omi

Spatially Resolved Activity-based Proteomic Profiles of the Murine Small Intestinal Lipases [Research]

Despite the crucial function of the small intestine in nutrient uptake our understanding of the molecular events underlying the digestive function is still rudimentary. Recent studies demonstrated that enterocytes do not direct the entire dietary triacylglycerol toward immediate chylomicron synthesis. Especially after high-fat challenges, parts of the resynthesized triacylglycerol are packaged into cytosolic lipid droplets for transient storage in the endothelial layer of the small intestine. The reason for this temporary storage of triacylglycerol is not completely understood. To utilize lipids from cytosolic lipid droplets for chylomicron synthesis in the endoplasmic reticulum, stored triacylglycerol has to be hydrolyzed either by cytosolic lipolysis or lipophagy. Interestingly, triacylglycerol storage and chylomicron secretion rates are unevenly distributed along the small intestine, with the proximal jejunum exhibiting the highest intermittent storage capacity. We hypothesize that correlating hydrolytic enzyme activities with the reported distribution of triacylglycerol storage and chylomicron secretion in different sections of the small intestine is a promising strategy to determine key enzymes in triacylglycerol remobilization. We employed a serine hydrolase specific activity-based labeling approach in combination with quantitative proteomics to identify and rank hydrolases based on their relative activity in 11 sections of the small intestine. Moreover, we identified several clusters of enzymes showing similar activity distribution along the small intestine. Merging our activity-based results with substrate specificity and subcellular localization known from previous studies, carboxylesterase 2e and arylacetamide deacetylase emerge as promising candidates for triacylglycerol mobilization from cytosolic lipid droplets in enterocytes.




omi

Novel Proteomic Profiling of Epididymal Extracellular Vesicles in the Domestic Cat Reveals Proteins Related to Sequential Sperm Maturation with Differences Observed between Normospermic and Teratospermic Individuals [Research]

Extracellular vesicles (EVs) secreted by the epididymal epithelium transfer to spermatozoa key proteins that are essential in promoting motility and subsequent fertilization success. Using the domestic cat model, the objectives were to (1) characterize and compare protein content of EVs between segments of the epididymis, and (2) compare EV protein compositions between normo- and teratospermic individuals (producing >60% of abnormal spermatozoa). Epididymal EVs from adult cats were isolated and assessed via liquid chromatography tandem MS. Both male types shared 3008 proteins in total, with 98 and 20 EV proteins unique to normospermic and teratospermic males, respectively. Expression levels of several proteins changed between epididymal segments in both male types. Several proteins in both groups were related to sperm motility (e.g. hexokinase 1, adenylate kinase isoenzyme) and zona pellucida or oolemma binding (e.g. disintegrin and metalloproteinase domain proteins, zona binding proteins 1 and 2). Interestingly, seven cauda-derived EV proteins trended downward in teratospermic compared with normospermic males, which may relate to poor sperm quality. Collective results revealed, for the first time, EV proteins related to sequential sperm maturation with differences observed between normospermic and teratospermic individuals.




omi

Mutation-independent Proteomic Signatures of Pathological Progression in Murine Models of Duchenne Muscular Dystrophy [Research]

The absence of the dystrophin protein in Duchenne muscular dystrophy (DMD) results in myofiber fragility and a plethora of downstream secondary pathologies. Although a variety of experimental therapies are in development, achieving effective treatments for DMD remains exceptionally challenging, not least because the pathological consequences of dystrophin loss are incompletely understood. Here we have performed proteome profiling in tibialis anterior muscles from two murine DMD models (mdx and mdx52) at three ages (8, 16, and 80 weeks of age), all n = 3. High-resolution isoelectric focusing liquid chromatography-tandem MS (HiRIEF-LC–MS/MS) was used to quantify the expression of 4974 proteins across all 27 samples. The two dystrophic models were found to be highly similar, whereas multiple proteins were differentially expressed relative to WT (C57BL/6) controls at each age. Furthermore, 1795 proteins were differentially expressed when samples were pooled across ages and dystrophic strains. These included numerous proteins associated with the extracellular matrix and muscle function that have not been reported previously. Pathway analysis revealed multiple perturbed pathways and predicted upstream regulators, which together are indicative of cross-talk between inflammatory, metabolic, and muscle growth pathways (e.g. TNF, INF, NF-B, SIRT1, AMPK, PGC-1α, PPARs, ILK, and AKT/PI3K). Upregulation of CAV3, MVP and PAK1 protein expression was validated in dystrophic muscle by Western blot. Furthermore, MVP was upregulated during, but not required for, the differentiation of C2C12 myoblasts suggesting that this protein may affect muscle regeneration. This study provides novel insights into mutation-independent proteomic signatures characteristic of the dystrophic phenotype and its progression with aging.




omi

Temporal Quantitative Proteomics of mGluR-induced Protein Translation and Phosphorylation in Neurons [Research]

At neuronal synapses, activation of group I metabotropic glutamate receptors (mGluR1/5) triggers a form of long-term depression (mGluR-LTD) that relies on new protein synthesis and the internalization of AMPA-type glutamate receptors. Dysregulation of these processes has been implicated in the development of mental disorders such as autism spectrum disorders and therefore merit a better understanding on a molecular level. Here, to study mGluR-induced signaling pathways, we integrated quantitative phosphoproteomics with the analyses of newly synthesized proteins via bio-orthogonal amino acids (azidohomoalanine) in a pulsed labeling strategy in cultured hippocampal neurons stimulated with DHPG, a specific agonist for group I mGluRs. We identified several kinases with important roles in DHPG-induced mGluR activation, which we confirmed using small molecule kinase inhibitors. Furthermore, changes in the AMPA receptor endocytosis pathway in both protein synthesis and protein phosphorylation were identified, whereby Intersectin-1 was validated as a novel player in this pathway. This study revealed several new insights into the molecular pathways downstream of group I mGluR activation in hippocampal neurons, and provides a rich resource for further analyses.




omi

Citrus Vascular Proteomics Highlights the Role of Peroxidases and Serine Proteases during Huanglongbing Disease Progression [Research]

Huanglongbing (HLB) is the most devastating and widespread citrus disease. All commercial citrus varieties are susceptible to the HLB-associated bacterium, Candidatus Liberibacter asiaticus (CLas), which resides in the phloem. The phloem is part of the plant vascular system and is involved in sugar transport. To investigate the plant response to CLas, we enriched for proteins surrounding the phloem in an HLB susceptible sweet orange variety, Washington navel (Citrus sinensis (L) Osbeck). Quantitative proteomics revealed global changes in the citrus proteome after CLas inoculation. Plant metabolism and translation were suppressed, whereas defense-related proteins such as peroxidases, proteases and protease inhibitors were induced in the vasculature. Transcript accumulation and enzymatic activity of plant peroxidases in CLas infected sweet orange varieties under greenhouse and field conditions were assessed. Although peroxidase transcript accumulation was induced in CLas infected sweet orange varieties, peroxidase enzymatic activity varied. Specific serine proteases were up-regulated in Washington navel in the presence of CLas based on quantitative proteomics. Subsequent activity-based protein profiling revealed increased activity of two serine proteases, and reduced activity of one protease in two C. sinensis sweet orange varieties under greenhouse and field conditions. The observations in the current study highlight global reprogramming of the citrus vascular proteome and differential regulation of enzyme classes in response to CLas infection. These results open an avenue for further investigation of diverse responses to HLB across different environmental conditions and citrus genotypes.




omi

A Mouse Brain-based Multi-omics Integrative Approach Reveals Potential Blood Biomarkers for Ischemic Stroke [Research]

Stroke remains a leading cause of death and disability worldwide. Despite continuous advances, the identification of key molecular signatures in the hyper-acute phase of ischemic stroke is still a primary interest for translational research on stroke diagnosis, prognosis, and treatment. Data integration from high-throughput -omics techniques has become crucial to unraveling key interactions among different molecular elements in complex biological contexts, such as ischemic stroke. Thus, we used advanced data integration methods for a multi-level joint analysis of transcriptomics and proteomics data sets obtained from mouse brains at 2 h after cerebral ischemia. By modeling net-like correlation structures, we identified an integrated network of genes and proteins that are differentially expressed at a very early stage after stroke. We validated 10 of these deregulated elements in acute stroke, and changes in their expression pattern over time after cerebral ischemia were described. Of these, CLDN20, GADD45G, RGS2, BAG5, and CTNND2 were next evaluated as blood biomarkers of cerebral ischemia in mice and human blood samples, which were obtained from stroke patients and patients presenting stroke-mimicking conditions. Our findings indicate that CTNND2 levels in blood might potentially be useful for distinguishing ischemic strokes from stroke-mimicking conditions in the hyper-acute phase of the disease. Furthermore, circulating GADD45G content within the first 6 h after stroke could also play a key role in predicting poor outcomes in stroke patients. For the first time, we have used an integrative biostatistical approach to elucidate key molecules in the initial stages of stroke pathophysiology and highlight new notable molecules that might be further considered as blood biomarkers of ischemic stroke.




omi

Multiple hypothesis testing in proteomics: A strategy for experimental work [Invited]

In quantitative proteomics work, the differences in expression of many separate proteins are routinely examined to test for significant differences between treatments. This leads to the multiple hypothesis testing problem: when many separate tests are performed many will be significant by chance and be false positive results. Statistical methods such as the false discovery rate (FDR) method that deal with this problem have been disseminated for more than one decade. However a survey of proteomics journals shows that such tests are not widely implemented in one commonly used technique, quantitative proteomics using two-dimensional electrophoresis (2-DE). We outline a selection of multiple hypothesis testing methods, including some that are well known and some lesser known, and present a simple strategy for their use by the experimental scientist in quantitative proteomics work generally. The strategy focuses on the desirability of simultaneous use of several different methods, the choice and emphasis dependent on research priorities and the results in hand. This approach is demonstrated using case scenarios with experimental and simulated model data.




omi

The Beauty of Proteomics [Invited]

Cover art by Julie Newdoll for MCP April issue.




omi

The ProteoRed MIAPE web toolkit: A user-friendly framework to connect and share proteomics standards [Technology]

The development of the HUPO-PSI's (Proteomics Standards Initiative) standard data formats and MIAPE (Minimum Information About a Proteomics Experiment) guidelines should improve proteomics data sharing within the scientific community. Proteomics journals have encouraged the use of these standards and guidelines to improve the quality of experimental reporting and ease the evaluation and publication of manuscripts. However, there is an evident lack of bioinformatics tools specifically designed to create and edit standard file formats and reports, or embed them within proteomics workflows. In this article, we describe a new web-based software suite (The ProteoRed MIAPE web toolkit) that performs several complementary roles related to proteomic data standards. Firstly, it can verify the reports fulfill the minimum information requirements of the corresponding MIAPE modules, highlighting inconsistencies or missing information. Secondly, the toolkit can convert several XML-based data standards directly into human readable MIAPE reports stored within the ProteoRed MIAPE repository. Finally, it can also perform the reverse operation, allowing users to export from MIAPE reports into XML files for computational processing, data sharing or public database submission. The toolkit is thus the first application capable of automatically linking the PSI's MIAPE modules with the corresponding XML data exchange standards, enabling bidirectional conversions. This toolkit is freely available at http://www.proteored.org/MIAPE/.




omi

Bayesian Proteoform Modeling Improves Protein Quantification of Global Proteomic Measurements [Technology]

As the capability of mass spectrometry-based proteomics has matured, tens of thousands of peptides can be measured simultaneously, which has the benefit of offering a systems view of protein expression. However, a major challenge is that with an increase in throughput, protein quantification estimation from the native measured peptides has become a computational task. A limitation to existing computationally-driven protein quantification methods is that most ignore protein variation, such as alternate splicing of the RNA transcript and post-translational modifications or other possible proteoforms, which will affect a significant fraction of the proteome. The consequence of this assumption is that statistical inference at the protein level, and consequently downstream analyses, such as network and pathway modeling, have only limited power for biomarker discovery. Here, we describe a Bayesian model (BP-Quant) that uses statistically derived peptides signatures to identify peptides that are outside the dominant pattern, or the existence of multiple over-expressed patterns to improve relative protein abundance estimates. It is a research-driven approach that utilizes the objectives of the experiment, defined in the context of a standard statistical hypothesis, to identify a set of peptides exhibiting similar statistical behavior relating to a protein. This approach infers that changes in relative protein abundance can be used as a surrogate for changes in function, without necessarily taking into account the effect of differential post-translational modifications, processing, or splicing in altering protein function. We verify the approach using a dilution study from mouse plasma samples and demonstrate that BP-Quant achieves similar accuracy as the current state-of-the-art methods at proteoform identification with significantly better specificity. BP-Quant is available as a MatLab ® and R packages at https://github.com/PNNL-Comp-Mass-Spec/BP-Quant.




omi

The Proteomics of Networks and Pathways: A Movie is Worth a Thousand Pictures [Editorial]

none




omi

WITHDRAWN: Heralds of parallel MS: Data-independent acquisition surpassing sequential identification of data dependent acquisition in proteomics [Research]

This article has been withdrawn by the authors. This article did not comply with the editorial guidelines of MCP. Specifically, single peptide based protein identifications of 9-19% were included in the analysis and discussed in the results and conclusions. We wish to withdraw this article and resubmit a clarified, corrected manuscript for review.




omi

Peak Filtering, Peak Annotation, and Wildcard Search for Glycoproteomics [Research]

Glycopeptides in peptide or digested protein samples pose a number of analytical and bioinformatics challenges beyond those posed by unmodified peptides or peptides with smaller posttranslational modifications. Exact structural elucidation of glycans is generally beyond the capability of a single mass spectrometry experiment, so a reasonable level of identification for tandem mass spectrometry, taken by several glycopeptide software tools, is that of peptide sequence and glycan composition, meaning the number of monosaccharides of each distinct mass, for example HexNAc(2)Hex(5) rather than man5. Even at this level, however, glycopeptide analysis poses challenges:  finding glycopeptide spectra when they are a tiny fraction of the total spectra; assigning spectra with unanticipated glycans, not in the initial glycan database; and finding, scoring, and labeling diagnostic peaks in tandem mass spectra.  Here we discuss recent improvements to Byonic, a glycoproteomics search program, that address these three issues. Byonic now supports filtering spectra by m/z peaks, so that the user can limit attention to spectra with diagnostic peaks, for example, at least two out of three of 204.087 for HexNAc, 274.092 for NeuAc (with water loss), and 366.139 for HexNAc-Hex, all within a set mass tolerance, for example, ± 0.01 Daltons. Also new is glycan "wildcard" search, which allows an unspecified mass within a user-set mass range to be applied to N- or O-linked glycans and enables assignment of spectra with unanticipated glycans. Finally the next release of Byonic supports user-specified peak annotations from user-defined posttranslational modifications. We demonstrate the utility of these new software features by finding previously unrecognized glycopeptides in publicly available data, including glycosylated neuropeptides from rat brain.




omi

A Pragmatic Guide to Enrichment Strategies for Mass Spectrometry-based Glycoproteomics [Review]

Glycosylation is a prevalent, yet heterogeneous modification with a broad range of implications in molecular biology. This heterogeneity precludes enrichment strategies that can be universally beneficial for all glycan classes. Thus, choice of enrichment strategy has profound implications on experimental outcomes. Here we review common enrichment strategies used in modern mass spectrometry (MS)-based glycoproteomic experiments, including lectins and other affinity chromatographies, hydrophilic interaction chromatography (HILIC) and its derivatives, porous graphitic carbon (PGC), reversible and irreversible chemical coupling strategies, and chemical biology tools that often leverage bioorthogonal handles. Interest in glycoproteomics continues to surge as MS instrumentation and software improve, so this review aims to help equip researchers with necessary information to choose appropriate enrichment strategies that best complement these efforts.




omi

Quantitative data independent acquisition glycoproteomics of sparkling wine [Research]

Sparkling wine is an alcoholic beverage enjoyed around the world. The sensory properties of sparkling wine depend on a complex interplay between the chemical and biochemical components in the final product. Glycoproteins have been linked to positive and negative qualities in sparkling wine, but the glycosylation profiles of sparkling wine have not been previously investigated in detail. We analysed the glyco/proteome of sparkling wines using protein- and glycopeptide-centric approaches. We developed an automated workflow that created ion libraries to analyse Sequential Window Acquisition of all THeoretical mass spectra (SWATH) Data Independent Acquisition (DIA) mass spectrometry data based on glycopeptides identified by Byonic. We applied our workflow to three pairs of experimental sparkling wines to assess the effects of aging on lees and of different yeast strains used in the Liqueur de Tirage for secondary fermentation. We found that aging a cuvée on lees for 24 months compared to 8 months led to a dramatic decrease in overall protein abundance and an enrichment in large glycans at specific sites in some proteins. Secondary fermentation of a Riesling wine with Saccharomyces cerevisiae yeast strain Siha4 produced more yeast proteins and glycoproteins than with S. cerevisiae yeast strain DV10. The abundance and glycosylation profiles of grape glycoproteins were also different between grape varieties. This work represents the first in-depth study into protein- and peptide-specific glycosylation in sparkling wines and describes a quantitative glycoproteomic SWATH/DIA workflow that is broadly applicable to other sample types.




omi

Integrated glycoproteomics identifies a role of N-glycosylation and galectin-1 on myogenesis and muscle development [Research]

Many cell surface and secreted proteins are modified by the covalent addition of glycans that play an important role in the development of multicellular organisms. These glycan modifications enable communication between cells and the extracellular matrix via interactions with specific glycan-binding lectins and the regulation of receptor-mediated signaling. Aberrant protein glycosylation has been associated with the development of several muscular diseases suggesting essential glycan- and lectin-mediated functions in myogenesis and muscle development but our molecular understanding of the precise glycans, catalytic enzymes and lectins involved remain only partially understood. Here, we quantified dynamic remodeling of the membrane-associated proteome during a time-course of myogenesis in cell culture. We observed wide-spread changes in the abundance of several important lectins and enzymes facilitating glycan biosynthesis. Glycomics-based quantification of released N-linked glycans confirmed remodeling of the glycome consistent with the regulation of glycosyltransferases and glycosidases responsible for their formation including a previously unknown di-galactose-to-sialic acid switch supporting a functional role of these glycoepitopes in myogenesis. Furthermore, dynamic quantitative glycoproteomic analysis with multiplexed stable isotope labelling and analysis of enriched glycopeptides with multiple fragmentation approaches identified glycoproteins modified by these regulated glycans including several integrins and growth factor receptors. Myogenesis was also associated with the regulation of several lectins most notably the up-regulation of galectin-1 (LGALS1). CRISPR/Cas9-mediated deletion of Lgals1 inhibited differentiation and myotube formation suggesting an early functional role of galectin-1 in the myogenic program. Importantly, similar changes in N-glycosylation and the up-regulation of galectin-1 during postnatal skeletal muscle development were observed in mice. Treatment of new-born mice with recombinant adeno-associated viruses to overexpress galectin-1 in the musculature resulted in enhanced muscle mass. Our data form a valuable resource to further understand the glycobiology of myogenesis and will aid the development of intervention strategies to promote healthy muscle development or regeneration.




omi

Glycomics, Glycoproteomics and Glycogenomics: an Inter-Taxa Evolutionary Perspective [Review]

Glycosylation is a highly diverse set of co- and post-translational modification of proteins. For mammalian glycoproteins, glycosylation is often site-, tissue- and species-specific, and diversified by microheterogeneity. Multitudinous biochemical, cellular, physiological and organismic effects of their glycans have been revealed, either intrinsic to the carrier proteins or mediated by endogenous reader proteins with carbohydrate recognition domains. Furthermore, glycans frequently form the first line of access by or defense from foreign invaders, and new roles for nucleocytoplasmic glycosylation are blossoming. We now know enough to conclude that the same general principles apply in invertebrate animals and unicellular eukaryotes – different branches of which spawned the plants or fungi and animals. The two major driving forces for exploring the glycomes of invertebrates and protists are (i) to understand the biochemical basis of glycan-driven biology in these organisms, especially of pathogens, and (ii) to uncover the evolutionary relationships between glycans, their biosynthetic enzyme genes, and biological functions for new glycobiological insights. With an emphasis on emerging areas of protist glycobiology, here we offer an overview of glycan diversity and evolution, to promote future access to this treasure trove of glycobiological processes.




omi

Chromatin proteomics to study epigenetics - challenges and opportunities [Review]

Regulation of gene expression is essential for the functioning of all eukaryotic organisms. Understanding gene expression regulation requires determining which proteins interact with regulatory elements in chromatin. Mass spectrometry-based analysis of chromatin has emerged as a powerful tool to identify proteins associated with gene regulation, as it allows studying protein function and protein complex formation in their in vivo chromatin-bound context. Total chromatin isolated from cells can be directly analysed using mass spectrometry or further fractionated into transcriptionally active and inactive chromatin prior to MS-based analysis. Newly formed chromatin that is assembled during DNA replication can also be specifically isolated and analysed. Furthermore, capturing specific chromatin domains facilitates the identification of previously unknown transcription factors interacting with these domains. Finally, in recent years, advances have been made towards identifying proteins that interact with a single genomic locus of interest. In this review, we highlight the power of chromatin proteomics approaches and how these provide complementary alternatives compared to conventional affinity purification methods. Furthermore, we discuss the biochemical challenges that should be addressed to consolidate and expand the role of chromatin proteomics as a key technology in the context of gene expression regulation and epigenetics research in health and disease.




omi

N-glycomic signature of stage II colorectal cancer and its association with the tumor microenvironment [Research]

The choice for adjuvant chemotherapy in stage II colorectal cancer (CRC) is controversial as many patients are cured by surgery alone and it is difficult to identify patients with high-risk of recurrence of the disease. There is a need for better stratification of this group of patients. Mass spectrometry imaging could identify patients at risk. We report here the N-glycosylation signatures of the different cell populations in a group of stage II CRC tissue samples. The cancer cells, compared to normal epithelial cells, have increased levels of sialylation and high-mannose glycans, as well as decreased levels of fucosylation and highly branched N-glycans. When looking at the interface between cancer and its microenvironment, it seems that the cancer N-glycosylation signature spreads into the surrounding stroma at the invasive front of the tumor. This finding was more outspoken in patients with a worse outcome within this sample group.




omi

Blockade of High-Fat Diet Proteomic Phenotypes using Exercise as Prevention or Treatment [Technological Innovation and Resources]

The increasing consumption of high-fat foods combined with a lack of exercise is a major contributor to the burden of obesity in humans. Aerobic exercise such as running is known to provide metabolic benefits, but how the over-consumption of a high fat diet (HFD) and exercise interact is not well characterized at the molecular level. Here, we examined the plasma proteome in mice for the effects of aerobic exercise as both a treatment and as a preventative regime for animals on either HFD or a healthy control diet. This analysis detected large changes in the plasma proteome induced by the HFD, such as increased abundance of SERPINA7, ALDOB, and down-regulation of SERPINA1E, CFD (adipsin). Some of these changes were significantly reverted using exercise as a preventative measure, but not as a treatment regime. To determine if either the intensity, or duration, of exercise influenced the outcome, we compared high-intensity interval training (HIIT) and endurance running. Endurance running slightly out-performed HIIT exercise, but overall, both provided similar reversion in abundance of plasma proteins modulated by the high-fat diet including SERPINA7, APOE, SERPINA1E, and CFD. Finally, we compared the changes induced by over-consumption of HFD to previous data from mice fed an isocaloric high saturated fat (SFA) or polyunsaturated fat (PUFA) diet. This identified several common changes including increased APOC2 and APOE, but also highlighted changes specific for either over-consumption of HFD (ALDOB, SERPINA7, CFD), SFA-based diets (SERPINA1E), or PUFA-based diets (Haptoglobin - Hp). Together, these data highlight the importance of early intervention with exercise to revert HFD-induced phenotypes and suggest some of the molecular mechanisms leading to the changes in the plasma proteome generated by high fat diet consumption. Web-based interactive visualizations are provided for this dataset (larancelab.com/hfd-exercise), which give insight into diet and exercise phenotypic interactions on the plasma proteome.




omi

Peptidomics-driven strategy reveals peptides and predicted proteases associated with oral cancer prognosis [Research]

Protease activity has been associated with pathological processes that can lead to cancer development and progression. However, understanding the pathological unbalance in proteolysis is challenging since changes can occur simultaneously at protease, their inhibitor and substrate levels. Here, we present a pipeline that combines peptidomics, proteomics and peptidase predictions for studying proteolytic events in the saliva of seventy-nine patients and their association with oral squamous cell carcinoma (OSCC) prognosis. Our findings revealed differences in the saliva peptidome of patients with (pN+) or without (pN0) lymph node metastasis and delivered a panel of ten endogenous peptides correlated with poor prognostic factors plus five molecules able to classify pN0 and pN+ patients (ROC-AUC>0.85). In addition, endo- and exopeptidases putatively implicated in the processing of differential peptides were investigated using cancer tissue gene expression data from publicly repositories reinforcing their association with poorer survival rates and prognosis in oral cancer. The dynamics of the OSCC-related proteolysis was further explored via the proteomic profiling of saliva. This revealed that peptidase/endopeptidase inhibitors exhibited reduced levels in the saliva of pN+ patients, as confirmed by SRM-MS, whilst minor changes were detected in the level of saliva proteases. Taken together, our results indicated that proteolytic activity is accentuated in the saliva of OSCC patients with lymph node metastasis and, at least in part, this is modulated by reduced levels of salivary peptidase inhibitors. Therefore, this integrated pipeline provided better comprehension and discovery of molecular features with implications in the oral cancer metastasis prognosis.




omi

Proteomic identification of Coxiella burnetii effector proteins targeted to the host cell mitochondria during infection [Research]

Modulation of the host cell is integral to the survival and replication of microbial pathogens. Several intracellular bacterial pathogens deliver bacterial proteins, termed ‘effector proteins’ into the host cell during infection by sophisticated protein translocation systems, which manipulate cellular processes and functions. The functional contribution of individual effectors is poorly characterised, particularly in intracellular bacterial pathogens with large effector protein repertoires. Technical caveats have limited the capacity to study these proteins during a native infection, with many effector proteins having only been demonstrated to be translocated during over-expression of tagged versions. Here we developed a novel strategy to examine effector proteins in the context of infection. We coupled a broad, unbiased proteomics-based screen with organelle purification to study the host-pathogen interactions occurring between the host cell mitochondrion and the Gram-negative, Q fever pathogen Coxiella burnetii. We identify 4 novel mitochondrially-targeted C. burnetii effector proteins, renamed Mitochondrial Coxiella effector protein (Mce) B to E. Examination of the subcellular localisation of ectopically expressed proteins confirmed their mitochondrial localisation, demonstrating the robustness of our approach. Subsequent biochemical analysis and affinity enrichment proteomics of one of these effector proteins, MceC, revealed the protein localises to the inner membrane and can interact with components of the mitochondrial quality control machinery. Our study adapts high-sensitivity proteomics to study intracellular host-pathogen interactions, providing a robust strategy to examine the sub-cellular localisation of effector proteins during native infection. This approach could be applied to a range of pathogens and host cell compartments to provide a rich map of effector dynamics throughout infection.




omi

Quantitative proteomics reveal neuron projection development genes ARF4, KIF5B and RAB8A associated with Hirschsprung disease [Research]

Hirschsprung disease (HSCR) is a heterogeneous group of neurocristopathy characterized by the absence of the enteric ganglia along a variable length of the intestine. Genetic defects play a major role in the pathogenesis of HSCR while family studies of pathogenic variants in all the known genes (loci) only demonstrate incomplete penetrance and variable expressivity for unknown reasons. Here, we applied large-scale, quantitative proteomics of human colon tissues from 21 patients using iTRAQ method followed by bioinformatics analysis. Selected findings were confirmed by parallel reaction monitoring (PRM) verification. At last the interesting differentially expressed proteins were confirmed by western blot. A total of 5341 proteins in human colon tissues were identified. Among them, 664 proteins with >1.2-fold difference were identified in 6 groups: groups A1 and A2 pooled protein from the ganglionic and aganglionic colon of male, long-segment HSCR patients (L-HSCR, n=7); groups B1 and B2 pooled protein from the ganglionic and aganglionic colon of male, short-segment HSCR patients (S-HSCR, n=7); and groups C1 and C2 pooled protein from the ganglionic and aganglionic colon of female, S-HSCR patients (n=7). Based on these analyses, 49 proteins from 5 pathways were selected for PRM verification, including ribosome, endocytosis, spliceosome, oxidative phosphorylation and cell adhesion. The downregulation of three neuron projection development genes ARF4, KIF5B and RAB8A in the aganglionic part of the colon were verified in 15 paired colon samples using WB. The findings of this study will shed new light on the pathogenesis of HSCR and facilitate the development of therapeutic targets.




omi

Proteogenomic characterization of the pathogenic fungus Aspergillus flavus reveals novel genes involved in aflatoxin production [Research]

Aspergillus flavus (A. flavus), a pathogenic fungus, can produce carcinogenic and toxic aflatoxins that are a serious agricultural and medical threat worldwide. Attempts to decipher the aflatoxin biosynthetic pathway have been hampered by the lack of a high-quality genome annotation for A. flavus. To address this gap, we performed a comprehensive proteogenomic analysis using high-accuracy mass spectrometry data for this pathogen. The resulting high-quality dataset confirmed the translation of 8,724 previously-predicted genes, and identified 732 novel proteins, 269 splice variants, 447 single amino acid variants, 188 revised genes. A subset of novel proteins was experimentally validated by RT-PCR and synthetic peptides. Further functional annotation suggested that a number of the identified novel proteins may play roles in aflatoxin biosynthesis and stress responses in A. flavus. This comprehensive strategy also identified a wide range of post-translational modifications (PTMs), including 3,461 modification sites from 1,765 proteins. Functional analysis suggested the involvement of these modified proteins in the regulation of cellular metabolic and aflatoxin biosynthetic pathways. Together, we provided a high quality annotation of A. flavus genome and revealed novel insights into the mechanisms of aflatoxin production and pathogenicity in this pathogen.




omi

Proteomic analyses identify differentially expressed proteins and pathways between low-risk and high-risk subtypes of early-stage lung adenocarcinoma and their prognostic impacts [Research]

The histopathological subtype of lung adenocarcinoma (LUAD) is closely associated with prognosis. Micropapillary or solid predominant LUAD tends to relapse after surgery at an early stage, whereas lepidic pattern shows a favorable outcome. However, the molecular mechanism underlying this phenomenon remains unknown. Here, we recruited 31 lepidic predominant LUADs (LR: low-risk subtype group) and 28 micropapillary or solid predominant LUADs (HR: high-risk subtype group). Tissues of these cases were obtained and label-free quantitative proteomic and bioinformatic analyses were performed. Additionally, prognostic impact of targeted proteins was validated using The Cancer Genome Atlas databases (n=492) and tissue microarrays composed of early-stage LUADs (n=228). A total of 192 differentially expressed proteins were identified between tumor tissues of LR and HR and three clusters were identified via hierarchical clustering excluding eight proteins. Cluster 1 (65 proteins) showed a sequential decrease in expression from normal tissues to tumor tissues of LR and then to HR and was predominantly enriched in pathways such as tyrosine metabolism and ECM-receptor interaction, and increased matched mRNA expression of 18 proteins from this cluster predicted favorable prognosis. Cluster 2 (70 proteins) demonstrated a sequential increase in expression from normal tissues to tumor tissues of LR and then to HR and was mainly enriched in pathways such as extracellular organization, DNA replication and cell cycle, and high matched mRNA expression of 25 proteins indicated poor prognosis. Cluster 3 (49 proteins) showed high expression only in LR, with high matched mRNA expression of 20 proteins in this cluster indicating favorable prognosis. Furthermore, high expression of ERO1A and FEN1 at protein level predicted poor prognosis in early-stage LUAD, supporting the mRNA results. In conclusion, we discovered key differentially expressed proteins and pathways between low-risk and high-risk subtypes of early-stage LUAD. Some of these proteins could serve as potential biomarkers in prognostic evaluation.




omi

A proteomic approach to understand the clinical significance of acute myeloid leukemia-derived extracellular vesicles reflecting essential characteristics of leukemia [Research]

Extracellular vesicle (EV) proteins from acute myeloid leukemia (AML) cell lines were analyzed using mass spectrometry. The analyses identified 2450 proteins, including 461 differentially expressed proteins (290 upregulated and 171 downregulated). CD53 and CD47 were upregulated and were selected as candidate biomarkers. The association between survival of patients with AML and the expression levels of CD53 and CD47 at diagnosis was analyzed using mRNA expression data from The Cancer Genome Atlas database. Patients with higher expression levels showed significantly inferior survival than those with lower expression levels. Enzyme-linked immunosorbent assay results of the expression levels of CD53 and CD47 from EVs in the bone marrow of patients with AML at diagnosis and at the time of complete remission with induction chemotherapy revealed that patients with downregulated CD53 and CD47 expression appeared to relapse less frequently. Network model analysis of EV proteins revealed several upregulated kinases, including LYN, CSNK2A1, SYK, CSK, and PTK2B. The potential cytotoxicity of several clinically applicable drugs that inhibit these kinases was tested in AML cell lines. The drugs lowered the viability of AML cells. The collective data suggest that AML-derived EVs could reflect essential leukemia biology.




omi

A proteomics-based assessment of inflammation signatures in endotoxemia [Research]

We have previously shown that multimers of plasma pentraxin-3 (PTX3) were predictive of survival in patients with sepsis. To characterize the release kinetics and cellular source of plasma protein changes in sepsis, serial samples were obtained from healthy volunteers (n=10, 3 time-points) injected with low-dose endotoxin (LPS) and analyzed using data-independent acquisition (DIA) MS. The human plasma proteome response was compared to an LPS-induced endotoxemia model in mice. Proteomic analysis of human plasma revealed a rapid neutrophil degranulation signature, followed by a rise in acute phase proteins. Changes in circulating PTX3 correlated with increases in neutrophil-derived proteins following LPS injection. Time course analysis of the plasma proteome in mice showed a time-dependent increase in multimeric PTX3, alongside increases in neutrophil-derived myeloperoxidase (MPO) upon LPS treatment. The mechanisms of oxidation-induced multimerisation of PTX3 were explored in two genetic mouse models: MPO global knock-out mice and LysM CreNox2KO mice, in which NADPH oxidase 2 (Nox2) is only deficient in myeloid cells. Nox2 is the enzyme responsible for the oxidative burst in neutrophils. Increases in plasma multimeric PTX3 were not significantly different between wildtype and MPO or LysM CreNox2KO knock-out mice. Thus, PTX3 may already be stored and released in a multimeric form. Through in vivo neutrophil depletion and multiplexed vascular proteomics, PTX3 multimer deposition within the aorta was confirmed to be neutrophil-dependent. Proteomic analysis of aortas from LPS-injected mice returned PTX3 as the most upregulated protein, where multimeric PTX3 was deposited as early as 2 h post-LPS along with other neutrophil-derived proteins. In conclusion, the rise in multimeric PTX3 upon LPS injection correlates with neutrophil-related protein changes in plasma and in aortas. MPO and myeloid Nox2 are not required for the multimerisation of PTX3; instead, neutrophil extravasation is responsible for the LPS-induced deposition of multimeric PTX3 in the aorta.




omi

A potential role for the Gsdf-eEF1{alpha} complex in inhibiting germ cell proliferation: A protein-interaction analysis in medaka (Oryzias latipes) from a proteomics perspective [Research]

Gonadal soma-derived factor (gsdf) has been demonstrated to be essential for testicular differentiation in medaka (Oryzias latipes). To understand the protein dynamics of Gsdf in spermatogenesis regulation, we used a His-tag "pull-down" assay coupled with shotgun LC-MS/MS to identify a group of potential interacting partners for Gsdf, which included cytoplasmic dynein light chain 2, eukaryotic polypeptide elongation factor 1 alpha (eEF1α), and actin filaments in mature medaka testis. As for the interaction with TGFβ-dynein being critical for spermatogonial division in Drosophila melanogaster, the physical interactions of Gsdf-dynein and Gsdf-eEF1α were identified through a yeast 2-hybrid (Y2H) screening of an adult testis cDNA library using Gsdf as bait, which were verified by a paired Y2H assay. Co-immunoprecipitation of Gsdf and eEF1α was defined in adult testes as supporting the requirement of a Gsdf and eEF1α interaction in testis development. Proteomics analysis (data are available via ProteomeXchange with identifier PXD022153) and ultrastrutural observations showed that Gsdf deficiency activated eEF1α-mediated protein synthesis and ribosomal biogenesis, which in turn led to the differentiation of undifferentiated germ cells. Thus, our results provide a framework and new insight into the coordination of a Gsdf (TGFβ and eEF1α complex in the basic processes of germ cell proliferation, transcriptional and translational control of sexual RNA which may be fundamentally conserved across phyla during sexual differentiation.




omi

Plasma proteomic data can contain personally identifiable, sensitive information and incidental findings [Research]

The goal of clinical proteomics is to identify, quantify, and characterize proteins in body fluids or tissue to assist diagnosis, prognosis, and treatment of patients. In this way, it is similar to more mature omics technologies, such as genomics, that are increasingly applied in biomedicine. We argue that, similar to those fields, proteomics also faces ethical issues related to the kinds of information that is inherently obtained through sample measurement, although their acquisition was not the primary purpose. Specifically, we demonstrate the potential to identify individuals both by their characteristic, individual-specific protein levels and by variant peptides reporting on coding single nucleotide polymorphisms. Furthermore, it is in the nature of blood plasma proteomics profiling that it broadly reports on the health status of an individual – beyond the disease under investigation. Finally, we show that private and potentially sensitive information, such as ethnicity and pregnancy status, can increasingly be derived from proteomics data. Although this is potentially valuable not only to the individual, but also for biomedical research, it raises ethical questions similar to the incidental findings obtained through other omics technologies. We here introduce the necessity of - and argue for the desirability for - ethical and human rights-related issues to be discussed within the proteomics community. Those thoughts are more fully developed in our accompanying manuscript. Appreciation and discussion of ethical aspects of proteomic research will allow for deeper, better-informed, more diverse, and, most importantly, wiser guidelines for clinical proteomics.




omi

CMMB (Carboxylate Modified Magnetic Bead) -based isopropanol gradient peptide fractionation (CIF) enables rapid and robust off-line peptide mixture fractionation in bottom-up proteomics [Research]

Deep proteome coverage in bottom-up proteomics requires peptide-level fractionation to simplify the complex peptide mixture before analysis by tandem mass spectrometry. By decreasing the number of co-eluting precursor peptide ions, fractionation effectively reduces the complexity of the sample leading to higher sample coverage and reduced bias towards high abundance precursors that are preferentially identified in data-dependent acquisition strategies. To achieve this goal, we report a bead-based off-line peptide fractionation method termed CIF or Carboxylate modified magnetic bead-based isopropanol gradient peptide fractionation. CIF is an extension of the SP3 (single-pot solid-phase-enhanced sample preparation) strategy and provides an effective but complementary approach to other commonly used fractionation methods including strong cation exchange (SCX) and reversed phase (RP)-based chromatography. We demonstrate that CIF is an effective offline separation strategy capable of increasing the depth of peptide analyte coverage both when used alone or as a second dimension of peptide fractionation in conjunction with high pH RP. These features make it ideally suited for a wide range of proteomic applications including the affinity purification of low abundance bait proteins.




omi

The role of Data-Independent Acquisition for Glycoproteomics [Review]

Data independent acquisition (DIA) is now an emerging method in bottom-up proteomics and capable of achieving deep proteome coverage and accurate label-free quantification. However, for post-translational modifications (PTM), such as glycosylation, DIA methodology is still in the early stage of development. The full characterization of glycoproteins requires site specific glycan identification as well as subsequent quantification of glycan structures at each site. The tremendous complexity of glycosylation represents a significant analytical challenge in glycoproteomics. This review focuses on the development and perspectives of DIA methodology for N- and O- glycoproteomics and posits that DIA-based glycoproteomics could be a method of choice to address some of the challenging aspects of glycoproteomics. First, the current challenges in glycoproteomics and the basic principles of DIA is briefly introduced. DIA based glycoproteomics is then summarized and described into four aspects based on the actual samples. Lastly, we discussed the important challenges and future perspectives in the field. We believe that DIA can significantly facilitate glycoproteomic studies and contribute to the development of future advanced tools and approaches in the field of glycoproteomics.




omi

Ethical principles, opportunities and constraints in clinical proteomics [Research]

Recent advances in MS-based proteomics have vastly increased the quality and scope of biological information that can be derived from human samples. These advances have rendered current workflows increasingly applicable in biomedical and clinical contexts. As proteomics is poised to take an important role in the clinic, associated ethical responsibilities increase in tandem with the impact on the health, privacy, and well-being of individuals. Here we conducted and report a systematic literature review of ethical issues in clinical proteomics. We add our perspectives from a background of bioethics, the results of our accompanying paper extracting individual-sensitive results from patient samples, and the literature addressing similar issues in genomics. The spectrum of potential issues ranges from patient re-identification to incidental findings of clinical significance. The latter can be divided into actionable and unactionable findings. Some of these have the potential to be employed in discriminatory or privacy-infringing ways. However, incidental findings may also have great positive potential. A plasma proteome profile, for instance, could inform on the general health or disease status of an individual regardless of the narrow diagnostic question that prompted it. We suggest that early discussion of ethical issues in clinical proteomics is important to ensure that eventual regulations reflect the considered judgment of the community as well as to anticipate opportunities and problems that may arise as the technology matures further.




omi

Tackling Illegal Wildlife Trade in Africa: Economic Incentives and Approaches

Tackling Illegal Wildlife Trade in Africa: Economic Incentives and Approaches Research paper sysadmin 5 October 2018

Combating illegal wildlife trade and further pursuing conservation-development models could help generate considerable economic benefits for African countries, while ensuring the long-term preservation of Africa’s wealth of natural capital.

Field scout recording desert black rhino data, Save the Rhino Trust, Palmwag, Torra Conservancy, Damaraland, Namibia. Photo: Mint Images/Frans Lanting/Getty Images.

Summary

  • The illegal wildlife trade (IWT) significantly impacts African economies by destroying and corroding natural, human and social capital stocks. This hinders the achievement of the Sustainable Development Goals (SDGs) and has an impact on national budgets. Illicit financial flows from IWT deny revenue to governments where legal wildlife product trade exists and perpetuate cash externalization. IWT diverts national budgets away from social or development programmes, increases insecurity and threatens vulnerable populations.
  • In expanding wildlife economies and pursuing conservation-driven development models, governments can protect their citizens, derive revenue from wildlife products, and establish world class tourism offerings. The illegal exploitation of wildlife is often due to a failure to enforce rights over those resources, where rights are unclearly defined or not fully exercised. Southern African countries have defined these rights in various ways, contributing to regional differences in conservation practices and the socio-economic benefits derived from wildlife resources. Combating IWT is an important step towards allowing legitimate business and communities to develop livelihoods that incentivize stewardship and connect people to conservation.
  • The Southern African Development Community (SADC) has several framework policies for the establishment of transfrontier conservation areas (TFCAs). These promote local stewardship across multiple land-use areas to conserve biodiversity and increase the welfare and socioeconomic development of rural communities. Private-sector partnerships also increase skills transfer, improve access to investment finance, and expand economic opportunities, including through the promotion of local procurement. The economic benefits of TFCAs extend beyond tourism.
  • The economic value of African ecosystems is often under-recognized because they remain unquantified, partly due to the lack of available data on the broader economic costs of IWT. Improved monitoring and evaluation with key performance indicators would help governments and citizens to appreciate the economic value of combating IWT.




omi

Mycobacteria excise DNA damage in 12- or 13-nucleotide-long oligomers by prokaryotic-type dual incisions and performs transcription-coupled repair [Genomics and Proteomics]

In nucleotide excision repair, bulky DNA lesions such as UV-induced cyclobutane pyrimidine dimers are removed from the genome by concerted dual incisions bracketing the lesion, followed by gap filling and ligation. So far, two dual-incision patterns have been discovered: the prokaryotic type, which removes the damage in 11–13-nucleotide-long oligomers, and the eukaryotic type, which removes the damage in 24–32-nucleotide-long oligomers. However, a recent study reported that the UvrC protein of Mycobacterium tuberculosis removes damage in a manner analogous to yeast and humans in a 25-mer oligonucleotide arising from incisions at 15 nt from the 3´ end and 9 nt from the 5´ end flanking the damage. To test this model, we used the in vivo excision assay and the excision repair sequencing genome-wide repair mapping method developed in our laboratory to determine the repair pattern and genome-wide repair map of Mycobacterium smegmatis. We find that M. smegmatis, which possesses homologs of the Escherichia coli uvrA, uvrB, and uvrC genes, removes cyclobutane pyrimidine dimers from the genome in a manner identical to the prokaryotic pattern by incising 7 nt 5´ and 3 or 4 nt 3´ to the photoproduct, and performs transcription-coupled repair in a manner similar to E. coli.




omi

Zimbabwe Ahead of the Elections: Political and Economic Challenges

Zimbabwe Ahead of the Elections: Political and Economic Challenges 8 May 2018 — 10:00AM TO 11:00AM Anonymous (not verified) 3 May 2018 Chatham House, London

The upcoming elections in Zimbabwe will be the first since 2000 in which former president Robert Mugabe and long-time opposition leader Morgan Tsvangirai are not on the ballot paper. A key electoral issue for many voters will be the economy: recent years have been marked by high unemployment rates, chronic cash shortages and mounting public debt. Although this has traditionally been a strong campaigning issue for the opposition, President Emmerson Mnangagwa has fast-tracked comprehensive economic reforms.

At this event, Nelson Chamisa, MDC Alliance presidential candidate, will discuss his efforts to build a united opposition coalition with a strong message, the steps needed to ensure a free and fair election can take place, and the role that international partners can play in Zimbabwe’s democratic process.




omi

Improving Economic Management for Sustainable Growth in Zambia

Improving Economic Management for Sustainable Growth in Zambia 13 July 2018 — 9:00AM TO 10:00AM Anonymous (not verified) 19 June 2018 Chatham House, London

THIS EVENT IS POSTPONED.

High levels of infrastructure investment funded by commercial loans, against a backdrop of subdued economic growth, resulted in an increase in Zambia’s public external debt from $8.7 billion in 2017 to $9.3 billion in March 2018.

In June 2018 Zambia’s Ministry of Finance announced new austerity measures aimed at reducing the country’s debt burden, as part of an ongoing reform agenda that is hoped to stabilise the economy.

In the meantime Zambia grapples with severe social and development challenges. Decreased spending in health, education and social protection, and poor access in rural areas, have already left Zambia ranked 139th out of 188 countries in the UNDP’s 2016 human development index.

At this meeting Margaret Mwanakatwe, minister of finance, discusses the government’s financial reform agenda, its engagement with creditors and IFIs, and plans for generating sustainable growth and job creation.




omi

Economic Reform and Recovery in Zimbabwe

Economic Reform and Recovery in Zimbabwe 8 October 2018 — 2:30PM TO 3:30PM Anonymous (not verified) 4 October 2018 Chatham House, London

Zimbabwe’s economy is under strain. Liquidity shortages, renewed worries of inflation and diminishing delivery on social programmes are putting citizens under pressure and testing resilience. The post-election government has multiple policy priorities including tackling debt, reducing the government’s wage bill and reviving international investment. The agriculture and mining sectors have shown growth but to translate this into economic transformation will require balancing the need of public spending and currency reform with demands for short-term stability.
At this meeting, Professor Mthuli Ncube will outline his ministry’s priorities for delivering economic reform and recovery in Zimbabwe.
THIS EVENT IS NOW FULL AND REGISTRATION HAS CLOSED.




omi

Zimbabwe Futures 2030: Policy Priorities for Economic Expansion

Zimbabwe Futures 2030: Policy Priorities for Economic Expansion 28 February 2019 — 9:00AM TO 1:00PM Anonymous (not verified) 7 February 2019 Harare, Zimbabwe

This roundtable draws on current best practice and senior level expertise to identify policy options for long term economic expansion in Zimbabwe and pathways for inclusive development.

Participants discuss the necessary policies and business strategies to enable and support the effective implementation of the Transitional Stabilization Programme and longer term national development plans.

The discussions highlight requisite conditions for a business-driven and inclusive process towards Zimbabwe’s long-term economic recovery.

This event was held in partnership with the Zimbabwe Business Club and Konrad Adenauer Stiftung.




omi

Zimbabwe Futures 2030: A Vision for Inclusive Long-Term Economic Recovery

Zimbabwe Futures 2030: A Vision for Inclusive Long-Term Economic Recovery 10 October 2019 — 10:00AM TO 12:15PM Anonymous (not verified) 5 September 2019 Harare, Zimbabwe

In its Vision 2030, the government of Zimbabwe committed itself to facilitating an open market and stable economy through strategies such as the Transitional Stabilization Programme (TSP) and new industrialization policy. The private sector is pivotal to these objectives and creating an environment conducive to inclusive and job-creating economic growth. Economic growth can only be achieved with a conducive policy environment and government support to underpin markets with provision of public goods, entrepreneurial incentives and protect contract enforcement and dispute resolution mechanisms.

This event will launch a new Chatham House Africa Programme publication on Zimbabwe’s Vision 2030. The paper is the culmination of an inclusive research process that has drawn on senior private sector expertise, civil society, academics, technocratic elements of government and other experts to develop policy recommendations that will support inclusive economic growth in Zimbabwe.

This event is held in partnership with the Zimbabwe Business Club and Konrad Adenauer Stiftung (KAS). It is supported by KAS and the Dulverton Trust.




omi

Economic Recovery and Anticorruption in South Africa: Assessing Progress on the Reform Agenda

Economic Recovery and Anticorruption in South Africa: Assessing Progress on the Reform Agenda 4 December 2019 — 3:00PM TO 4:00PM Anonymous (not verified) 25 November 2019 Chatham House | 10 St James's Square | London | SW1Y 4LE

South Africa has significant economic potential based on its resource endowment, quality human capital and well-developed infrastructure compared to the region. However, the country’s economic growth rate has not topped 2 per cent since 2013, and in 2018, was below 1 per cent. This has put a strain on citizens and communities in a country that still suffers from structural inequality, poverty and high unemployment. Economic recovery and anti-corruption were the central pillars of President Cyril Ramaphosa’s 2019 electoral campaign and he has set an investment target of $100 billion. However, voters and investors alike are demanding faster and more visible progress from the country’s enigmatic leader who has a reputation for caution and calculation.

At this event, Professor Nick Binedell will discuss the progress of and opposition to the president’s economic reform agenda and the opportunities for international investment to support long term inclusive and sustainable growth in South Africa.

Attendance at this event is by invitation only.




omi

Angola's Business Promise: Evaluating the Progress of Privatization and Other Economic Reforms

Angola's Business Promise: Evaluating the Progress of Privatization and Other Economic Reforms 21 January 2020 — 2:30PM TO 3:30PM Anonymous (not verified) 16 January 2020 Chatham House | 10 St James's Square | London | SW1Y 4LE

Minister Nunes Júnior will discuss the progress of the Angolan government’s economic stabilization plans and business reform agenda including the privatization of some state-owned enterprises. These reforms could expand Angola’s exports beyond oil and stimulate new industries and more inclusive economic growth.

THIS EVENT IS NOW FULL AND REGISTRATION HAS CLOSED.




omi

POSTPONED: Pursuing Economic Reform and Growth in South Africa: the view from the African National Congress

POSTPONED: Pursuing Economic Reform and Growth in South Africa: the view from the African National Congress 18 March 2020 — 10:30AM TO 11:30AM Anonymous (not verified) 3 March 2020 Chatham House | 10 St James's Square | London | SW1Y 4LE

The government of South Africa is pursuing a programme of reform to revitalize the economy, strengthen institutions and combat corruption. The State of the Nation Address (SONA) on 13 February and the budget speech of 26 February represent the most significant articulation of the government’s economic strategy. Central to this is the government’s plans for the energy sector, which is fundamental for reviving the economy, and the reform of State Owned Enterprises (SOEs). But questions remain about possible divergence of the approach taken by government ministers from the policy position of the ruling party, the African National Congress (ANC), and what this might mean for the sustainability and progress of reform.

At this event, Paul Mashatile, Treasurer General of the ANC, will discuss the party’s assessment of reform efforts to date and priorities for delivering on inclusive growth.

PLEASE NOTE THIS EVENT IS POSTPONED UNTIL FURTHER NOTICE.




omi

Webinar: South Africa's Economic Recovery Beyond COVID-19

Webinar: South Africa's Economic Recovery Beyond COVID-19 27 May 2020 — 1:00PM TO 2:00PM Anonymous (not verified) 18 May 2020

South Africa’s rapid action to prevent accelerated domestic transmission of the coronavirus has been widely praised. But, as in many countries, despite a substantial bailout, the pandemic is causing significant damage to the economy, from which it will take a long time to recover.
 
Even before the pandemic, South Africa’s economy was in recession. Citizens’ support is being tested by the need for immediate livelihood protection, and long term recovery will require public trust.
 
As the long-standing party of government, the African National Congress (ANC) is at the forefront of policy formation and debates on the future role of the state in the governance of state-owned enterprises, and transformation policies such as empowerment legislation and land reform.
 
At this webinar, Paul Mashatile, Treasurer General of the African National Congress (ANC), discusses the party’s priorities for economic recovery during and after the pandemic. He is joined for the Q&A by Enoch Godongwana, Chair of the ANC’s Economic Transformation Committee.

Read meeting summary




omi

South Africa's Economic Outlook

South Africa's Economic Outlook 20 August 2020 — 12:00PM TO 1:00PM Anonymous (not verified) 11 August 2020 Online

South Africa’s long mooted economic reforms have been slow to materialize. The economy had fallen into recession even before the COVID-19 pandemic, and had been stripped of its international investment grade rating. The reserve bank is now forecasting a contraction in GDP of over seven percent for 2020.

There are significant questions around the role of the state in the economy, the level of intervention, and its affordability, with key government figures sceptical of rapid market reforms. The mandate and independence of the South African Reserve Bank has also been a subject of public debate. The IMF has approved a US$4.3 billion emergency financial assistance package to help mitigate the health and economic shock to the country. But it has also made clear that there is a pressing need to ensure debt sustainability and implement structural reforms to support recovery and achieve sustainable and inclusive growth.

At this event, Lesetja Kganyago, the governor of the South African Reserve Bank (SARB), gives his assessment of the expected trajectory of the South African economy in the short and medium term. He discusses the IMF package and the implications for economic reform, and the role of the reserve bank in delivering sustainable and inclusive growth.




omi

South Africa's Economic Reform and Employment in the Context of the Coronavirus Pandemic

South Africa's Economic Reform and Employment in the Context of the Coronavirus Pandemic 3 September 2020 — 3:00PM TO 4:00PM Anonymous (not verified) 26 August 2020 Online

President of COSATU, Zingiswa Losi, discusses the organization’s priorities for protecting jobs and workers, and working with other stakeholders to build a sustainable post-pandemic economy.

Employment in South Africa fell by an estimated 18 per cent between February and April 2020. The measures imposed to control the spread of COVID-19 suffocated an already weak economy and unemployment has hit a new high.

The stated aims of the government’s economic reform plans include the support of job creation in labour intensive industries, but the reform of the state and rebalancing of the economy and fiscus could lead to further job losses in state agencies and enterprises.

Protecting jobs while ensuring the health and safety of workers are dual priorities, and require the joint commitment and ‘social compact’ of labour, business and government.




omi

Zimbabwe’s Economic Governance and Regional Integration

Zimbabwe’s Economic Governance and Regional Integration 17 November 2020 — 12:00PM TO 1:30PM Anonymous (not verified) 6 November 2020 Online

Panellists discuss policy and governance for long-term economic prosperity in Zimbabwe, reflecting on the role of institutional change and regional integration in the context of the shocks caused by the coronavirus pandemic.

At this virtual event, panellists and participants will discuss policy and governance for long-term economic prosperity in Zimbabwe, reflecting on the role of institutional change and regional integration.

The government of Zimbabwe has emphasized its commitment to economic reform and its ambition to achieve upper-middle-income status by 2030, but there are considerable challenges to overcome.

The COVID-19 pandemic has exacerbated existing economic fragility. Improving the business climate to attract international private-sector investment will be contingent on clear, consistent and coherent policy and implementation, including targeting abuse and corruption.

Zimbabwe has, in recent years, successfully strengthened its regional trade integration, although some trade frictions remain. This is an important factor not only for catalysing economic growth in Zimbabwe, but for supporting regional prosperity and post-COVID recovery.

This webinar is the second in a series of events held in partnership with the Konrad Adenauer Stiftung on Zimbabwe’s economic reform and recovery.

Read a meeting summary

This event will also be broadcast live on the Africa Programme Facebook page.




omi

Angola Forum 2021: Policy options to support economic recovery in Angola

Angola Forum 2021: Policy options to support economic recovery in Angola 7 October 2021 — 2:00PM TO 5:00PM Anonymous (not verified) 22 September 2021 Online

Speakers discuss policy options to support economic recovery in Angola as the country transitions away from a state-led oil economy to a private-sector-led growth model.

The government of Angola has made some progress on a range of policies targeting macroeconomic stability and structural reform. However, the country has been suffering from a recurring economic recession for six consecutive years, with the last positive annual GDP growth rate posted in 2015 at 0.9 per cent.

The national budget remains dependent on oil revenue, leaving the country highly exposed to volatile oil prices particularly during the COVID-19 pandemic. While revenues collapsed, increased spending was needed to respond to the health crisis and estimates of Angola’s debt spike range from 130 to 150 per cent of its GDP by the close of 2020.

At this virtual Angola Forum, speakers discuss policy options to support economic recovery in Angola as the country transitions away from a state-led oil economy to a private-sector-led growth model.

The Forum launches the English translation of the Angola Economic Report 2019-20 by the Centro de Estudos de Investigação (CEIC) of the Catholic University of Angola in partnership with the Konrad-Adenauer-Stiftung (KAS), and the findings of Afrobarometer’s first ever survey in Angola, Ovilongwa – Estudos de Opinião Pública, which interviewed 2,400 adult Angolans and sampled individual perceptions on democracy and economic reform in Angola.

This event will be held in English and Portuguese with simultaneous interpretation.

The Forum will also be broadcast live on the Africa Programme Facebook page.




omi

Zambia’s political and economic reform and recovery

Zambia’s political and economic reform and recovery 5 November 2021 — 11:30AM TO 12:30PM Anonymous (not verified) 2 November 2021 Chatham House and Online

At this event, HE Hakainde Hichilema, president of the Republic of Zambia, discusses his vision for Zambia’s development and long-term political and economic reform and recovery.

Zambia’s new administration, following the general elections of August 2021, faces a daunting challenge of reversing economic contraction, lowering income-eroding inflation, and addressing the unsustainable national debt.

The country has been one of the few to seek debt restructuring under the G20’s new Common Framework for Debt Treatments, and its immediate priorities include a prospective agreement with the International Monetary Fund (IMF).




omi

Angola forum 2022: Prospects for Angola's social and economic future

Angola forum 2022: Prospects for Angola's social and economic future 15 December 2022 — 1:00PM TO 4:30PM Anonymous (not verified) 28 November 2022 Online

At this online Angola forum, experts will discuss Angola’s social and economic future, and what to expect from 2023.

At this virtual Angola Forum, speakers will discuss Angola’s social and economic future and what to expect from 2023.

Angola experienced positive economic momentum in 2022 allowing it to exit its six-year recession, with the economy taking centre stage in the August national multiparty elections. Increased oil prices and high levels of production have driven Angola’s economic growth and improved macroeconomic conditions, as well as helping the country to reduce its public debt to 56.5 per cent of Gross Domestic Product (down from 79.7 per cent in 2021).

However, a global economic downturn in 2023, with increased inflation, means Angola’s re-elected MPLA government will need to focus on job creation, greater economic inclusivity and diversifying away from an oil-led economy. It will also require Angola to navigate its international partnerships more effectively in this era of heightened geopolitical rivalries.  

At this online Angola forum, experts will discuss Angola’s social and economic future and what to expect from 2023. Speakers will reflect on the social and economic trends seen in 2021-22 and explore election trends, human rights and international relations.

This Angola Forum is supported by the Konrad-Adenauer-Stiftung.




omi

Mental Health Bill promises more tailored and dignified treatment for people detained