d

Vehicle body structure

There is provided a vehicle body structure that can improve collision performance at the time of a rear collision. The vehicle body structure includes first and second crash boxes that are provided at rear ends of rear side members. Further, the second crash boxes are disposed at positions different from the positions of the first crash boxes in a vertical direction of the vehicle. The second crash boxes, which are disposed at the positions different from the positions of the first crash boxes, can absorb a load applied from bumper reinforcement of another vehicle. Since a load at the time of a rear collision is absorbed by the second crash boxes, it is possible to suppress the deformation of a trunk that is provided at the rear portion of a vehicle body.




d

Drying apparatus for vehicle using vehicle induced wind

Disclosed herein is a drying apparatus for a vehicle using vehicle induced wind. The drying apparatus is capable of drying a wet object using vehicle induced wind generated by the driving of the vehicle. The apparatus includes a storage cover that is rotatably coupled to a rear bumper cover via a hinge module, to form a storage space between the storage cover and the rear bumper cover. In addition the apparatus includes an inlet cover that is coupled to the rear bumper cover to form an inlet passage through which the vehicle induced wind flows into the storage space when the vehicle is being driven. A plurality of outlet holes are formed in the rear bumper cover, and are configured to operate as a passage to allow air to be discharged from the storage space to an exterior of the vehicle.




d

Bumper assembly and method

A bumper assembly includes a bumper beam having a bumper beam surface extending along a bumper plane X and a crash box including a crash box surface extending along a crash box plane Y. One of the bumper beam and the crash box includes an alignment joint to mate the bumper beam and the crash box and dispose the surfaces in abutting and aligned relationship relative to one another for establishing a linear load path extending linearly along the planes X, Y. A method of assembling a bumper assembly includes the steps of mating the bumper beam and the crash box about the alignment joint and connecting the bumper beam and the crash box together along the alignment joint. The step of connecting the bumper beam and the crash box includes friction stir welding the bumper box and the crash box together along the alignment joint.




d

Attachment structure for adjustable air diffuser

An adjustable air diffuser is disposed in an airflow channel into which a travelling wind is directed through an opening provided in a bumper face. The diffuser opens and closes the channel by movable louver blades driven by an actuator. An upper part of the diffuser is disposed to face a rear wall of the bumper face and is attached to a bumper beam extending along a vehicle width direction. A lower part of the diffuser is attached to a vehicle body structural member. The attachment structure includes a column that is disposed behind the adjustable air diffuser. A lower end of the column is attached to a lower end of the adjustable air diffuser. Weak portions are provided on the column such that the column breaks when the column interferes with another member behind the column.




d

Pedestrian-friendly structure for motor vehicle front end

A pedestrian-friendly forward structure of a motor vehicle includes a grill opening reinforcement (GOR), a front fascia located forward of and spaced from the GOR, and a support bracket extending transversely to the vehicle forward of the GOR and rearward of the front fascia. The support bracket has a transverse cross-bar and left and right legs extending rearward from a cross-bar adjacent opposite ends thereof. The legs are attached to respective outboard positions on the GOR, and the cross-bar has an upper flange underlying an upper rear panel of the front fascia. If a pedestrian strikes the forward structure, the fascia and support bracket yield rearward in an injury-reducing manner.




d

Compliant solid-state bumper for robot

A robot bumper assembly includes a bumper body, a first sensor array, and a second sensor array. The first sensor array is disposed along and contoured to the periphery of a forward facing portion of the bumper body and senses contact with an external environment at positions along the contour of the periphery forward facing portion of the bumper body. The second sensor array is disposed along and contoured to the periphery of a top portion of the forward facing portion of the robot body. The top portion is angled, ramping up. The second sensor array senses contact with an external environment at positions along the periphery of the angled top portion of the bumper body.




d

Semi trailor underrun protection

The device may have a plurality of upright supports where the supports may include a mounting plate with mounting openings, a plurality of vertical members that may be in non-welded communication with the extruded back mounting plate and a plurality of horizontal members where the vertical members provide strength and support to the supports. The horizontal under-run prevention beam may include mounting openings that correspond to the horizontal beam mounting openings and a removable reflective strip that correspond to reflective strip openings in the beam. The vertical and horizontal members may be stacked extruded rectangles of the desired widths and lengths.




d

Deployable lower leg stiffener for pedestrian protection

A deployable pedestrian protection lower leg stiffen apparatus includes a left and a right linear actuator mountable adjacent to respective left and right forward frame members of a vehicle and a lower leg stiffener attached to and movable by the actuators. The actuators are extendable along respective deployment axes extending forward and downward relative to the vehicle to move the stiffener between a retracted position rearward of a forward surface of a front bumper beam and above a ground clearance plane and a deployed position forward of the retracted position and below the ground clearance plane. The actuators have rotational joints defining a horizontal pivot axis about which at least the forward portions of the piston may rotate upward along with the stiffener to prevent damage to the system if it strikes a road obstacle.




d

Assembly comprising a bumper skin and masking means

The assembly is for mounting to a motor vehicle having a bumper skin and it comprises a body part forming at least a portion of a bumper skin. The body part is defined by bottom and top edges. The top edge includes a first portion to be masked by a member of the vehicle that is to be fitted to the body part. The assembly includes at least a first masking element masking at least one portion of the bottom edge and at least a second masking element masking at least one second portion of the top edge of the body part, complementary to the at least one first portion of the top edge of the body part. The first and second masking elements are fixed relative to the body part once the assembly is mounted to the motor vehicle.




d

Pressure-based crash detection system incorporated in side rail

A vehicular crash sensing system includes a bumper cap for contacting a bumper. A chamber fits into a side rail attached to the bumper, the chamber being sealed by the bumper cap. A stop element limits movement of the chamber into the side rail. A pressure sensor detects an increased chamber air pressure during crushing of the chamber resulting from movement of the bumper with respect to the stop element.




d

***WITHDRAWN PATENT AS PER THE LATEST USPTO WITHDRAWN LIST***Front fascia or grill support structure and aerodynamic shutter assembly

A fascia support structure and aerodynamic shutter assembly for a vehicle includes a fascia support structure, comprising: a top portion comprising a substantially U-shaped body comprising a top fascia support member, a first side fascia support member and a second side fascia support member, the first side fascia support member having a first side baffle, the second side fascia support member having a second side baffle; and a bottom portion comprising a bottom baffle, the bottom portion attached to the first and second side fascia support members, the top portion and the bottom portion comprising a fascia support structure opening, at least one of the first side baffle, second side baffle or bottom baffle having a seal member disposed on a leading edge. The assembly also includes an aerodynamic shutter system comprising a shutter frame having a shutter frame opening and a plurality of rotatable shutters disposed therein.




d

Bumper energy absorber with sensor and configured lobes

A vehicle bumper system comprises a bumper reinforcement beam and an energy absorber with top and bottom rows of similarly-shaped spaced-apart crush lobes in alternating relation for uniform impact resistance across the bumper system. The illustrated top row of crush lobes provides a high first force-deflection curve for high impact forces, and the bottom row of crush lobes provides a lower second force-deflection curve, for pedestrian reduced injury. An elongated sensor is positioned under shear walls of the top and bottom crush lobes, and is retained by tabs on the energy absorber. This positively retains the sensor in position on the bumper system, with few (or zero) separate fasteners, while facilitating quick assembly and reliable operation of the sensor tube.




d

Laminate bumper for material handling vehicles

A material handling vehicle includes a laminated bumper that provides both durability and reduced energy transmissibility. The laminated bumper includes at least a first bumper layer and a second bumper layer, such that at least one of the first bumper layer and second bumper layer of the laminate bumper are allowed to translate upon bumper contact with an object.




d

Bumper made using a resistive implant welding process

A bumper (10) created using a resistive implant welding process. The bumper includes a mounting plate portion (12) and a composite bumper portion (14). The mounting plate portion (12) is connected to the composite bumper portion (14) using a resistive implant welding process. In one embodiment, the present invention includes a bumper for a vehicle having a mounting plate (12) and a bumper portion (14). The bumper portion (14) includes at least one flange (24) formed as part of the bumper portion (14), a first contact area (28) formed as part of the mounting plate (12), and a second contact area (30) formed as part of the flange (24). A connection point is used to bond the first contact area (28) and the second contact area (30) such that the mounting plate (12) is connected to the bumper portion (14).




d

Vehicle-body structure of vehicle

A panel member having a U-shaped cross section includes step portions at an upper face portion and a lower face portion, and a distance, in a vehicle longitudinal direction, of the step potions from a panel member formed substantially in a flat-plate shape, is configured such that the distance at a central portion, in the vehicle width direction, of a bumper reinforcement is the maximum and the distance decreases gradually toward an outward direction of the vehicle. Accordingly, the vehicle-body structure which can properly ensure the bending strength and also attain the light weight of the bumper reinforcement, improving the load transmission from the bumper reinforcement to crash cans, can be provided.




d

System for pedestrian leg protection in vehicle impact

A system for protecting a pedestrian during impact with a vehicle, the system having a bumper adapted for attachment to an end of the vehicle, wherein the bumper is comprised of a plurality of air sacs, wherein the bumper has a horizontal thickness extends from the end of the vehicle, wherein at least some of the plurality of air sacs stretch and then burst during impact between the bumper and a pedestrian causing deceleration along the horizontal width of the bumper during the impact, wherein the bumper undergoes plastic deformation during impact with the pedestrian as the at least some of the air sacs burst during impact, and wherein the bursting of some of the plurality of air sacs reduces spring back of the bumper on the pedestrian.




d

Passively deployed small overlap rigid barrier deflector

A front bumper assembly including a bumper beam and two deflectors are provided on right and left sides of the front bumper assembly. The deflectors include hook-shaped portions and telescopic portions. The telescopic portions are received within the front bumper assembly. The hook-shaped portion of the deflector may be engaged by a rigid barrier aligned with the deflectors. In the event of a collision, the rigid barrier engages one of the hook-shaped portions and withdraws the telescopic portion from the front bumper assembly. The deflector is pulsed outwardly to move the front wheel and tire assembly to a tow-in orientation.




d

Deflector-catcher for small overlap vehicle impacts

A front-end assembly including a deflector and a catcher bracket. The V-shaped deflector is attached to a bumper of a vehicle, a rear leg of the deflector has a distal end disposed adjacent to the frame rail. In a collision, the distal end of the rear leg engages the catcher bracket to reduce intrusion into the passenger compartment of the vehicle.




d

Vehicle attachable carrier device

The vehicle attachable carrier device includes a mounting bracket assembly for movably mounting a guard frame to a vehicle that includes a bracket coupled to the vehicle. A frame is movably coupled to the bracket. The frame may guard the vehicle. The frame is positionable between a stored position and an extended position.




d

Front air dam for truck

An air dam for a semi-truck tractor in accordance with an aspect of the present disclosure includes a rigid upper panel affixed to a bumper of the semi-truck tractor and a lower flexible panel affixed to the upper panel.




d

Airflow control device for an automotive vehicle

An airflow control device is mounted to the front end of an automotive vehicle and includes an upper air scoop section having a scoop channel disposed rearward of a bumper assembly and oriented to direct airflow entering a bumper intake opening toward an air-receiving powertrain component. A lower air dam section extends downwardly from the upper section to be positioned below a lower extent of the bumper assembly to deflect airflow away from an underside of the vehicle.




d

Front rail mounted airbag

An airbag system mitigates intrusion in the event of an offset rigid barrier impact to a forward corner of a motor vehicle. An airbag is attached proximate a distal end of a front rail. When in the inflated condition, the airbag has an angular leading edge. An impact detection sensor generates a signal upon a corner impact event, whereby a controller processes the signal generated by the detection sensor and electrically actuates an inflator upon a predetermined impact severity. The angular leading edge of the airbag in the inflated condition acts against the offset rigid barrier to generate a lateral force against the offset rigid barrier to push the motor vehicle away from the barrier and thereby redirect impact energy by lateral movement of the motor vehicle.




d

Compliant solid-state bumper for robot

A robot bumper including a bumper body having a forward surface and a top surface angling away from the forward surface. The bumper body conforms to a shape of a received robot chassis. The robot bumper also includes a force absorbing layer disposed on the bumper body, a membrane switch layer comprising a plurality of electrical contacts arranged along the top surface of the bumper body, and a force transmission layer disposed between the force absorbing layer and the membrane switch layer. The force transmission layer includes a plurality of force transmitting elements configured to transmit force to the membrane switch layer.




d

Telescoping vehicle safety guard

A safety guard for a vehicle, such as a school or transit bus, tractor trailer or the like-type vehicle, includes a front guard positioned at an angle in front of a wheel of the vehicle that will function to push individuals and other animate objects lying in the path of the vehicle out of the path of the wheels for safety purposes, while being mounted for telescoping movement to protect the safety guard from damage upon abutting an inanimate object during operation of the vehicle.




d

Under-hood tool bar

A tool bar for securing under a hood of a car during repair and maintenance is disclosed. A rigid member spanning a substantial portion of the hood is flexibly secured to hooks. The hooks engage edges of the hood and may include a compliant covering. The hooks may secure to the rigid member by means of straps and the straps may be tensioned by means of tensioners secured to one of the hooks and the rigid member. A stabilizer secures to the rigid member and has an end that may be clipped or otherwise fastened to a portion of the hood to resist rotation of the rigid member. One or more tool retaining members secured to the rigid member, such as a socket rack, magnetic bar, hook groove, or the like.




d

Bumper assembly and side support linking members

Vehicle structures for dissipating energy associated with a collision are described herein. In one embodiment, a vehicle includes a side support extending in a vehicle longitudinal direction, a bumper assembly coupled to the side support and extending in a vehicle lateral direction that is transverse to the vehicle longitudinal direction, and a repositionable joint assembly extending between and pivotally coupled to the side support and the bumper assembly, the repositionable joint assembly including an outboard linking member pivotally coupled to the bumper assembly at a bumper securement location, an inboard linking member pivotally coupled to the side support at a side support securement location, and a fulcrum portion, where the outboard linking member is pivotally coupled to the inboard linking member at the fulcrum portion.




d

Vehicle-body front structure of vehicle

A first projection portion projecting outward, in a vehicle width direction, from a front side frame is provided. A front end of the first projection portion is located at the same position, in the vehicle longitudinal direction, as a connection portion of a crash can to the front side frame or located in back of the connection portion. An outward side face of the first projection portion is configured to slant rearward and inward in a plan view. The first projection portion and a power unit are arranged to overlap each other in the vehicle longitudinal direction. Accordingly, an impact transmitted to a vehicle-compartment side in a small overlap collision can be reduced, restraining repair costs of the crash can broken in a low-speed collision as well as maintaining appropriate design flexibility of a vehicle-body front portion.




d

Energy absorber with staggered, vertically oriented crush lobes

A thermoplastic energy absorber having a horizontal axis and a vertical axis, and comprise: an array of energy absorbing lobes protruding from a base, the lobes arranged in two or more rows. The energy absorbing lobes can have a vertical length (L) and a horizontal width (D), and wherein a ratio of L:D is greater than 1. The energy absorbing lobes in each row can be disposed in a staggered manner with respect to energy absorbing lobes in an adjacent row. The energy absorber can be configured to be installed on a vehicle for absorption of impact energy. An energy absorbing system can comprise the thermoplastic energy absorber disposed between a bumper beam and a fascia. The fascia can optionally be configured to envelope the thermoplastic energy absorber and the bumper beam. This system passes EuroNCAP lower-leg impact requirements, version 5.1, June 2011, for lower leg impact requirement.




d

Mold structure and bumper

A mold structure used to form a molded object having an undercut portion includes a fixed mold as a first mold having a first molding surface for molding an obverse surface of the molded object; a slide core having an undercut molding surface used to mold the undercut portion as part of the obverse surface of the molded object; and a movable mold as a second mold having a second molding surface used to mold the reverse surface of the molded object. The first molding surface and the undercut molding surface form a cavity surface. A step is formed between the first molding surface and the second molding surface at a parting position between the fixed mold and the slide core on the cavity surface.




d

***WITHDRAWN PATENT AS PER THE LATEST USPTO WITHDRAWN LIST***Front fascia or grill support structure and aerodynamic shutter assembly

A fascia support structure and aerodynamic shutter assembly for a vehicle includes a fascia support structure, comprising: a top portion comprising a substantially U-shaped body comprising a top fascia support member, a first side fascia support member and a second side fascia support member, the first side fascia support member having a first side baffle, the second side fascia support member having a second side baffle; and a bottom portion comprising a bottom baffle, the bottom portion attached to the first and second side fascia support members, the top portion and the bottom portion comprising a fascia support structure opening, at least one of the first side baffle, second side baffle or bottom baffle having a seal member disposed on a leading edge. The assembly also includes an aerodynamic shutter system comprising a shutter frame having a shutter frame opening and a plurality of rotatable shutters disposed therein.




d

Middle buffer coupling for rail-bound vehicles

What is described is a middle buffer coupling for rail-bound vehicles, comprising two coupling halves (2, 2') to be coupled together attached to vehicle parts (A, B), each of said coupling halves (2, 2') comprising a coupling rod (8, 8') with a coupling head (12, 12'), and comprising a connecting element (16) for manually connecting the two coupling heads (12, 12'). Disposed at each coupling head (12, 12') is an electrical contact element (32, 34) for contacting with the contact element of the other respective coupling head (12, 12') when the two coupling halves (2, 2') are coupled. Routed within each coupling rod (8, 8') are electrical lines (18, 18') that lead from the contact elements (32, 34) of the associated coupling head (12, 12') to the vehicle part (A, B) to which the coupling halves (2, 2') comprising said coupling rods (8, 8') are attached, respectively.




d

Central datum feature on railroad coupler body and corresponding gauges

A coupler body for a railcar coupler, said coupler body comprising at least one central datum feature that does not wear during coupler use.




d

Railroad freight car draft gear

A railroad freight car multipiece spring seat assembly including a spring seat, a top plate, and a spring. The spring seat is adapted to operably engage one end of a spring assembly in a railroad freight car draft gear. The top plate is adapted to operably engage with each of a plurality of friction shoes arranged in the railroad freight car draft gear. The spring of the multipiece spring seat assembly is operably disposed between the spring seat and the top plate.




d

Adapter coupler for adapting couplings of different design

An adapter coupler (1) for adapting couplings of different design, wherein the adapter coupler (1) comprises a first connecting mechanism for releasably connecting the adapter coupler (1) to a first coupling, a second connecting mechanism for releasably connecting the adapter coupler (1) to the drawhook (50) of a second coupling, and a coupler housing (2) for connecting the first connecting mechanism to the second connecting mechanism, and wherein the second connecting mechanism comprises a tension yoke (8) with which to engage with the drawhook (50) of the second coupling. The adapter coupler (1) having a mechanism for height centering, comprising a drawbar eye (14) connected to the coupler housing (2), wherein the drawbar eye (14) is arranged and configured relative the tension yoke (8) such that upon the adapter coupler (1) being inserted into the jaw of the drawhook (50) of the second coupling, the drawhook (50) can engage in one joint process with both the accommodation formed by the tension yoke (8) as well as with the drawbar eye (14).




d

Draft sill with special rear draft lug for a railcar

A draft sill with special rear draft lug for a railcar is disclosed. In some embodiments, a rear draft lug comprises a metallic body. The rear draft lug further comprises a boss extending along a transverse portion of the metallic body. The boss is configured to be coupled to a first vertical reinforcement plate. The rear draft lug also comprises an overhang portion extending from the boss along the transverse portion. The overhang portion configured to be coupled to the first vertical reinforcement plate. In some embodiments, the boss and the overhang portion are configured to be coupled to the first vertical reinforcement plate with a weld.




d

Knuckle formed without a finger core

A railcar coupler knuckle includes a tail section, a hub section, and a nose section. The tail, hub, and nose sections define internal cavities including (i) a kidney cavity, (ii) a pivot pin cavity, and (ii) a finger cavity. The kidney and pivot pin cavities are formed using at least one internal core during manufacturing of the coupler knuckle. The finger cavity is formed from a finger section of cope and drag mold portions of a mold used during manufacturing of the coupler knuckle, wherein the finger section of the mold defines the entirety of the finger cavity of the coupler knuckle.




d

Knuckle formed from pivot pin and kidney core and isolated finger core

A railroad coupler knuckle includes a single, solid rib at a horizontal centerline of the knuckle that passes through a pivot pin hub thereof. The single, solid rib extends generally from a flag hole of a finger cavity of the knuckle to an opposite side of the knuckle from the flag hole. In another aspect, a railcar coupler knuckle includes a tail section, a hub section, and a nose section. The tail, hub, and nose sections define internal cavities including (i) a combined void that defines a pivot pin hub cavity and a kidney cavity and (ii) an isolated finger cavity. The combined void is formed using a first internal core during manufacturing of the coupler knuckle. The isolated finger cavity is formed using a second internal core during manufacturing of the coupler knuckle, such that molten alloy substantially separates the combined void and the isolated finger cavity.




d

Consist communication system having inductive transmission

A consist communication system is disclosed for use with a train consist. The consist communication system may have a fluid conduit, at least a first cable disposed within the fluid conduit and configured to transmit communication signals, and at least a second cable disposed within the fluid conduit and configured to transmit electrical power. The communication conduit may also have a coupling fixedly connected to an end of the fluid conduit, a first transformer coil connected to the at least a first cable, and a second transformer coil connected to the at least a second cable and disposed in an orthogonal orientation relative to the first transformer coil.




d

Railway coupler core structure for increased strength and fatigue life of resulting knuckle

A finger core for forming the front part of a knuckle for a railcar, said finger core comprising a single opening to form a single rib at the horizontal center line of the resulting knuckle.




d

Elastomeric draft gear for a railcar

A draft gear assembly includes housing and an elastomeric spring stack disposed therewithin and including a plurality of compressible elastomeric springs disposed in series with each other. Each compressible elastomeric spring includes a compressible elastomeric pad, a rigid member positioned in direct contact with one end surface of the compressible elastomeric pad, a central aperture through a thickness of the rigid member, an abutment upstanding axially on the end surface of the compressible elastomeric pad, the abutment having a peripheral surface thereof sized to be received within the central aperture formed through the thickness of the rigid member, and an annular lip disposed on a distal end of the axial abutment in a plane being substantially transverse to the central axis, whereby an annular thickness portion of the rigid member is caged between the end surface of the compressible elastomeric pad and an inner surface of the annular lip.




d

Coupler yoke and coupler draft gear

A coupler yoke and a coupler draft gear are used in the field of carriages of a railway and aim at solving the problems of lower strength, low safety and reliability and the like in the prior art. The coupler yoke comprises a hollow yoke body with the cross section being in a long concentric-square shape, the inner side surface of the one end of the hollow yoke body is a bearing surface, and at least part of the heavy loading area of the bearing surface protrudes outwards relatively to the end surface of the light loading area. The coupler yoke is used for connecting couplers between the carriages of a train, so that the carriages are connected to form the train for transmitting the tractive force in the transportation; the distribution pattern of the existing bearing surface is changed due to the arrangement of a middle groove.




d

Railcar coupler knuckle cores and knuckles produced by said cores

A core assembly for forming the interior spaces of a railcar coupler knuckle has a first transition section between the C-10 portion of the core and the finger portion of the core. The first transition section has a first side, a second side, a third side and a fourth side and the first and second sides form the vertical axis of the first transition section and the third and fourth sides form the horizontal axis of said first transition section. The vertical axis of the first transition section has a height along a horizontal plane of the vertical axis of at least 2.5″ and the horizontal axis of said first transition section has a width along a vertical plane of the horizontal axis of at least 0.925″.




d

Method of making compressible elastomeric spring

A method of making a compressible elastomeric spring including at least one compressible elastomeric pad enclosed by a pair of metal plates includes the steps of forming plates with a center aperture and a plurality of prongs positioned about a peripheral edge thereof, forming each end of the pad with an axial projection and abutting groove, aligning the plurality of prongs with each respective projection and respective groove and applying axial force to one end of the spring to frictionally interlock the plurality of prongs with such projection and groove. The method also provides for making a multi-tiered stack of pads separated by plates in the above described manner and pre-shortening the spring prior to installation into the conventional yoke. The above described method additionally improves axial straightness and lateral stability of the multi-tiered spring assembly.




d

Moving body separating device

The moving body separating device includes a separating device main body, which separates an upstream-side moving body disposed on a base plate to be movable in a straight-line direction and a downstream-side moving body connected to the upstream-side moving body on the base plate at a prescribed separating point when moving to a downstream side. The separating device main body includes a rotary body for pushing out the downstream-side moving body towards the downstream side through a rotary action, a supporting shaft held by the upstream-side moving body for supporting the rotary body to be freely rotatable, and an original-position returning spring held by the supporting shaft for returning the rotary body to an original position. A protrusion member which applies a rotary pressure force to the rotary body is fixed at a prescribed separating point on the base plate by corresponding to one end part of the rotary body.




d

Heavy-duty pivot plate adjusting joint

A heavy-duty pivot plate adjusting joint for railroad freight cars connects multi-part car sections. To this end, the adjusting joint is configured such that each drawbar end is provided with only one end coupling rod part having a spring column, and the drawbar is connected by way of the drawbar end plates to the support bearing plates of an under frame provided on a car side. Each adjusting joint is provided with an adjusting point pivot plate, wherein a pivot plate roll surface is present directly at the pivot plate or at the adjoining contact surfaces transmitting pressure force, the surfaces having a spherical or two-dimensional shape. A configuration of the adjusting joints in a “regular embodiment” is proposed, wherein the distance of the transmission end points of balance is smaller than the distance of the spring travel limiters.




d

Coupler knuckle system and method

A method for manufacturing a railcar coupler knuckle includes providing a first mold section having internal walls defining at least in part perimeter boundaries of a first coupler knuckle mold cavity. The method includes providing a second mold section having internal walls defining at least in part perimeter boundaries of a second coupler knuckle mold cavity. The second coupler mold cavity of the second mold section is offset from the first coupler mold cavity of the first mold section. The method includes closing the first and second mold sections and at least partially filling the first and second coupler knuckle mold cavities with a molten alloy, the molten alloy solidifying after filling to form the coupler knuckle.




d

Magnetically actuated model railroad coupler

A model railroad car coupler assembly comprises a coupler with an upper shank having a coupler knuckle at a distal portion and a flat proximal portion, a lower shank having a coupler thumb at a distal portion and a flat proximal portion, and a coil spring terminating in first and second end portions, with a first turn of the coupler spring interlocked with the upper shank and a second turn interlocked with the lower shank. A mounting box has a circular mounting post that accepts circular openings in the shanks permitting them to rotate relative to each other between a closed coupled position and an open uncoupling position. The spring end portions engage the mounting box to bias the shanks into their coupled position. The knuckle carries a ferrous actuating pin that cooperates with a magnetic pad along a track to rotate the upper shank into its open position.




d

Railcar coupler core with vertical parting line and method of manufacture

A method of casting a core includes the steps of preparing a first half of a corebox, preparing a second half of a corebox such that the parting line of a core formed from the first and second coreboxes runs along the vertical axis of the core.




d

Railway coupler body improvements to improve knuckle rotation

An improved coupler body having an area of increased material in the upper lock chamber.




d

Coupling and conduit for consist communication system

A coupling for a communication conduit is disclosed for use with a train consist. The coupling may include a nipple configured for insertion within a fluid conduit, a flange configured to engage an end of the fluid conduit, a retention member configured to engage an outer surface of the fluid conduit, a first fitting extending from the flange away from the nipple, and, a retaining tab configured to retain a second fitting of another coupling in engagement with the first fitting. The coupling may further include a closure mechanism configured to close off an end of the first fitting and movable during engagement with the second fitting to open the end of the first fitting.