phy

Analytic Trends in Mathematical Physics

Houssam Abdul-Rahman, Robert Sims and Amanda Young, editors. American Mathematical Society, 2020, CONM, volume 741, approx. 208 pp. ISBN: 978-1-4704-4841-7 (print), 978-1-4704-5388-6 (online).

This volume contains the proceedings of the Arizona School of Analysis and Mathematical Physics, held from March 5–9, 2018, at the University of...




phy

Role of Physical Activity for Weight Loss and Weight Maintenance

Carla E. Cox
Aug 1, 2017; 30:157-160
From Research to Practice




phy

The Physiology of Body Weight Regulation: Are We Too Efficient for Our Own Good?

Betsy B. Dokken
Jul 1, 2007; 20:166-170
Articles




phy

The Pathophysiology of Cardiovascular Disease and Diabetes: Beyond BloodPressure and Lipids

Betsy B. Dokken
Jul 1, 2008; 21:160-165
From Research to Practice/Cardiovascular Disease and Diabetes




phy

Young Scientist prize for Lancaster physicist

(Lancaster University) Lancaster University's Dr Samuli Autti has been awarded a Young Scientist Prize 2020 by the International Union of Pure and Applied Physics. The prestigious prize, awarded only once every three years, was made by the Low Temperature Commission of the IUPAP.




phy

Structural basis of specific inhibition of extracellular activation of pro- or latent myostatin by the monoclonal antibody SRK-015 [Molecular Biophysics]

Myostatin (or growth/differentiation factor 8 (GDF8)) is a member of the transforming growth factor β superfamily of growth factors and negatively regulates skeletal muscle growth. Its dysregulation is implicated in muscle wasting diseases. SRK-015 is a clinical-stage mAb that prevents extracellular proteolytic activation of pro- and latent myostatin. Here we used integrated structural and biochemical approaches to elucidate the molecular mechanism of antibody-mediated neutralization of pro-myostatin activation. The crystal structure of pro-myostatin in complex with 29H4-16 Fab, a high-affinity variant of SRK-015, at 2.79 Å resolution revealed that the antibody binds to a conformational epitope in the arm region of the prodomain distant from the proteolytic cleavage sites. This epitope is highly sequence-divergent, having only limited similarity to other closely related members of the transforming growth factor β superfamily. Hydrogen/deuterium exchange MS experiments indicated that antibody binding induces conformational changes in pro- and latent myostatin that span the arm region, the loops contiguous to the protease cleavage sites, and the latency-associated structural elements. Moreover, negative-stain EM with full-length antibodies disclosed a stable, ring-like antigen–antibody structure in which the two Fab arms of a single antibody occupy the two arm regions of the prodomain in the pro- and latent myostatin homodimers, suggesting a 1:1 (antibody:myostatin homodimer) binding stoichiometry. These results suggest that SRK-015 binding stabilizes the latent conformation and limits the accessibility of protease cleavage sites within the prodomain. These findings shed light on approaches that specifically block the extracellular activation of growth factors by targeting their precursor forms.




phy

X-ray structures of catalytic intermediates of cytochrome c oxidase provide insights into its O2 activation and unidirectional proton-pump mechanisms [Molecular Biophysics]

Cytochrome c oxidase (CcO) reduces O2 to water, coupled with a proton-pumping process. The structure of the O2-reduction site of CcO contains two reducing equivalents, Fea32+ and CuB1+, and suggests that a peroxide-bound state (Fea33+–O−–O−–CuB2+) rather than an O2-bound state (Fea32+–O2) is the initial catalytic intermediate. Unexpectedly, however, resonance Raman spectroscopy results have shown that the initial intermediate is Fea32+–O2, whereas Fea33+–O−–O−–CuB2+ is undetectable. Based on X-ray structures of static noncatalytic CcO forms and mutation analyses for bovine CcO, a proton-pumping mechanism has been proposed. It involves a proton-conducting pathway (the H-pathway) comprising a tandem hydrogen-bond network and a water channel located between the N- and P-side surfaces. However, a system for unidirectional proton-transport has not been experimentally identified. Here, an essentially identical X-ray structure for the two catalytic intermediates (P and F) of bovine CcO was determined at 1.8 Å resolution. A 1.70 Å Fe–O distance of the ferryl center could best be described as Fea34+ = O2−, not as Fea34+–OH−. The distance suggests an ∼800-cm−1 Raman stretching band. We found an interstitial water molecule that could trigger a rapid proton-coupled electron transfer from tyrosine-OH to the slowly forming Fea33+–O−–O−–CuB2+ state, preventing its detection, consistent with the unexpected Raman results. The H-pathway structures of both intermediates indicated that during proton-pumping from the hydrogen-bond network to the P-side, a transmembrane helix closes the water channel connecting the N-side with the hydrogen-bond network, facilitating unidirectional proton-pumping during the P-to-F transition.




phy

Structural basis of cell-surface signaling by a conserved sigma regulator in Gram-negative bacteria [Molecular Biophysics]

Cell-surface signaling (CSS) in Gram-negative bacteria involves highly conserved regulatory pathways that optimize gene expression by transducing extracellular environmental signals to the cytoplasm via inner-membrane sigma regulators. The molecular details of ferric siderophore-mediated activation of the iron import machinery through a sigma regulator are unclear. Here, we present the 1.56 Å resolution structure of the periplasmic complex of the C-terminal CSS domain (CCSSD) of PupR, the sigma regulator in the Pseudomonas capeferrum pseudobactin BN7/8 transport system, and the N-terminal signaling domain (NTSD) of PupB, an outer-membrane TonB-dependent transducer. The structure revealed that the CCSSD consists of two subdomains: a juxta-membrane subdomain, which has a novel all-β-fold, followed by a secretin/TonB, short N-terminal subdomain at the C terminus of the CCSSD, a previously unobserved topological arrangement of this domain. Using affinity pulldown assays, isothermal titration calorimetry, and thermal denaturation CD spectroscopy, we show that both subdomains are required for binding the NTSD with micromolar affinity and that NTSD binding improves CCSSD stability. Our findings prompt us to present a revised model of CSS wherein the CCSSD:NTSD complex forms prior to ferric-siderophore binding. Upon siderophore binding, conformational changes in the CCSSD enable regulated intramembrane proteolysis of the sigma regulator, ultimately resulting in transcriptional regulation.




phy

Single-molecule level structural dynamics of DNA unwinding by human mitochondrial Twinkle helicase [Molecular Biophysics]

Knowledge of the molecular events in mitochondrial DNA (mtDNA) replication is crucial to understanding the origins of human disorders arising from mitochondrial dysfunction. Twinkle helicase is an essential component of mtDNA replication. Here, we employed atomic force microscopy imaging in air and liquids to visualize ring assembly, DNA binding, and unwinding activity of individual Twinkle hexamers at the single-molecule level. We observed that the Twinkle subunits self-assemble into hexamers and higher-order complexes that can switch between open and closed-ring configurations in the absence of DNA. Our analyses helped visualize Twinkle loading onto and unloading from DNA in an open-ringed configuration. They also revealed that closed-ring conformers bind and unwind several hundred base pairs of duplex DNA at an average rate of ∼240 bp/min. We found that the addition of mitochondrial single-stranded (ss) DNA–binding protein both influences the ways Twinkle loads onto defined DNA substrates and stabilizes the unwound ssDNA product, resulting in a ∼5-fold stimulation of the apparent DNA-unwinding rate. Mitochondrial ssDNA-binding protein also increased the estimated translocation processivity from 1750 to >9000 bp before helicase disassociation, suggesting that more than half of the mitochondrial genome could be unwound by Twinkle during a single DNA-binding event. The strategies used in this work provide a new platform to examine Twinkle disease variants and the core mtDNA replication machinery. They also offer an enhanced framework to investigate molecular mechanisms underlying deletion and depletion of the mitochondrial genome as observed in mitochondrial diseases.




phy

Biophysical characterization of SARAH domain-mediated multimerization of Hippo pathway complexes in Drosophila [Signal Transduction]

Hippo pathway signaling limits cell growth and proliferation and maintains the stem-cell niche. These cellular events result from the coordinated activity of a core kinase cassette that is regulated, in part, by interactions involving Hippo, Salvador, and dRassF. These interactions are mediated by a conserved coiled-coil domain, termed SARAH, in each of these proteins. SARAH domain–mediated homodimerization of Hippo kinase leads to autophosphorylation and activation. Paradoxically, SARAH domain–mediated heterodimerization between Hippo and Salvador enhances Hippo kinase activity in cells, whereas complex formation with dRassF inhibits it. To better understand the mechanism by which each complex distinctly modulates Hippo kinase and pathway activity, here we biophysically characterized the entire suite of SARAH domain–mediated complexes. We purified the three SARAH domains from Drosophila melanogaster and performed an unbiased pulldown assay to identify all possible interactions, revealing that isolated SARAH domains are sufficient to recapitulate the cellular assemblies and that Hippo is a universal binding partner. Additionally, we found that the Salvador SARAH domain homodimerizes and demonstrate that this interaction is conserved in Salvador's mammalian homolog. Using native MS, we show that each of these complexes is dimeric in solution. We also measured the stability of each SARAH domain complex, finding that despite similarities at both the sequence and structural levels, SARAH domain complexes differ in stability. The identity, stoichiometry, and stability of these interactions characterized here comprehensively reveal the nature of SARAH domain–mediated complex formation and provide mechanistic insights into how SARAH domain–mediated interactions influence Hippo pathway activity.




phy

The hibernating 100S complex is a target of ribosome-recycling factor and elongation factor G in Staphylococcus aureus [Protein Synthesis and Degradation]

The formation of translationally inactive 70S dimers (called 100S ribosomes) by hibernation-promoting factor is a widespread survival strategy among bacteria. Ribosome dimerization is thought to be reversible, with the dissociation of the 100S complexes enabling ribosome recycling for participation in new rounds of translation. The precise pathway of 100S ribosome recycling has been unclear. We previously found that the heat-shock GTPase HflX in the human pathogen Staphylococcus aureus is a minor disassembly factor. Cells lacking hflX do not accumulate 100S ribosomes unless they are subjected to heat exposure, suggesting the existence of an alternative pathway during nonstressed conditions. Here, we provide biochemical and genetic evidence that two essential translation factors, ribosome-recycling factor (RRF) and GTPase elongation factor G (EF-G), synergistically split 100S ribosomes in a GTP-dependent but tRNA translocation-independent manner. We found that although HflX and the RRF/EF-G pair are functionally interchangeable, HflX is expressed at low levels and is dispensable under normal growth conditions. The bacterial RRF/EF-G pair was previously known to target only the post-termination 70S complexes; our results reveal a new role in the reversal of ribosome hibernation that is intimately linked to bacterial pathogenesis, persister formation, stress responses, and ribosome integrity.




phy

Structure-based discovery of a small-molecule inhibitor of methicillin-resistant Staphylococcus aureus virulence [Molecular Biophysics]

The rapid emergence and dissemination of methicillin-resistant Staphylococcus aureus (MRSA) strains poses a major threat to public health. MRSA possesses an arsenal of secreted host-damaging virulence factors that mediate pathogenicity and blunt immune defenses. Panton–Valentine leukocidin (PVL) and α-toxin are exotoxins that create lytic pores in the host cell membrane. They are recognized as being important for the development of invasive MRSA infections and are thus potential targets for antivirulence therapies. Here, we report the high-resolution X-ray crystal structures of both PVL and α-toxin in their soluble, monomeric, and oligomeric membrane-inserted pore states in complex with n-tetradecylphosphocholine (C14PC). The structures revealed two evolutionarily conserved phosphatidylcholine-binding mechanisms and their roles in modulating host cell attachment, oligomer assembly, and membrane perforation. Moreover, we demonstrate that the soluble C14PC compound protects primary human immune cells in vitro against cytolysis by PVL and α-toxin and hence may serve as the basis for the development of an antivirulence agent for managing MRSA infections.




phy

Physio support in COVID-19 recovery

(Flinders University) New physiotherapy guidelines are targeting COVID-19 patient recovery for respiratory management, exercise and mobilisation in acute hospital wards and Intensive Care Units. The new guidelines published in Australian Journal of Physiotherapy aim to prevent complications of the respiratory system and muscle deconditioning, speed up recovery from mechanical ventilation, and improve long-term physical function and recovery.




phy

New rules for the physical basis of cellular organelle composition

(Princeton University, Engineering School) New findings about critical cellular structures have upended common assumptions about their formation and composition and provided new insight how molecular machines are built in living cells.




phy

NJIT physics team provides novel swab design, free of charge, to augment COVID-19 testing

(New Jersey Institute of Technology) A team of NJIT physicists has developed a novel test swab that can be 3D printed using inexpensive, widely available materials and speedily assembled in a range of fabrication settings. To augment the nation's testing capabilities, the inventors are making the swab's design publicly available, free of licensing fees, during the COVID-19 emergency.




phy

A review on phytochemistry, pharmacological action, ethanobotanical uses and nutritional potential

(Bentham Science Publishers) This comprehensive review presented by researchers from K.S. Rangasamy College of Arts and Science, Tiruchengode, Tamil-Nadu, India, gives readers a brief overview of phytoconstituents, nutritional values and medicinal properties of the plant.




phy

AGS honors Dr. John B. Murphy for pioneering work to build a better health workforce

(American Geriatrics Society) The American Geriatrics Society (AGS) today announced that John B. Murphy, MD, a clinician, educator, and administrator working to embed geriatrics education in the fabric of medical curricula and clinical operations will be honored with the 2020 Dennis W. Jahnigen Award celebrating work to train health professionals in the care we all need as we age.




phy

OU Reproductive Medicine physician receives grant to further study frozen embryo transfers

(University of Oklahoma) OU Medicine recently received a $1.4 million grant from the National Institutes of Health to study one method of embryo transfer involved in IVF: cryopreserved (frozen) embryo transfer.




phy

Four Theories and a Philosophy: Self-Management Education for Individuals Newly Diagnosed With Type 2 Diabetes

T. Chas Skinner
Apr 1, 2003; 16:
Lifestyle and Behavior




phy

Combined Visual and Semi-quantitative Evaluation Improves Outcome Prediction by Early Mid-treatment 18F-fluoro-deoxi-glucose Positron Emission Tomography in Diffuse Large B-cell Lymphoma.

The purpose of this study was to assess the predictive and prognostic value of interim FDG PET (iPET) in evaluating early response to immuno-chemotherapy after two cycles (PET-2) in diffuse large B-cell lymphoma (DLBCL) by applying two different methods of interpretation: the Deauville visual five-point scale (5-PS) and a change in standardised uptake value by semi-quantitative evaluation. Methods: 145 patients with newly diagnosed DLBCL underwent pre-treatment PET (PET-0) and PET-2 assessment. PET-2 was classified according to both the visual 5-PS and percentage SUV changes (SUV). Receiver operating characteristic (ROC) analysis was performed to compare the accuracy of the two methods for predicting progression-free survival (PFS). Survival estimates, based on each method separately and combined, were calculated for iPET-positive (iPET+) and iPET-negative (iPET–) groups and compared. Results: Both with visual and SUV-based evaluations significant differences were found between the PFS of iPET– and iPET+ patient groups (p<0.001). Visually the best negative (NPV) and positive predictive value (PPV) occurred when iPET was defined as positive if Deauville score 4-5 (89% and 59%, respectively). Using the 66% SUV cut-off value, reported previously, NPV and PPV were 80 and 76%, respectively. SUV at 48.9% cut-off point, reported for the first time here, produced 100% specificity along with the highest sensitivity (24%). Visual and semi-quantitative SUV<48.9% assessment of each PET-2 gave the same PET-2 classification (positive or negative) in 70% (102/145) of all patients. This combined classification delivered NPV and PPV of 89% and 100% respectively, and all iPET+ patients failed to achieve or remain in remission. Conclusion: In this large consistently treated and assessed series of DLBCL, iPET had good prognostic value interpreted either visually or semi-quantitatively. We determined that the most effective SUV cut-off was at 48.9%, and that when combined with visual 5-PS assessment, a positive PET-2 was highly predictive of treatment failure.




phy

Initial studies with [11C]vorozole positron emission tomography detect over-expression of intra-tumoral aromatase in breast cancer

Introduction: Aromatase inhibitors are the mainstay of hormonal therapy in estrogen receptor positive, postmenopausal breast cancer, although response rate is just over 50%. The goal of the present study was to validate and optimize positron emission tomography (PET) with 11C-vorozole for measuring aromatase expression in postmenopausal breast cancer. Methods: Ten newly diagnosed, postmenopausal women with biopsy confirmed breast cancer were administered 11C-vorozole intravenously and PET emission data collected between 40 – 90 minutes post-injection. Tracer injection and scanning were repeated 2 hours after ingestion of 2.5mg letrozole p.o. Mean and maximal standard uptake values and ratios to non-tumor tissue (SUVs, SUVRs) were calculated for tumor and non-tumor regions at baseline and after letrozole. Biopsy specimens from the same tumors were stained for aromatase using immunohistochemistry and evaluated for stain intensity and the percentage of immune-positive cells. Results: Seven of the 10 women (70%) demonstrated increased focal uptake of tracer (SUVR>1.1) coinciding with the mammographic location of the lesion. The other 3 women (30%) did not show increased uptake in the tumor (SUVR <1.0). All of the cases with SUVR above 1.1 had SUVs above 2.4 and there was no overlap in SUV between the two groups, with mean SUV in tumors overexpressing aromatase (SUVR>1.1) ranging from 2.47 to 13.6, while tumors not overexpressing aromatase (SUVR<1) ranged from 0.8 to 1.8. Pretreatment with letrozole reduced tracer uptake in the majority of subjects; although the %blocking varied across and within tumors. Tumors with high SUV in vivo also showed high staining intensity on IHC. Conclusion: PET with 11C-vorozole is a useful technique for measuring aromatase expression in individual breast lesions, enabling a non-invasive quantitative measurement of baseline and post-treatment aromatase availability in primary tumors and metastatic lesions.




phy

18F-Fluorodeoxyglucose Positron Emission Tomography / Computed Tomography in Left-Ventricular Assist Device Infection: Initial Results Supporting the Usefulness of Image-Guided Therapy

Background: Accurate definition of the extent and severity of left-ventricular assist device (LVAD) infection may facilitate therapeutic decision making and targeted surgical intervention. Here, we explore the value of 18F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) for guidance of patient management. Methods: Fifty-seven LVAD-carrying patients received 85 whole-body 18F-FDG PET/CT scans for the work-up of device infection. Clinical follow-up was obtained over a period of up to two years. Results: PET/CT showed various patterns of infectious involvement of the 4 LVAD components: driveline entry point (77% of cases), subcutaneous driveline path (87%), pump pocket (49%) and outflow tract (58%). Driveline smears revealed staphylococcus or pseudomonas strains as the underlying pathogen in a majority of cases (48 and 34%, respectively). At receiver-operating characteristics analysis, an 18F-FDG standardized uptake value (SUV) >2.5 was most accurate to identify smear-positive driveline infection. Infection of 3 or all 4 LVAD components showed a trend towards lower survival vs infection of 2 or less components (P = 0.089), while involvement of thoracic lymph nodes was significantly associated with adverse outcome (P = 0.001 for nodal SUV above vs below median). Finally, patients that underwent early surgical revision within 3 months after PET/CT (n = 21) required significantly less inpatient hospital care during follow-up when compared to those receiving delayed surgical revision (n = 11; p<0.05). Conclusion: Whole-body 18F-FDG PET/CT identifies the extent of LVAD infection and predicts adverse outcome. Initial experience suggests that early image-guided surgical intervention may facilitate a less complicated subsequent course.




phy

18F-fluorodexyglucose Position Emission Tomography identifies altered brain metabolism in patients with Cri du Chat syndrome

Cri-Du-Chat Syndrome (CdCs) is a rare genetic disease caused by a deletion in the short arm of chromosome 5 (5p) with a variable clinical spectrum. To date no study in literature has ever investigated the alterations of brain glucose metabolism in these subjects by means of [18F]fluoro-2-deoxy-d-glucose Positron Emission Tomography/Computed Tomography (18F-FDG PET/CT). The aims of this study were to detect difference in brain FDG metabolism in patients affected by CdCs with different clinical presentations and identify possible "brain metabolic phenotypes" of this syndrome. Methods: 6 patients (age: 5 M and 1 F, age range: 10-27) with CdCs were assessed for presence of cognitive and behavioral symptoms with a battery of neuropsychological tests and then classified as patient with a severe or mild phenotype. Then, patients underwent a brain 18F-FDG PET/CT scan. PET/CT findings were compared to a control group, matched for age and sex, by using statistical parametric mapping (SPM). Association of different clinical phenotypes and 18F-FDG PET/CT findings was investigated. Results: Four patients presented a severe phenotype, whereas 2 patients demonstrated mild phenotype. SPM single subject and group analysis compared to the control cohort revealed a significant hypometabolism in the left temporal lobe (BAs 20, 36 and 38), in the right frontal subcallosal gyrus (BA 34) and caudate body, and in the cerebellar tonsils (p<0.001). Hypermetabolism (P = 0.001) was revealed in the right superior and precentral frontal gyrus (BA 6) in patient group compared to the control cohort. In SPM single subject analysis the hypermetabolic areas were detected only in patients with a severe phenotype. Conclusion: This study revealed different patterns of brain glucose metabolism in patients with severe and mild phenotype compared to control subjects. In particular, the hypermetabolic abnormalities in the brain, evaluated by18F-FDG PET/CT, seem to correlate with the severe phenotype in patients with CdCs.




phy

Head to head prospective comparison of quantitative lung scintigraphy and segment counting in predicting pulmonary function of lung cancer patients undergoing video-assisted thoracoscopic lobectomy

Prediction of post-operative pulmonary function in lung cancer patients before tumor resection is essential for patient selection for surgery and is conventionally done with a non-imaging segment counting method (SC) or a two-dimensional planar lung perfusion scintigraphy (PS). The purpose of this study was to compare quantitative analysis of PS to single photon emission computed tomography/computed tomography (SPECT/CT) and to estimate the accuracy of SC, PS and SPECT/CT in predicting post-operative pulmonary function in patients undergoing lobectomy. Methods: Seventy-five non-small cell lung cancer (NSCLC) patients planned for lobectomy were prospectively enrolled (68% males, average age 68.1±8 years ). All patients completed pre-operative forced expiratory volume capacity (FEV1), diffusing capacity of the lung for carbon monoxide (DLCO), Tc99m-MAA lung perfusion scintigraphy with PS and SPECT/CT quantification. A subgroup of 60 patients underwent video-assisted thoracoscopic (VATS) lobectomy and measurement of post-operative FEV1 and DLCO. Relative uptake of the lung lobes estimated by PS and SPECT/CT were compared. Predicted post-operative FEV1 and DLCO were derived from SC, PS and SPECT/CT. Prediction results were compared between the different methods and the true post-operative measurements in patients who underwent lobectomy. Results: Relative uptake measurements differed significantly between PS and SPECT/CT in right lung lobes, with a mean difference of -8.2±3.8, 18.0±5.0 and -11.5±6.1 for right upper, middle and lower lobes respectively (p<0.001). The differences between the methods in the left lung lobes were minor with a mean difference of -0.4±4.4 (p>0.05) and -2.0±4.0 (p<0.001) for left upper and lower lobes respectively. No significant difference and strong correlation (R=0.6-0.76, p<0.001) were found between predicted post-operative lung function values according to SC, PS, SPECT/CT and the actual post-operative FEV1 and DLCO. Conclusion: Although lobar quantification parameters differed significantly between PS and SPECT/CT, no significant differences were found between the predicted post-operative lung function results derived from these methods and the actual post-operative results. The additional time and effort of SPECT/CT quantification may not have an added value in patient selection for surgery. SPECT/CT may be advantageous in patients planned for right lobectomies but further research is warranted.




phy

Positron lymphography via intracervical 18F-FDG injection for pre-surgical lymphatic mapping in cervical and endometrial malignancies

Rationale: The presence of metastasis in local lymph nodes (LNs) is a key factor influencing choice of therapy and prognosis in cervical and endometrial cancers; therefore, the exploration of sentinel LNs (SLNs) is highly important. Currently, however, SLN mapping requires LN biopsy for pathologic evaluation, since there are no clinical imaging approaches that can identify tumor-positive LNs in early stages. Staging lymphadenectomy poses risks, such as leg lymphedema or lymphocyst formation. Furthermore, in 80% to 90% of patients, the explored LNs are ultimately tumor free, meaning the vast majority of patients are unnecessarily subjected to lymphadenectomy. Methods: Current lymphoscintigraphy methods only identify the anatomic location of the SLNs but do not provide information on their tumor status. There are no non-invasive methods to reliably identify metastases in LNs before surgery. We have developed positron lymphography (PLG), a method to detect tumor-positive LNs, where 18F-fluoro-2-deoxy-D-glucose (18F-FDG) is injected interstitially into the uterine cervix the day of surgery, and its rapid transport through the lymphatic vessels to the SLN is then visualized with dynamic positron emission tomography/computed tomography (PET/CT). We previously showed that PLG was able to identify metastatic LNs in animal models. Here, we present the first results from our pilot clinical trial (clinical trials identifier NCT02285192) in 23 patients with uterine or cervical cancer. On the morning of surgery, 18F-FDG was injected into the cervix, followed by an immediate dynamic PET/CT scan of the pelvis and a delayed 1-h whole body scan. Results: There were 3 (15%) node-positive cases on final pathologic analysis, and all LNs (including one with a focus of only 80 tumor cells) were identified by PLG except one node with an 11-mm micrometastasis. There were 2 (10%) false-positive cases with PLG, in which final pathology of the corresponding SLNs was negative for tumor. Methods: Current lymphoscintigraphy methods only identify the anatomic location of the SLNs but do not provide information on their tumor status. There are no non-invasive methods to reliably identify metastases in LNs before surgery. We have developed positron lymphography (PLG), a method to detect tumor-positive LNs, where 18F-fluoro-2-deoxy-D-glucose (18F-FDG) is injected interstitially into the uterine cervix the day of surgery, and its rapid transport through the lymphatic vessels to the SLN is then visualized with dynamic positron emission tomography/computed tomography (PET/CT). We previously showed that PLG was able to identify metastatic LNs in animal models. Here, we present the first results from our pilot clinical trial (clinical trials identifier NCT02285192) in 23 patients with uterine or cervical cancer. On the morning of surgery, 18F-FDG was injected into the cervix, followed by an immediate dynamic PET/CT scan of the pelvis and a delayed 1-h whole body scan. Results: There were 3 (15%) node-positive cases on final pathologic analysis, and all LNs (including one with a focus of only 80 tumor cells) were identified by PLG, except for one node with an 11-mm micrometastasis. There were 2 (10%) false-positive cases with PLG, in which final pathology of the corresponding SLNs was negative for tumor. Conclusion: This first-in-human study of PLG in women with uterine and cervical cancer demonstrates its feasibility and its ability to identify patients with nodal metastases, and warrants further evaluation in additional studies.




phy

Tobacco smoking in people is not associated with altered 18 kDa-translocator protein levels: A Positron Emission Tomography study

Rationale: The effects of tobacco smoking on the brain’s immune system are not well elucidated. While nicotine is immunosuppressive, other constituents in tobacco smoke have inflammatory effects. Positron Emission Tomography (PET) imaging of the 18-kDa translocator protein (TSPO) provide a biomarker for microglia, the brain’s primary immunocompetent cells. This work compared brain TSPO levels in 20 tobacco smokers (abstinent for at least 2 hours) and 20 nonsmokers using a fully quantitative modeling approach for the first time. Methods: [11C]PBR28 PET scans were acquired with arterial blood sampling to estimate the metabolite-corrected input function. [11C]PBR28 volumes of distribution (VT) were estimated throughout the brain with multilinear analysis. Results: Statistical analyses revealed no evidence for significant differences in regional [11C]PBR28 VT between smokers and non-smokers (whole-brain Cohen’s d=0.09) despite adequate power to detect medium effect sizes. Conclusion: These findings inform previous PET studies reporting lower TSPO radiotracer concentrations in brain (measured as standardized uptake value, SUV) of tobacco smokers compared to nonsmokers by demonstrating the importance of accounting for radiotracer concentrations in plasma. These findings suggest that compared to nonsmokers, smokers have comparable TSPO levels in brain. Additional work with other biomarkers is needed to fully characterize effects of tobacco smoking on the brain’s immune system.




phy

Clinical evaluation of a data-driven respiratory gating algorithm for whole-body positron emission tomography with continuous bed motion

Respiratory gating is the standard to overcome respiration effects degrading image quality in positron emission tomography (PET). Data-driven gating (DDG) using signals derived from PET raw data are promising alternatives to gating approaches requiring additional hardware. However, continuous bed motion (CBM) scans require dedicated DDG approaches for axially-extended PET, compared to DDG for conventional step-and-shoot scans. In this study, a CBM-capable DDG algorithm was investigated in a clinical cohort, comparing it to hardware-based gating using gated and fully motion-corrected reconstructions. Methods: 56 patients with suspected malignancies in thorax or abdomen underwent whole-body 18F-FDG CBM-PET/CT imaging using DDG and hardware-based respiratory gating (pressure-sensitive belt gating, BG). Correlation analyses were performed on both gating signals. Besides static reconstructions, BG and DDG were used for optimally-gated PET (BG-OG, DDG-OG) and fully motion-corrected PET (elastic motion correction; BG-EMOCO, DDG-EMOCO). Metabolic volumes, SUVmax and SUVmean of lesions were compared amongst the reconstructions. Additionally, the quality of lesion delineation in different PET reconstructions was independently evaluated by three experts. Results: Global correlation coefficients between BG and DDG signals amounted to 0.48±0.11, peaking at 0.89±0.07 when scanning the kidney and liver region. In total, 196 lesions were analyzed. SUV measurements were significantly higher in BG-OG, DDG-OG, BG-EMOCO and DDG-EMOCO compared to static images (P<0.001; median SUVmax: static, 14.3±13.4; BG-EMOCO, 19.8±15.7; DDG-EMOCO, 20.5±15.6; BG-OG, 19.6±17.1; DDG-OG, 18.9±16.6). No significant differences between BG-OG and DDG-OG, and BG-EMOCO and DDG-EMOCO, respectively, were found. Visual lesion delineation was significantly better in BG-EMOCO and DDG-EMOCO than in static reconstructions (P<0.001); no significant difference was found comparing BG and DDG (EMOCO, OG, respectively). Conclusion: DDG-based motion-compensation of CBM-PET acquisitions outperforms static reconstructions, delivering qualities comparable to hardware-based approaches. The new algorithm may be a valuable alternative for CBM-PET systems.




phy

First-in-Human Trial of Dasatinib-Derivative Tracer for Tumor Kinase-Targeted Positron Emission Tomography

We developed a first-of-kind dasatinib-derivative imaging agent, 18F-SKI-249380 (18F-SKI), and validated its use for noninvasive in vivo tyrosine kinase-targeted tumor detection in preclinical models. In this study, we assess the feasibility of using 18F-SKI for PET imaging in patients with malignancies. Methods: Five patients with a prior diagnosis of breast cancer, renal cell cancer, or leukemia underwent whole-body PET/CT imaging 90 min post-injection of 18F-SKI (mean: 241.24 ± 116.36 MBq) as part of a prospective study. In addition, patients underwent either a 30-min dynamic scan of the upper abdomen including, at least partly, cardiac left ventricle, liver, spleen, and kidney (n = 2) or three 10-min whole-body PET/CT scans (n = 3) immediately post-injection and blood-based radioactivity measurements to determine the time course of tracer distribution and facilitate radiation dose estimates. A subset of three patients had a delayed whole-body PET/CT scan at 180 min. Biodistribution, dosimetry, and tumor uptake were quantified. Absorbed doses were calculated using OLINDA/EXM 1.0. Results: No adverse events occurred after injection of 18F-SKI. A total of 27 tumor lesions were analyzed with median SUVpeak 1.4 (range, 0.7–2.3) and tumor-to-blood ratios of 1.6 (range, 0.8–2.5) at 90 min post-injection. Intratumoral drug concentrations calculated for four reference lesions ranged from 0.03–0.07 nM. In all reference lesions, constant tracer accumulation was observed between 30–90 min post-injection. Blood radio-assay indicated that radiotracer clearance from blood and plasma was initially rapid (blood half-time 1.31 ± 0.81 min, plasma 1.07 ± 0.66 min; n = 4), followed variably by either a prolonged terminal phase (blood half-time 285 ± 148.49 min, plasma 240 ± 84.85 min; n = 2) or a small rise to plateau (n = 2). Like dasatinib, 18F-SKI underwent extensive metabolism post-administration, as evidenced by metabolite analysis. Radioactivity was predominantly cleared via the hepatobiliary route. The highest absorbed dose estimates (mGy/MBq) in normal tissues were to the right colon (0.167 ± 0.04) and small intestine (0.153 ± 0.03). The effective dose was 0.0258 (SD 0.0034) mSv/MBq. Conclusion: 18F-SKI demonstrated significant tumor uptake, distinct image contrast despite low injected doses, and rapid clearance from blood.




phy

A Prospective, Comparative Study of Planar and Single-photon Emission Computed Tomography Ventilation/Perfusion Imaging for Chronic Thromboembolic Pulmonary Hypertension

Objectives: The study compared the diagnostic performance of Planar Ventilation/perfusion (V/Q) and V/Q Single-photon computed tomography (SPECT), and determined whether combining perfusion scanning with low-dose computed tomography (Q-LDCT) may be equally effective in a prospective study of patients with chronic thromboembolic pulmonary hypertension (CTEPH) patients. Background: V/Q scanning is recommended for excluding CTEPH during the diagnosis of pulmonary hypertension (PH). However, Planar V/Q and V/Q SPECT techniques have yet to be compared in patients with CTEPH. Methods: Patients with suspected PH were eligible for the study. PH attributable to left heart disease or lung disease was excluded, and patients whose PH was confirmed by right heart catheterization and who completed Planar V/Q, V/Q-SPECT, Q-LDCT, and pulmonary angiography were included. V/Q images were interpreted and patients were diagnosed as instructed by the 2009 EANM guidelines, and pulmonary angiography analyses were used as a reference standard. Results: A total of 208 patients completed the study, including 69 with CTEPH confirmed by pulmonary angiography. Planar V/Q, V/Q-SPECT, and Q-LDCT were all highly effective for diagnosing CTEPH, with no significant differences in sensitivity or specificity observed among the three techniques (Planar V/Q [sensitivity/specificity]: 94.20%/92.81%; V/Q-SPECT: 97.10%/91.37%, Q-LCDT: 95.65%/90.65%). However, V/Q-SPECT was significantly more sensitive (V/Q-SPECT: 79.21%; Planar V/Q: 75.84%, P = 0.012; Q-LDCT: 74.91%, p<0.001), and Planar V/Q was significantly more specific (Planar V/Q: 54.14%; V/Q-SPECT 46.05%, p<0.001; Q-LDCT: 46.05%, P = 0.001) than the other two techniques for identifying perfusion defects in individual lung segments. Conclusion: Both Planar V/Q and V/Q-SPECT were highly effective for diagnosing CTEPH, and Q-LDCT may be a reliable alternative method for patients who are unsuitable for ventilation imaging.




phy

Moving towards multicenter therapeutic trials in ALS: feasibility of data pooling using different TSPO positron emission tomography (PET) radioligands.

Rationale: Neuroinflammation has been implicated in Amyotrophic Lateral Sclerosis (ALS) and can be visualized using translocator protein (TSPO) radioligands. To become a reliable pharmacodynamic biomarker for ALS multicenter trials, some challenges have to be overcome. We aimed to investigate whether multicenter data pooling of different TSPO tracers (11C-PBR28 and 18F-DPA714) is feasible, after validation of an established 11C-PBR28 PET pseudoreference analysis technique for 18F-DPA714. Methods: 7 ALS-Belgium (58.9±6.7 years,5M) and 8 HV-Belgium (52.1±15.2 years,3M); and 7 ALS-US (53.4±9.8 years,5M) and 7 HV-US (54.6±9.6 years,4M) from a previously published study (1) underwent dynamic 18F-DPA714 (Leuven, Belgium) or 11C-PBR28 (Boston, US) PET-MR scans. For 18F-DPA714, volume of distribution (VT) maps were compared to standardized uptake value ratios (SUVR)40-60 calculated using the pseudoreference regions (1)cerebellum, (2)occipital cortex, and (3)whole brain without ventricles (WB-ventricles). Also for 11C-PBR28, SUVR60-90 using WB-ventricles were calculated. Results: In line with previous studies, increased 18F-DPA714 uptake (17.0±5.6%) in primary motor cortices was observed in ALS, as measured by both VT and SUVR40-60 approaches. Highest sensitivity was found for SUVRWB-ventricles (average cluster 21.6±0.1%). 18F-DPA714 VT ratio and SUVR40-60 results were highly correlated (r>0.8, p<0.001). A similar pattern of increased uptake (average cluster 20.5±0.5%) in primary motor cortices was observed in ALS with 11C-PBR28 using the SUVRWB-ventricles. Analysis of the 18F-DPA714 and 11C-PBR28 data together, resulted in a more extensive pattern of significant increased glial activation in the bilateral primary motor cortices. Conclusion: The same pseudoreference region analysis technique for 11C-PBR28 PET imaging can be extended towards 18F-DPA714 PET. Therefore, in ALS, standardized analysis across these two tracers enables pooling of TSPO PET data across multiple centers and increase power of TSPO as biomarker for future therapeutic trials.




phy

CXCR4-targeted positron emission tomography imaging of central nervous system B-cell lymphoma

C-X-C chemokine receptor 4 is a transmembrane chemokine receptor involved in growth, survival, and dissemination of cancer, including aggressive B-cell lymphoma. Magnetic resonance imaging (MRI) is the standard imaging technology for central nervous system involvement of B-cell lymphoma and provides high sensitivity but moderate specificity. Therefore, novel molecular and functional imaging strategies are urgently required. Methods: In this proof-of-concept study, 11 patients with lymphoma of the CNS (CNSL, n = 8 primary and n = 3 secondary involvement) were imaged with the CXCR4-directed positron emission tomography (PET) tracer 68Ga-Pentixafor. To evaluate the predictive value of this imaging modality, treatment response, as determined by MRI, was correlated with quantification of CXCR4 expression by 68Ga-Pentixafor PET in vivo before initiation of treatment in 7 of 11 patients. Results: 68Ga-Pentixafor-PET showed excellent contrast characteristics to the surrounding brain parenchyma in all patients with active disease. Furthermore, initial CXCR4 uptake determined by PET correlated with subsequent treatment response as assessed by MRI. Conclusion: 68Ga-Pentixafor-PET represents a novel diagnostic tool for central nervous system lymphoma with potential implications for theranostic approaches as well as response and risk assessment.




phy

Guidance Document: Validation of a High-Performance Liquid Chromatography-Tandem Mass Spectrometry Immunopeptidomics Assay for the Identification of HLA Class I Ligands Suitable for Pharmaceutical Therapies [Commentary]

For more than two decades naturally presented, human leukocyte antigen (HLA)-restricted peptides (immunopeptidome) have been eluted and sequenced using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Since, identified disease-associated HLA ligands have been characterized and evaluated as potential active substances. Treatments based on HLA-presented peptides have shown promising results in clinical application as personalized T cell-based immunotherapy. Peptide vaccination cocktails are produced as investigational medicinal products under GMP conditions. To support clinical trials based on HLA-presented tumor-associated antigens, in this study the sensitive LC-MS/MS HLA class I antigen identification pipeline was fully validated for our technical equipment according to the current US Food and Drug Administration (FDA) and European Medicines Agency (EMA) guidelines.

The immunopeptidomes of JY cells with or without spiked-in, isotope labeled peptides, of peripheral blood mononuclear cells of healthy volunteers as well as a chronic lymphocytic leukemia and a bladder cancer sample were reliably identified using a data-dependent acquisition method. As the LC-MS/MS pipeline is used for identification purposes, the validation parameters include accuracy, precision, specificity, limit of detection and robustness.




phy

Schnyder corneal dystrophy-associated UBIAD1 is defective in MK-4 synthesis and resists autophagy-mediated degradation

Dong-Jae Jun
May 1, 2020; 61:746-757
Research Articles




phy

Principles of electrospray ionization [Biophysical Methods]

Electrospray ionization is today the most widely used ionization technique in chemical and bio-chemical analysis. Interfaced with a mass spectrometer it allows to investigate the molecular composition of liquid samples. With electrospray a large variety of chemical substances can be ionized. There is no limitation in mass which enables even the investigation of large non-covalent protein complexes. Its high ionization efficiency profoundly changed bio-molecular sciences because proteins can be identified and quantified on trace amounts in a high throughput fashion. This review article focusses mainly on the exploration of the underlying ionization mechanism. Some ionization characteristics are discussed which are related to this mechanism. Typical spectra of peptides, proteins and non-covalent complexes are shown and the quantitative character of spectra is highlighted. Finally the possibilities and limitations in measuring the association constant of bivalent non-covalent complexes are described.




phy

Functional recombinant apolipoprotein A5 that is stable at high concentrations at physiological pH [Methods]

APOA5 is a low-abundance exchangeable apolipoprotein that plays critical roles in human triglyceride (TG) metabolism. Indeed, aberrations in the plasma concentration or structure of APOA5 are linked to hypertriglyceridemia, hyperchylomicronemia, myocardial infarction risk, obesity, and coronary artery disease. While it has been successfully produced at low yield in bacteria, the resulting protein had limitations for structure-function studies due to its low solubility under physiological buffer conditions. We hypothesized that the yield and solubility of recombinant APOA5 could be increased by: i) engineering a fusion protein construct in a codon optimized expression vector, ii) optimizing an efficient refolding protocol, and iii) screening buffer systems at physiological pH. The result was a high-yield (25 mg/l) bacterial expression system that produces lipid-free APOA5 soluble at concentrations of up to 10 mg/ml at a pH of 7.8 in bicarbonate buffers. Physical characterization of lipid-free APOA5 indicated that it exists as an array of multimers in solution, and far UV circular dichroism analyses show differences in total α-helicity between acidic and neutral pH buffering conditions. The protein was functional in that it bound and emulsified multilamellar dimyristoyl-phosphatidylcholine vesicles and could inhibit postprandial plasma TG accumulation when injected into C57BL/6J mice orally gavaged with Intralipid.




phy

Metallopeptidase Stp1 activates the transcription factor Sre1 in the carotenogenic yeast Xanthophyllomyces dendrorhous [Research Articles]

Xanthophyllomyces dendrorhous is a basidiomycete yeast known as a natural producer of astaxanthin, a carotenoid of commercial interest because of its antioxidant properties. Recent studies indicated that X. dendrorhous has a functional SREBP pathway involved in the regulation of isoprenoid compound biosynthesis, which includes ergosterol and carotenoids. SREBP is a major regulator of sterol metabolism and homeostasis in mammals; characterization in fungi also provides information about its role in the hypoxia adaptation response and virulence. SREBP protease processing is required to activate SREBP pathway functions in fungi. Here, we identified and described the STP1 gene, which encodes a metallopeptidase of the M50 family involved in the proteolytic activation of the transcription factor Sre1 of the SREBP pathway, in X. dendrorhous. We assessed STP1 function in stp1 strains derived from the wild-type and a mutant of ergosterol biosynthesis that overproduces carotenoids and sterols. Bioinformatic analysis of the deduced protein predicted the presence of characteristic features identified in homologs from mammals and fungi. The stp1 mutation decreased yeast growth in the presence of azole drugs and reduced transcript levels of Sre1-dependent genes. This mutation also negatively affected the carotenoid- and sterol-overproducing phenotype. Western blot analysis demonstrated that Sre1 was activated in the yeast ergosterol biosynthesis mutant and that the stp1 mutation introduced in this strain prevented Sre1 proteolytic activation. Overall, our results demonstrate that STP1 encodes a metallopeptidase involved in proteolytic activation of Sre1 in X. dendrorhous, contributing to our understanding of fungal SREBP pathways.




phy

Nanodomains can persist at physiologic temperature in plasma membrane vesicles and be modulated by altering cell lipids [Research Articles]

The formation and properties of liquid-ordered (Lo) lipid domains (rafts) in the plasma membrane are still poorly understood. This limits our ability to manipulate ordered lipid domain-dependent biological functions. Giant plasma membrane vesicles (GPMVs) undergo large-scale phase separations into coexisting Lo and liquid-disordered lipid domains. However, large-scale phase separation in GPMVs detected by light microscopy is observed only at low temperatures. Comparing Förster resonance energy transfer-detected versus light microscopy-detected domain formation, we found that nanodomains, domains of nanometer size, persist at temperatures up to 20°C higher than large-scale phases, up to physiologic temperature. The persistence of nanodomains at higher temperatures is consistent with previously reported theoretical calculations. To investigate the sensitivity of nanodomains to lipid composition, GPMVs were prepared from mammalian cells in which sterol, phospholipid, or sphingolipid composition in the plasma membrane outer leaflet had been altered by cyclodextrin-catalyzed lipid exchange. Lipid substitutions that stabilize or destabilize ordered domain formation in artificial lipid vesicles had a similar effect on the thermal stability of nanodomains and large-scale phase separation in GPMVs, with nanodomains persisting at higher temperatures than large-scale phases for a wide range of lipid compositions. This indicates that it is likely that plasma membrane nanodomains can form under physiologic conditions more readily than large-scale phase separation. We also conclude that membrane lipid substitutions carried out in intact cells are able to modulate the propensity of plasma membranes to form ordered domains. This implies lipid substitutions can be used to alter biological processes dependent upon ordered domains.




phy

Schnyder corneal dystrophy-associated UBIAD1 is defective in MK-4 synthesis and resists autophagy-mediated degradation [Research Articles]

The autosomal dominant disorder Schnyder corneal dystrophy (SCD) is caused by mutations in UbiA prenyltransferase domain-containing protein-1 (UBIAD1), which uses geranylgeranyl pyrophosphate (GGpp) to synthesize the vitamin K2 subtype menaquinone-4 (MK-4). SCD is characterized by opacification of the cornea, owing to aberrant build-up of cholesterol in the tissue. We previously discovered that sterols stimulate association of UBIAD1 with ER-localized HMG-CoA reductase, which catalyzes a rate-limiting step in the synthesis of cholesterol and nonsterol isoprenoids, including GGpp. Binding to UBIAD1 inhibits sterol-accelerated ER-associated degradation (ERAD) of reductase and permits continued synthesis of GGpp in cholesterol-replete cells. GGpp disrupts UBIAD1-reductase binding and thereby allows for maximal ERAD of reductase as well as ER-to-Golgi translocation of UBIAD1. SCD-associated UBIAD1 is refractory to GGpp-mediated dissociation from reductase and remains sequestered in the ER to inhibit ERAD. Here, we report development of a biochemical assay for UBIAD1-mediated synthesis of MK-4 in isolated membranes and intact cells. Using this assay, we compared enzymatic activity of WT UBIAD1 with that of SCD-associated variants. Our studies revealed that SCD-associated UBIAD1 exhibited reduced MK-4 synthetic activity, which may result from its reduced affinity for GGpp. Sequestration in the ER protects SCD-associated UBIAD1 from autophagy and allows intracellular accumulation of the mutant protein, which amplifies the inhibitory effect on reductase ERAD. These findings have important implications not only for the understanding of SCD etiology but also for the efficacy of cholesterol-lowering statin therapy, which becomes limited, in part, because of UBIAD1-mediated inhibition of reductase ERAD.




phy

Lipid rafts and neurodegeneration: structural and functional roles in physiologic aging and neurodegenerative diseases [Thematic Reviews]

Lipid rafts are small, dynamic membrane areas characterized by the clustering of selected membrane lipids as the result of the spontaneous separation of glycolipids, sphingolipids, and cholesterol in a liquid-ordered phase. The exact dynamics underlying phase separation of membrane lipids in the complex biological membranes are still not fully understood. Nevertheless, alterations in the membrane lipid composition affect the lateral organization of molecules belonging to lipid rafts. Neural lipid rafts are found in brain cells, including neurons, astrocytes, and microglia, and are characterized by a high enrichment of specific lipids depending on the cell type. These lipid rafts seem to organize and determine the function of multiprotein complexes involved in several aspects of signal transduction, thus regulating the homeostasis of the brain. The progressive decline of brain performance along with physiological aging is at least in part associated with alterations in the composition and structure of neural lipid rafts. In addition, neurodegenerative conditions, such as lysosomal storage disorders, multiple sclerosis, and Parkinson’s, Huntington’s, and Alzheimer’s diseases, are frequently characterized by dysregulated lipid metabolism, which in turn affects the structure of lipid rafts. Several events underlying the pathogenesis of these diseases appear to depend on the altered composition of lipid rafts. Thus, the structure and function of lipid rafts play a central role in the pathogenesis of many common neurodegenerative diseases.




phy

Autoimmune complications of immunotherapy: pathophysiology and management




phy

The short variant of optic atrophy 1 (OPA1) improves cell survival under oxidative stress [Bioenergetics]

Optic atrophy 1 (OPA1) is a dynamin protein that mediates mitochondrial fusion at the inner membrane. OPA1 is also necessary for maintaining the cristae and thus essential for supporting cellular energetics. OPA1 exists as membrane-anchored long form (L-OPA1) and short form (S-OPA1) that lacks the transmembrane region and is generated by cleavage of L-OPA1. Mitochondrial dysfunction and cellular stresses activate the inner membrane–associated zinc metallopeptidase OMA1 that cleaves L-OPA1, causing S-OPA1 accumulation. The prevailing notion has been that L-OPA1 is the functional form, whereas S-OPA1 is an inactive cleavage product in mammals, and that stress-induced OPA1 cleavage causes mitochondrial fragmentation and sensitizes cells to death. However, S-OPA1 contains all functional domains of dynamin proteins, suggesting that it has a physiological role. Indeed, we recently demonstrated that S-OPA1 can maintain cristae and energetics through its GTPase activity, despite lacking fusion activity. Here, applying oxidant insult that induces OPA1 cleavage, we show that cells unable to generate S-OPA1 are more sensitive to this stress under obligatory respiratory conditions, leading to necrotic death. These findings indicate that L-OPA1 and S-OPA1 differ in maintaining mitochondrial function. Mechanistically, we found that cells that exclusively express L-OPA1 generate more superoxide and are more sensitive to Ca2+-induced mitochondrial permeability transition, suggesting that S-OPA1, and not L-OPA1, protects against cellular stress. Importantly, silencing of OMA1 expression increased oxidant-induced cell death, indicating that stress-induced OPA1 cleavage supports cell survival. Our findings suggest that S-OPA1 generation by OPA1 cleavage is a survival mechanism in stressed cells.




phy

Structural basis of specific inhibition of extracellular activation of pro- or latent myostatin by the monoclonal antibody SRK-015 [Molecular Biophysics]

Myostatin (or growth/differentiation factor 8 (GDF8)) is a member of the transforming growth factor β superfamily of growth factors and negatively regulates skeletal muscle growth. Its dysregulation is implicated in muscle wasting diseases. SRK-015 is a clinical-stage mAb that prevents extracellular proteolytic activation of pro- and latent myostatin. Here we used integrated structural and biochemical approaches to elucidate the molecular mechanism of antibody-mediated neutralization of pro-myostatin activation. The crystal structure of pro-myostatin in complex with 29H4-16 Fab, a high-affinity variant of SRK-015, at 2.79 Å resolution revealed that the antibody binds to a conformational epitope in the arm region of the prodomain distant from the proteolytic cleavage sites. This epitope is highly sequence-divergent, having only limited similarity to other closely related members of the transforming growth factor β superfamily. Hydrogen/deuterium exchange MS experiments indicated that antibody binding induces conformational changes in pro- and latent myostatin that span the arm region, the loops contiguous to the protease cleavage sites, and the latency-associated structural elements. Moreover, negative-stain EM with full-length antibodies disclosed a stable, ring-like antigen–antibody structure in which the two Fab arms of a single antibody occupy the two arm regions of the prodomain in the pro- and latent myostatin homodimers, suggesting a 1:1 (antibody:myostatin homodimer) binding stoichiometry. These results suggest that SRK-015 binding stabilizes the latent conformation and limits the accessibility of protease cleavage sites within the prodomain. These findings shed light on approaches that specifically block the extracellular activation of growth factors by targeting their precursor forms.




phy

Structural basis of cell-surface signaling by a conserved sigma regulator in Gram-negative bacteria [Molecular Biophysics]

Cell-surface signaling (CSS) in Gram-negative bacteria involves highly conserved regulatory pathways that optimize gene expression by transducing extracellular environmental signals to the cytoplasm via inner-membrane sigma regulators. The molecular details of ferric siderophore-mediated activation of the iron import machinery through a sigma regulator are unclear. Here, we present the 1.56 Å resolution structure of the periplasmic complex of the C-terminal CSS domain (CCSSD) of PupR, the sigma regulator in the Pseudomonas capeferrum pseudobactin BN7/8 transport system, and the N-terminal signaling domain (NTSD) of PupB, an outer-membrane TonB-dependent transducer. The structure revealed that the CCSSD consists of two subdomains: a juxta-membrane subdomain, which has a novel all-β-fold, followed by a secretin/TonB, short N-terminal subdomain at the C terminus of the CCSSD, a previously unobserved topological arrangement of this domain. Using affinity pulldown assays, isothermal titration calorimetry, and thermal denaturation CD spectroscopy, we show that both subdomains are required for binding the NTSD with micromolar affinity and that NTSD binding improves CCSSD stability. Our findings prompt us to present a revised model of CSS wherein the CCSSD:NTSD complex forms prior to ferric-siderophore binding. Upon siderophore binding, conformational changes in the CCSSD enable regulated intramembrane proteolysis of the sigma regulator, ultimately resulting in transcriptional regulation.




phy

Templated folding of intrinsically disordered proteins [Molecular Biophysics]

Much of our current knowledge of biological chemistry is founded in the structure-function relationship, whereby sequence determines structure that determines function. Thus, the discovery that a large fraction of the proteome is intrinsically disordered, while being functional, has revolutionized our understanding of proteins and raised new and interesting questions. Many intrinsically disordered proteins (IDPs) have been determined to undergo a disorder-to-order transition when recognizing their physiological partners, suggesting that their mechanisms of folding are intrinsically different from those observed in globular proteins. However, IDPs also follow some of the classic paradigms established for globular proteins, pointing to important similarities in their behavior. In this review, we compare and contrast the folding mechanisms of globular proteins with the emerging features of binding-induced folding of intrinsically disordered proteins. Specifically, whereas disorder-to-order transitions of intrinsically disordered proteins appear to follow rules of globular protein folding, such as the cooperative nature of the reaction, their folding pathways are remarkably more malleable, due to the heterogeneous nature of their folding nuclei, as probed by analysis of linear free-energy relationship plots. These insights have led to a new model for the disorder-to-order transition in IDPs termed “templated folding,” whereby the binding partner dictates distinct structural transitions en route to product, while ensuring a cooperative folding.




phy

One Week of Bed Rest Leads to Substantial Muscle Atrophy and Induces Whole-Body Insulin Resistance in the Absence of Skeletal Muscle Lipid Accumulation

Marlou L. Dirks
Oct 1, 2016; 65:2862-2875
Metabolism




phy

Differentiation of Diabetes by Pathophysiology, Natural History, and Prognosis

Jay S. Skyler
Feb 1, 2017; 66:241-255
Perspectives in Diabetes




phy

Supervised physiotherapy for mild or moderate ankle sprain




phy

South Africa parliament video call hacked with pornography

JOHANNESBURG (AP) — A virtual meeting of South African lawmakers has been disrupted by hackers who flooded the video call with pornographic images. In the incident on Thursday, the hackers also hurled racial and sexual insults at the meeting...




phy

Physical activity and mortality - "The least active quartile did less than 5 minute per day"

We know that exercise is good for you - the WHO recommends at least 150 minutes of moderate intensity or 75 minutes of vigorous intensity aerobic physical activity each week. That recommendation is built on evidence that relied on self reporting that may underestimate the amount of lower intensity exercise those people were doing, and at the...




phy

Clinical and Molecular Prevalence of Lipodystrophy in an Unascertained Large Clinical Care Cohort

Lipodystrophies are a group of disorders characterized by absence or loss of adipose tissue and abnormal fat distribution, commonly accompanied by metabolic dysregulation. Although considered rare disorders, their prevalence in the general population is not well understood. We aimed to evaluate the clinical and genetic prevalence of lipodystrophy disorders in a large clinical care cohort. We interrogated the electronic health record (EHR) information of >1.3 million adults from the Geisinger Health System for lipodystrophy diagnostic codes. We estimate a clinical prevalence of disease of 1 in 20,000 individuals. We performed genetic analyses in individuals with available genomic data to identify variants associated with inherited lipodystrophies and examined their EHR for comorbidities associated with lipodystrophy. We identified 16 individuals carrying the p.R482Q pathogenic variant in LMNA associated with Dunnigan familial partial lipodystrophy. Four had a clinical diagnosis of lipodystrophy, whereas the remaining had no documented clinical diagnosis despite having accompanying metabolic abnormalities. We observed a lipodystrophy-associated variant carrier frequency of 1 in 3,082 individuals in our cohort with substantial burden of metabolic dysregulation. We estimate a genetic prevalence of disease of ~1 in 7,000 in the general population. Partial lipodystrophy is an underdiagnosed condition. and its prevalence, as defined molecularly, is higher than previously reported. Genetically guided stratification of patients with common metabolic disorders, like diabetes and dyslipidemia, is an important step toward precision medicine.