aurora-C, IRAK4 and BUB1, and the KRAS–SOS1 complex). The design process which led to well diffracting crystals is described and the crystal packing is analysed to understand retrospectively how the specific surface mutations promoted successful crystallization. The presented design approaches are routinely used in our team to support the establishment of robust crystallization systems which enable structure-guided inhibitor optimization for hit-to-lead and lead-optimization projects in pharmaceutical research.




tal

Microcrystal electron diffraction structure of Toll-like receptor 2 TIR-domain-nucleated MyD88 TIR-domain higher-order assembly

Eukaryotic TIR (Toll/interleukin-1 receptor protein) domains signal via TIR–TIR interactions, either by self-association or by interaction with other TIR domains. In mammals, TIR domains are found in Toll-like receptors (TLRs) and cytoplasmic adaptor proteins involved in pro-inflammatory signaling. Previous work revealed that the MAL TIR domain (MALTIR) nucleates the assembly of MyD88TIR into crystalline arrays in vitro. A microcrystal electron diffraction (MicroED) structure of the MyD88TIR assembly has previously been solved, revealing a two-stranded higher-order assembly of TIR domains. In this work, it is demonstrated that the TIR domain of TLR2, which is reported to signal as a heterodimer with either TLR1 or TLR6, induces the formation of crystalline higher-order assemblies of MyD88TIR in vitro, whereas TLR1TIR and TLR6TIR do not. Using an improved data-collection protocol, the MicroED structure of TLR2TIR-induced MyD88TIR microcrystals was determined at a higher resolution (2.85 Å) and with higher completeness (89%) compared with the previous structure of the MALTIR-induced MyD88TIR assembly. Both assemblies exhibit conformational differences in several areas that are important for signaling (for example the BB loop and CD loop) compared with their monomeric structures. These data suggest that TLR2TIR and MALTIR interact with MyD88 in an analogous manner during signaling, nucleating MyD88TIR assemblies uni­directionally.