uco

Connecting Rodent and Human Pharmacokinetic Models for the Design and Translation of Glucose-Responsive Insulin

Despite considerable progress, development of glucose-responsive insulins (GRI) still largely depends on empirical knowledge and tedious experimentation – especially on rodents. To assist the rational design and clinical translation of the therapeutic, we present a Pharmacokinetic Algorithm Mapping GRI Efficacies in Rodents and Humans (PAMERAH), built upon our previous human model. PAMERAH constitutes a framework for predicting the therapeutic efficacy of a GRI candidate from its user-specified mechanism of action, kinetics, and dosage, which we show is accurate when checked against data from experiments and literature. Results from simulated glucose clamps also agree quantitatively with recent GRI publications. We demonstrate that the model can be used to explore the vast number of permutations constituting the GRI parameter space, and thereby identify the optimal design ranges that yield desired performance. A design guide aside, PAMERAH more importantly can facilitate GRI’s clinical translation by connecting each candidate’s efficacies in rats, mice, and humans. The resultant mapping helps find GRIs which appear promising in rodents but underperform in humans (i.e. false-positives). Conversely, it also allows for the discovery of optimal human GRI dynamics not captured by experiments on a rodent population (false-negatives). We condense such information onto a translatability grid as a straightforward, visual guide for GRI development.




uco

Coregulator Sin3a Promotes Postnatal Murine {beta}-Cell Fitness by Regulating Genes in Ca2+ Homeostasis, Cell Survival, Vesicle Biosynthesis, Glucose Metabolism, and Stress Response

Swi-independent 3a and 3b (Sin3a and Sin3b) are paralogous transcriptional coregulators that direct cellular differentiation, survival, and function. Here, we report that mouse Sin3a and Sin3b are co-produced in most pancreatic cells during embryogenesis but become much more enriched in endocrine cells in adults, implying continued essential roles in mature endocrine-cell function. Mice with loss of Sin3a in endocrine progenitors were normal during early postnatal stages but gradually developed diabetes before weaning. These physiological defects were preceded by the compromised survival, insulin-vesicle packaging, insulin secretion, and nutrient-induced Ca2+ influx of Sin3a-deficient β-cells. RNA-seq coupled with candidate chromatin-immunoprecipitation assays revealed several genes that could be directly regulated by Sin3a in β-cells, which modulate Ca2+/ion transport, cell survival, vesicle/membrane trafficking, glucose metabolism, and stress responses. Lastly, mice with loss of both Sin3a and Sin3b in multipotent embryonic pancreatic progenitors had significantly reduced islet-cell mass at birth, caused by decreased endocrine-progenitor production and increased β-cell death. These findings highlight the stage-specific requirements for the presumed "general" coregulators Sin3a and Sin3b in islet β-cells, with Sin3a being dispensable for differentiation but required for postnatal function and survival.




uco

Branched-Chain Amino Acids Exacerbate Obesity-Related Hepatic Glucose and Lipid Metabolic Disorders via Attenuating Akt2 Signaling

Branched chain amino acids (BCAAs) are associated with the progression of obesity-related metabolic disorders, including T2DM and non-alcoholic fatty liver disease. However, whether BCAAs disrupt the homeostasis of hepatic glucose and lipid metabolism remains unknown. In this study, we observed that BCAAs supplementation significantly reduced high-fat (HF) diet-induced hepatic lipid accumulation while increasing the plasma lipid levels and promoting muscular and renal lipid accumulation. Further studies demonstrated that BCAAs supplementation significantly increased hepatic gluconeogenesis and suppressed hepatic lipogenesis in HF diet-induced obese (DIO) mice. These phenotypes resulted from severe attenuation of Akt2 signaling via mTORC1- and mTORC2-dependent pathways. BCAAs/branched-chain α-keto acids (BCKAs) chronically suppressed Akt2 activation through mTORC1 and mTORC2 signaling and promoted Akt2 ubiquitin-proteasome-dependent degradation through the mTORC2 pathway. Moreover, the E3 ligase Mul1 played an essential role in BCAAs/BCKAs-mTORC2-induced Akt2 ubiquitin-dependent degradation. We also demonstrated that BCAAs inhibited hepatic lipogenesis by blocking Akt2/SREBP1/INSIG2a signaling and increased hepatic glycogenesis by regulating Akt2/Foxo1 signaling. Collectively, these data demonstrate that in DIO mice, BCAAs supplementation resulted in serious hepatic metabolic disorder and severe liver insulin resistance: insulin failed to not only suppress gluconeogenesis but also activate lipogenesis. Intervening BCAA metabolism is a potential therapeutic target for severe insulin-resistant disease.




uco

Glucose-Stimulated Insulin Secretion Fundamentally Requires H2O2 Signaling by NADPH Oxidase 4

NADPH facilitates glucose-stimulated insulin secretion (GSIS) in pancreatic islet (PI) β-cells by an as yet unknown mechanism. We found NADPH oxidase, isoform-4 (NOX4), to be the major producer of cytosolic H2O2, essential for GSIS, while the increase in ATP/ADP alone was insufficient. The fast GSIS phase was absent in PIs from NOX4-null, β-cell-specific knockout mice (NOX4βKO) (not NOX2KO), and NOX4-silenced or catalase-overexpressing INS-1E cells. Lentiviral NOX4 overexpression or H2O2 rescued GSIS in PIs from NOX4βKO mice. NOX4 silencing suppressed Ca2+ oscillations and the patch-clamped ATP-sensitive potassium channel (KATP) opened more frequently at high glucose. Mitochondrial H2O2, decreasing upon GSIS, provided an alternative redox signaling when 2-oxo-isocaproate or fatty acid oxidation formed superoxide by electron-transport flavoprotein:Q-oxidoreductase. Unlike GSIS, this ceased with mitochondrial antioxidant SkQ1. Both NOX4KO and NOX4βKO strains exhibited impaired glucose tolerance and peripheral insulin resistance. Thus the redox signaling previously suggested to cause β-cell-self-checking – hypothetically induces insulin resistance when absent. In conclusion, ATP plus H2O2 elevations constitute an essential switch-on signal of insulin exocytosis for glucose and branched-chain oxoacids as secretagogues (partly for fatty acids). Redox signaling could be impaired by cytosolic antioxidants, hence those targeting mitochondria should be preferred for clinical applications to treat (pre)diabetes at any stage.




uco

Central KATP Channels Modulate Glucose Effectiveness in Humans and Rodents

Hyperglycemia is a potent regulator of endogenous glucose production (EGP). Loss of this ‘glucose effectiveness’ is a major contributor to elevated plasma glucose concentrations in type 2 diabetes (T2D). ATP-sensitive potassium channels (KATP channels) in the central nervous system (CNS) have been shown to regulate EGP in humans and rodents. We examined the contribution of central KATP channels to glucose effectiveness. Under fixed hormonal conditions (‘pancreatic clamp’ studies), hyperglycemia suppressed EGP by ~50% in both non-diabetic humans and normal Sprague Dawley rats. By contrast, antagonism of KATP channels with glyburide significantly reduced the EGP-lowering effect of hyperglycemia in both humans and rats. Furthermore, the effects of glyburide on EGP and gluconeogenic enzymes in rats were abolished by intracerebroventricular (ICV) administration of the KATP channel agonist diazoxide. These findings indicate that about half of EGP suppression by hyperglycemia is mediated by central KATP channels. These central mechanisms may offer a novel therapeutic target for improving glycemic control in T2D.




uco

Maternal Obesity and Western-Style Diet Impair Fetal and Juvenile Offspring Skeletal Muscle Insulin-Stimulated Glucose Transport in Nonhuman Primates

Infants born to mothers with obesity have a greater risk for childhood obesity and metabolic diseases; however, the underlying biological mechanisms remain poorly understood. We used a Japanese macaque model to investigate whether maternal obesity combined with a western-style diet (WSD) impairs offspring muscle insulin action. Adult females were fed a control or WSD prior to and during pregnancy through lactation, and offspring subsequently weaned to a control or WSD. Muscle glucose uptake and signaling were measured ex vivo in fetal (n=5-8/group) and juvenile offspring (n=8/group). In vivo signaling was evaluated after an insulin bolus just prior to weaning (n=4-5/group). Maternal WSD reduced insulin-stimulated glucose uptake and impaired insulin signaling at the level of Akt phosphorylation in fetal muscle. In juvenile offspring, insulin-stimulated glucose uptake was similarly reduced by both maternal and post-weaning WSD and corresponded to modest reductions in insulin-stimulated Akt phosphorylation relative to controls. We conclude that maternal WSD leads to a persistent decrease in offspring muscle insulin-stimulated glucose uptake even in the absence of increased offspring adiposity or markers of systemic insulin resistance. Switching offspring to a healthy diet did not reverse the effects of maternal WSD on muscle insulin action suggesting earlier interventions may be warranted.




uco

Maintaining Myocardial Glucose Utilization in Diabetic Cardiomyopathy Accelerates Mitochondrial Dysfunction

Cardiac glucose uptake and oxidation are reduced in diabetes despite hyperglycemia. Mitochondrial dysfunction contributes to heart failure in diabetes. It is unclear if these changes are adaptive or maladaptive. To directly evaluate the relationship between glucose delivery and mitochondrial dysfunction in diabetic cardiomyopathy we generated transgenic mice with inducible cardiomyocyte-specific expression of the glucose transporter (GLUT4). We examined mice rendered hyperglycemic following low-dose streptozotocin prior to increasing cardiomyocyte glucose uptake by transgene induction. Enhanced myocardial glucose in non-diabetic mice decreased mitochondrial ATP generation and was associated with echocardiographic evidence of diastolic dysfunction. Increasing myocardial glucose delivery after short-term diabetes onset, exacerbated mitochondrial oxidative dysfunction. Transcriptomic analysis revealed that the largest changes, driven by glucose and diabetes, were in genes involved in mitochondrial function. This glucose-dependent transcriptional repression was in part mediated by O-GlcNAcylation of the transcription factor Sp1. Increased glucose uptake induced direct O-GlcNAcylation of many electron transport chain subunits and other mitochondrial proteins. These findings identify mitochondria as a major target of glucotoxicity. They also suggest reduced glucose utilization in diabetic cardiomyopathy might defend against glucotoxicity and caution that restoring glucose delivery to the heart in the context of diabetes could accelerate mitochondrial dysfunction by disrupting protective metabolic adaptations.




uco

Lactation vs Formula Feeding: Insulin, Glucose and Fatty Acid Metabolism During the Postpartum Period

Milk production may involve a transient development of insulin resistance in non-mammary tissues to support redistribution of maternal macronutrients to match the requirements of the lactating mammary gland. In the present study, adipose and liver metabolic responses were measured in the fasting state and during a 2-step (10 and 20 mU/m2/min) hyperinsulinemic-euglycemic clamp with stable isotopes, in 6-week postpartum women who were lactating (n=12) or formula-feeding (n=6) their infants and who were closely matched for baseline characteristics (e.g., parity, body composition, intrahepatic lipid). When controlling for the low insulin concentrations of both groups, the lactating women exhibited a fasting rate of endogenous glucose production (EGP) that was 2.6-fold greater, and a lipolysis rate that was 2.3-fold greater than the formula-feeding group. During the clamp, the groups exhibited similar suppression rates of EGP and lipolysis. In the lactating women only, higher prolactin concentrations were associated with greater suppression rates of lipolysis, lower intrahepatic lipid and plasma triacylglycerol concentrations. These data suggest that whole-body alterations in glucose transport may be organ specific and facilitate nutrient partitioning during lactation. Recapitulating a shift toward noninsulin-mediated glucose uptake could be an early postpartum strategy to enhance lactation success in women at risk for delayed onset of milk production.




uco

Glucolipotoxicity, {beta}-Cells, and Diabetes: The Emperor Has No Clothes

Reduction of β-cell mass and function is central to the pathogenesis of type 2 diabetes. The terms glucotoxicity, lipotoxicity, and glucolipotoxicity are used to describe potentially responsible processes. The premise is that chronically elevated glucose levels are toxic to β-cells, that elevated lipid levels in the form of circulating free fatty acids (FFA) also have toxic effects, and that the combination of the two, glucolipotoxicity, is particularly harmful. Much work has shown that high concentrations of FFA can be very damaging to β-cells when used for in vitro experiments, and when infused in large amounts in humans and rodents they produce suppression of insulin secretion. The purpose of this Perspective is to raise doubts about whether the FFA levels found in real-life situations are ever high enough to cause problems. Evidence supporting the importance of glucotoxicity is strong because there is such a tight correlation between defective insulin secretion and rising glucose levels. However, there is virtually no convincing evidence that the alterations in FFA levels occurring during progression to diabetes are pathogenic. Thus, the terms lipotoxicity and glucolipotoxicity should be used with great caution, if at all, because evidence supporting their importance has not yet emerged.




uco

Structural basis of substrate recognition and catalysis by fucosyltransferase 8 [Protein Structure and Folding]

Fucosylation of the innermost GlcNAc of N-glycans by fucosyltransferase 8 (FUT8) is an important step in the maturation of complex and hybrid N-glycans. This simple modification can dramatically affect the activities and half-lives of glycoproteins, effects that are relevant to understanding the invasiveness of some cancers, development of mAb therapeutics, and the etiology of a congenital glycosylation disorder. The acceptor substrate preferences of FUT8 are well-characterized and provide a framework for understanding N-glycan maturation in the Golgi; however, the structural basis of these substrate preferences and the mechanism through which catalysis is achieved remain unknown. Here we describe several structures of mouse and human FUT8 in the apo state and in complex with GDP, a mimic of the donor substrate, and with a glycopeptide acceptor substrate at 1.80–2.50 Å resolution. These structures provide insights into a unique conformational change associated with donor substrate binding, common strategies employed by fucosyltransferases to coordinate GDP, features that define acceptor substrate preferences, and a likely mechanism for enzyme catalysis. Together with molecular dynamics simulations, the structures also revealed how FUT8 dimerization plays an important role in defining the acceptor substrate-binding site. Collectively, this information significantly builds on our understanding of the core fucosylation process.




uco

The High-Fat Diet-Fed Mouse: A Model for Studying Mechanisms and Treatment of Impaired Glucose Tolerance and Type 2 Diabetes

Maria Sörhede Winzell
Dec 1, 2004; 53:S215-S219
Section V: The Incretin Pathway




uco

A Phenotypic Screen Identifies Calcium Overload as a Key Mechanism of {beta}-Cell Glucolipotoxicity

Jennifer Vogel
May 1, 2020; 69:1032-1041
Pharmacology and Therapeutics




uco

Intense Exercise Has Unique Effects on Both Insulin Release and Its Roles in Glucoregulation: Implications for Diabetes

Errol B. Marliss
Feb 1, 2002; 51:S271-S283
Section 6: Pusatile and Phasic Insulin Release in Normal and Diabetic Men




uco

Effect of a High-Protein, Low-Carbohydrate Diet on Blood Glucose Control in People With Type 2 Diabetes

Mary C. Gannon
Sep 1, 2004; 53:2375-2382
Pathophysiology




uco

The Multiple Actions of GLP-1 on the Process of Glucose-Stimulated Insulin Secretion

Patrick E. MacDonald
Dec 1, 2002; 51:S434-S442
Section 5: Beta-Cell Stimulus-Secretion Coupling: Hormonal and Pharmacological Modulators




uco

A Polymorphism in the Glucocorticoid Receptor Gene, Which Decreases Sensitivity to Glucocorticoids In Vivo, Is Associated With Low Insulin and Cholesterol Levels

Elisabeth F.C. van Rossum
Oct 1, 2002; 51:3128-3134
Genetics




uco

HB-EGF Signaling Is Required for Glucose-Induced Pancreatic {beta}-Cell Proliferation in Rats

The molecular mechanisms of β-cell compensation to metabolic stress are poorly understood. We previously observed that nutrient-induced β-cell proliferation in rats is dependent on epidermal growth factor receptor (EGFR) signaling. The aim of this study was to determine the role of the EGFR ligand heparin-binding EGF-like growth factor (HB-EGF) in the β-cell proliferative response to glucose, a β-cell mitogen and key regulator of β-cell mass in response to increased insulin demand. We show that exposure of isolated rat and human islets to HB-EGF stimulates β-cell proliferation. In rat islets, inhibition of EGFR or HB-EGF blocks the proliferative response not only to HB-EGF but also to glucose. Furthermore, knockdown of HB-EGF in rat islets blocks β-cell proliferation in response to glucose ex vivo and in vivo in transplanted glucose-infused rats. Mechanistically, we demonstrate that HB-EGF mRNA levels are increased in β-cells in response to glucose in a carbohydrate-response element–binding protein (ChREBP)–dependent manner. In addition, chromatin immunoprecipitation studies identified ChREBP binding sites in proximity to the HB-EGF gene. Finally, inhibition of Src family kinases, known to be involved in HB-EGF processing, abrogated glucose-induced β-cell proliferation. Our findings identify a novel glucose/HB-EGF/EGFR axis implicated in β-cell compensation to increased metabolic demand.




uco

Lamin C Counteracts Glucose Intolerance in Aging, Obesity, and Diabetes Through {beta}-Cell Adaptation

Aging-dependent changes in tissue function are associated with the development of metabolic diseases. However, the molecular connections linking aging, obesity, and diabetes remain unclear. Lamin A, lamin C, and progerin, products of the Lmna gene, have antagonistic functions on energy metabolism and life span. Lamin C, albeit promoting obesity, increases life span, suggesting that this isoform is crucial for maintaining healthy conditions under metabolic stresses. Because β-cell loss during obesity or aging leads to diabetes, we investigated the contribution of lamin C to β-cell function in physiopathological conditions. We demonstrate that aged lamin C only–expressing mice (LmnaLCS/LCS) become obese but remain glucose tolerant due to adaptive mechanisms including increased β-cell mass and insulin secretion. Triggering diabetes in young mice revealed that LmnaLCS/LCS animals normalize their fasting glycemia by both increasing insulin secretion and regenerating β-cells. Genome-wide analyses combined to functional analyses revealed an increase of mitochondrial biogenesis and global translational rate in LmnaLCS/LCS islets, two major processes involved in insulin secretion. Altogether, our results demonstrate for the first time that the sole expression of lamin C protects from glucose intolerance through a β-cell–adaptive transcriptional program during metabolic stresses, highlighting Lmna gene processing as a new therapeutic target for diabetes treatment.




uco

Diabetes remission - "treating blood glucose, when the disease process is to do with body fat"

In the UK - type 2 diabetes now affects between 5-10% of the population - and accounts for around 10% of our total NHS budget. For the individuals affected, treatments are effective at helping control glucose levels - however, the sequela associated with the disease - vascular problems, and a life expectancy that’s 6 years shorter - are still an...




uco

Glucose-Induced Reactive Oxygen Species Cause Apoptosis of Podocytes and Podocyte Depletion at the Onset of Diabetic Nephropathy

Katalin Susztak
Jan 1, 2006; 55:225-233
Complications




uco

A Lesson in Metabolic Regulation Inspired by the Glucokinase Glucose Sensor Paradigm

Franz M Matschinsky
Feb 1, 1996; 45:223-241
Banting Lecture 1995




uco

The Effect of Insulin on the Disposal of Intravenous Glucose: Results from Indirect Calorimetry and Hepatic and Femoral Venous Catheterization

R A DeFronzo
Dec 1, 1981; 30:1000-1007
Original Contribution




uco

Evidence for 5'AMP-Activated Protein Kinase Mediation of the Effect of Muscle Contraction on Glucose Transport

Tatsuya Hayashi
Aug 1, 1998; 47:1369-1373
Rapid Publications




uco

High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C--dependent activation of NAD(P)H oxidase in cultured vascular cells

T Inoguchi
Nov 1, 2000; 49:1939-1945
Articles




uco

Exendin-4 stimulates both beta-cell replication and neogenesis, resulting in increased beta-cell mass and improved glucose tolerance in diabetic rats

G Xu
Dec 1, 1999; 48:2270-2276
Articles




uco

Triggering and amplifying pathways of regulation of insulin secretion by glucose

JC Henquin
Nov 1, 2000; 49:1751-1760
Articles




uco

Isolation of INS-1-derived cell lines with robust ATP-sensitive K+ channel-dependent and -independent glucose-stimulated insulin secretion

HE Hohmeier
Mar 1, 2000; 49:424-430
Articles




uco

Classification and Diagnosis of Diabetes Mellitus and Other Categories of Glucose Intolerance

National Diabetes Data Group
Dec 1, 1979; 28:1039-1057
Articles




uco

Thousands more patients with type 1 diabetes are getting flash glucose devices, data show




uco

Effects of Pioglitazone on Glucose-Dependent Insulinotropic Polypeptide-Mediated Insulin Secretion and Adipocyte Receptor Expression in Patients With Type 2 Diabetes

Incretin hormone dysregulation contributes to reduced insulin secretion and hyperglycemia in patients with type 2 diabetes mellitus (T2DM). Resistance to glucose-dependent insulinotropic polypeptide (GIP) action may occur through desensitization or downregulation of β-cell GIP receptors (GIP-R). Studies in rodents and cell lines show GIP-R expression can be regulated through peroxisome proliferator–activated receptor (PPAR) response elements (PPREs). Whether this occurs in humans is unknown. To test this, we conducted a randomized, double-blind, placebo-controlled trial of pioglitazone therapy on GIP-mediated insulin secretion and adipocyte GIP-R expression in subjects with well-controlled T2DM. Insulin sensitivity improved, but the insulinotropic effect of infused GIP was unchanged following 12 weeks of pioglitazone treatment. In parallel, we observed increased GIP-R mRNA expression in subcutaneous abdominal adipocytes from subjects treated with pioglitazone. Treatment of cultured human adipocytes with troglitazone increased PPAR binding to GIP-R PPREs. These results show PPAR agonists regulate GIP-R expression through PPREs in human adipocytes, but suggest this mechanism is not important for regulation of the insulinotropic effect of GIP in subjects with T2DM. Because GIP has antilipolytic and lipogenic effects in adipocytes, the increased GIP-R expression may mediate accretion of fat in patients with T2DM treated with PPAR agonists.




uco

Mitochondrial Proton Leak Regulated by Cyclophilin D Elevates Insulin Secretion in Islets at Nonstimulatory Glucose Levels

Fasting hyperinsulinemia precedes the development of type 2 diabetes. However, it is unclear whether fasting insulin hypersecretion is a primary driver of insulin resistance or a consequence of the progressive increase in fasting glycemia induced by insulin resistance in the prediabetic state. Herein, we have discovered a mechanism that specifically regulates non–glucose-stimulated insulin secretion (NGSIS) in pancreatic islets that is activated by nonesterified free fatty acids, the major fuel used by β-cells during fasting. We show that the mitochondrial permeability transition pore regulator cyclophilin D (CypD) promotes NGSIS, but not glucose-stimulated insulin secretion, by increasing mitochondrial proton leak. Islets from prediabetic obese mice show significantly higher CypD-dependent proton leak and NGSIS compared with lean mice. Proton leak–mediated NGSIS is conserved in human islets and is stimulated by exposure to nonesterified free fatty acids at concentrations observed in obese subjects. Mechanistically, proton leak activates islet NGSIS independently of mitochondrial ATP synthesis but ultimately requires closure of the KATP channel. In summary, we have described a novel nonesterified free fatty acid–stimulated pathway that selectively drives pancreatic islet NGSIS, which may be therapeutically exploited as an alternative way to halt fasting hyperinsulinemia and the progression of type 2 diabetes.




uco

Perivascular Adipose Tissue Controls Insulin-Stimulated Perfusion, Mitochondrial Protein Expression, and Glucose Uptake in Muscle Through Adipomuscular Arterioles

Insulin-mediated microvascular recruitment (IMVR) regulates delivery of insulin and glucose to insulin-sensitive tissues. We have previously proposed that perivascular adipose tissue (PVAT) controls vascular function through outside-to-inside communication and through vessel-to-vessel, or "vasocrine," signaling. However, direct experimental evidence supporting a role of local PVAT in regulating IMVR and insulin sensitivity in vivo is lacking. Here, we studied muscles with and without PVAT in mice using combined contrast-enhanced ultrasonography and intravital microscopy to measure IMVR and gracilis artery diameter at baseline and during the hyperinsulinemic-euglycemic clamp. We show, using microsurgical removal of PVAT from the muscle microcirculation, that local PVAT depots regulate insulin-stimulated muscle perfusion and glucose uptake in vivo. We discovered direct microvascular connections between PVAT and the distal muscle microcirculation, or adipomuscular arterioles, the removal of which abolished IMVR. Local removal of intramuscular PVAT altered protein clusters in the connected muscle, including upregulation of a cluster featuring Hsp90ab1 and Hsp70 and downregulation of a cluster of mitochondrial protein components of complexes III, IV, and V. These data highlight the importance of PVAT in vascular and metabolic physiology and are likely relevant for obesity and diabetes.




uco

Fibrotic Encapsulation Is the Dominant Source of Continuous Glucose Monitor Delays

Continuous glucose monitor (CGM) readings are delayed relative to blood glucose, and this delay is usually attributed to the latency of interstitial glucose levels. However, CGM-independent data suggest rapid equilibration of interstitial glucose. This study sought to determine the loci of CGM delays. Electrical current was measured directly from CGM electrodes to define sensor kinetics in the absence of smoothing algorithms. CGMs were implanted in mice, and sensor versus blood glucose responses were measured after an intravenous glucose challenge. Dispersion of a fluorescent glucose analog (2-NBDG) into the CGM microenvironment was observed in vivo using intravital microscopy. Tissue deposited on the sensor and nonimplanted subcutaneous adipose tissue was then collected for histological analysis. The time to half-maximum CGM response in vitro was 35 ± 2 s. In vivo, CGMs took 24 ± 7 min to reach maximum current versus 2 ± 1 min to maximum blood glucose (P = 0.0017). 2-NBDG took 21 ± 7 min to reach maximum fluorescence at the sensor versus 6 ± 6 min in adipose tissue (P = 0.0011). Collagen content was closely correlated with 2-NBDG latency (R = 0.96, P = 0.0004). Diffusion of glucose into the tissue deposited on a CGM is substantially delayed relative to interstitial fluid. A CGM that resists fibrous encapsulation would better approximate real-time deviations in blood glucose.




uco

Use of sodium-glucose co-transporter 2 inhibitors and risk of serious renal events: Scandinavian cohort study




uco

Screening for Glucose Perturbations and Risk Factor Management in Dysglycemic Patients With Coronary Artery Disease--A Persistent Challenge in Need of Substantial Improvement: A Report From ESC EORP EUROASPIRE V

OBJECTIVE

Dysglycemia, in this survey defined as impaired glucose tolerance (IGT) or type 2 diabetes, is common in patients with coronary artery disease (CAD) and associated with an unfavorable prognosis. This European survey investigated dysglycemia screening and risk factor management of patients with CAD in relation to standards of European guidelines for cardiovascular subjects.

RESEARCH DESIGN AND METHODS

The European Society of Cardiology’s European Observational Research Programme (ESC EORP) European Action on Secondary and Primary Prevention by Intervention to Reduce Events (EUROASPIRE) V (2016–2017) included 8,261 CAD patients, aged 18–80 years, from 27 countries. If the glycemic state was unknown, patients underwent an oral glucose tolerance test (OGTT) and measurement of glycated hemoglobin A1c. Lifestyle, risk factors, and pharmacological management were investigated.

RESULTS

A total of 2,452 patients (29.7%) had known diabetes. OGTT was performed in 4,440 patients with unknown glycemic state, of whom 41.1% were dysglycemic. Without the OGTT, 30% of patients with type 2 diabetes and 70% of those with IGT would not have been detected. The presence of dysglycemia almost doubled from that self-reported to the true proportion after screening. Only approximately one-third of all coronary patients had completely normal glucose metabolism. Of patients with known diabetes, 31% had been advised to attend a diabetes clinic, and only 24% attended. Only 58% of dysglycemic patients were prescribed all cardioprotective drugs, and use of sodium–glucose cotransporter 2 inhibitors (3%) or glucagon-like peptide 1 receptor agonists (1%) was small.

CONCLUSIONS

Urgent action is required for both screening and management of patients with CAD and dysglycemia, in the expectation of a substantial reduction in risk of further cardiovascular events and in complications of diabetes, as well as longer life expectancy.




uco

Glucosamine Use, Inflammation, and Genetic Susceptibility, and Incidence of Type 2 Diabetes: A Prospective Study in UK Biobank

OBJECTIVE

Glucosamine is a widely used supplement typically taken for osteoarthritis and joint pain. Emerging evidence suggests potential links of glucosamine with glucose metabolism, inflammation, and cardiometabolic risk. We prospectively analyzed the association of habitual glucosamine use with risk of type 2 diabetes (T2D) and assessed whether genetic susceptibility and inflammation status might modify the association.

RESEARCH DESIGN AND METHODS

This study analyzed 404,508 participants from the UK Biobank who were free of diabetes, cancer, or cardiovascular disease at baseline and completed the questionnaire on supplement use. Cox proportional hazards models were used to evaluate the association between habitual use of glucosamine and risk of incident T2D.

RESULTS

During a median of 8.1 years of follow-up, 7,228 incident cases of T2D were documented. Glucosamine use was associated with a significantly lower risk of T2D (hazard ratio 0.83, 95% CI 0.78–0.89) after adjustment for age, sex, BMI, race, center, Townsend deprivation index, lifestyle factors, history of disease, and other supplement use. This inverse association was more pronounced in participants with a higher blood level of baseline C-reactive protein than in those with a lower level of this inflammation marker (P-interaction = 0.02). A genetic risk score for T2D did not modify this association (P-interaction = 0.99).

CONCLUSIONS

Our findings indicate that glucosamine use is associated with a lower risk of incident T2D.




uco

Smartphone-Based Glucose Monitors and Applications in the Management of Diabetes: An Overview of 10 Salient "Apps" and a Novel Smartphone-Connected Blood Glucose Monitor

Joseph Tran
Oct 1, 2012; 30:173-178
Practical Pointers




uco

How Foods Affect Blood Glucose: Glycemic Impact


Oct 1, 2011; 29:161-161
Patient Information




uco

Glucose, Advanced Glycation End Products, and Diabetes Complications: What Is New and What Works

Melpomeni Peppa
Oct 1, 2003; 21:
Council's Voice




uco

Self-Monitoring of Blood Glucose: The Basics

Evan M. Benjamin
Jan 1, 2002; 20:
Practical Pointers




uco

Hypoglycemia? Low Blood Glucose? Low Blood Sugar?


Jan 1, 2012; 30:38-38
Patient Information




uco

Good to Know: Factors Affecting Blood Glucose


Apr 1, 2018; 36:202-202
Patient Education




uco

New Insulin Glargine 300 Units/mL Versus Glargine 100 Units/mL in People With Type 2 Diabetes Using Oral Agents and Basal Insulin: Glucose Control and Hypoglycemia in a 6-Month Randomized Controlled Trial (EDITION 2)

Hannele Yki-Järvinen
Dec 1, 2014; 37:3235-3243
Emerging Technologies and Therapeutics




uco

Long-term Benefits of Intensive Glucose Control for Preventing End-Stage Kidney Disease: ADVANCE-ON

Muh Geot Wong
May 1, 2016; 39:694-700
Cardiovascular Disease and Diabetes




uco

Characterization of Renal Glucose Reabsorption in Response to Dapagliflozin in Healthy Subjects and Subjects With Type 2 Diabetes

Ralph A. DeFronzo
Oct 1, 2013; 36:3169-3176
Emerging Technologies and Therapeutics




uco

Clinical Targets for Continuous Glucose Monitoring Data Interpretation: Recommendations From the International Consensus on Time in Range

Tadej Battelino
Aug 1, 2019; 42:1593-1603
International Consensus Report




uco

Efficacy and Safety of Canagliflozin, a Sodium-Glucose Cotransporter 2 Inhibitor, as Add-on to Insulin in Patients With Type 1 Diabetes

Robert R. Henry
Dec 1, 2015; 38:2258-2265
Special Article Collection: Insulin




uco

New Insulin Glargine 300 Units/mL Versus Glargine 100 Units/mL in People With Type 2 Diabetes Using Basal and Mealtime Insulin: Glucose Control and Hypoglycemia in a 6-Month Randomized Controlled Trial (EDITION 1)

Matthew C. Riddle
Oct 1, 2014; 37:2755-2762
Emerging Technologies and Therapeutics




uco

A Mathematical Model for the Determination of Total Area Under Glucose Tolerance and Other Metabolic Curves

Mary M Tai
Feb 1, 1994; 17:152-154
Short Report




uco

Sodium-Glucose Cotransporter 2 Inhibition and Glycemic Control in Type 1 Diabetes: Results of an 8-Week Open-Label Proof-of-Concept Trial

Bruce A. Perkins
May 1, 2014; 37:1480-1483
Novel Communications in Diabetes