d

Publication and method of making a publication

A publication including a plurality of pairs of pages, with the pair of pages comprised of a removable page and non-removable page. The removable page has a perforated edge, an adhesive edge opposite the perforated edge and a printable surface. The non-removable page has a printable surface. The pairs of pages are arranged such that alternate pages are removable and can be removed without harming the publication or the non-removable pages. The removable pages can be arranged to form an image larger than the publication itself and removable attached to a surface through the adhesive edge.




d

Booklet stacker, ring-binding device, ring-binding system, and booklet stacking method

A booklet stacker to stack multiple booklets each bound with a ring member includes a stack tray on which multiple booklets are stacked, a shifter disposed upstream from the stack tray in a booklet conveyance direction in which a booklet is conveyed, the shifter to adjust a position of the booklet in a width direction perpendicular to the booklet conveyance direction by shifting the booklet a distance shorter than a ring pitch of the ring member in the width direction, and a booklet conveyer disposed upstream from the stack tray in the booklet conveyance direction, to convey the booklet positioned by the shifter to the stack tray.




d

Method of producing an information page for a security document

The present invention relates to a multilayer information page (1) for a security document, which includes an information part (3) manufactured from a material allowing at least some identification information of the information page to be entered thereto by utilizing laser engraving, the identification information provided on the information page (1) being readable from an upper surface thereof, and a flexible and bending resistant connecting part (2) for connecting the information page (1) to the security document, the connecting part (2) comprising a fastening end (8) by means of which the connecting part (2) is fastened to the information part (3). In order to ensure that detachment of the information part and the connecting part from one another leaves visible marks, the fastening end (3) of the connecting part (2) is arranged to overlap with a lower surface of the information part (3). Furthermore, the information page (1) includes a transparent surface layer (7) which covers at least the fastening end (8) and at least a part of the lower surface of the information part (3) and through which at least the fastening end (8) is visible.




d

Dynamic cancellation of passive intermodulation interference

A wireless communication node (10) dynamically estimates passive intermodulation (PIM) interference coupled into the node's receive path from the transmission of a composite signal through the node's transmit path. The node (10) then cancels the estimated PIM interference in the receive path. In some embodiments, the node dynamically estimates the PIM interference as a function of the composite signal that models PIM interference generation and coupling in the node (10) according to one or more coefficients (30). The coefficients (30) may be determined by transmitting a test signal (34) during a test stage, when the node (10) is not scheduled to receive any signal. Later, when the composite signal (18) is transmitted, the node (10) uses the coefficients (10) to dynamically estimate and cancel the resulting PIM interference.




d

Method and circuit arrangement for controlling current in motors

A method and circuit arrangement for controlling the motor current in an electric motor, in particular a stepper motor, by a chopper method is provided. In the method/circuit arrangement, the motor is operated with a coil current that follows a target coil current substantially more accurately at least at the zero crossing of the coil current. The method/circuit arrangement provides a good symmetry of the sinusoidal wave shape of the coil current with respect to the zero crossing of the coil current. The method is achieved in particular by the active control of the coil current both in the direction of a predefined target coil current and opposite the direction of the predefined target coil current with respect to upper or lower desired current values and a lowering or increasing of the upper or lower desired current values.




d

RF channel amplification module with instantaneous power limiting function

A radio frequency channel amplification module for communication satellite, comprises an input configured to convey an input radio frequency signal, an output configured to restore a pre-amplified output radio frequency signal intended to power a travelling wave tube amplifier that can be equipped with linearization means with predistortion, at least one first upstream gain control module arranged downstream of the input and one second downstream gain control module arranged downstream of the first upstream gain control module and upstream of any linearization means by predistortion. The channel amplification module also comprises an instantaneous power limiter intended to clip the peaks of the input radio frequency signals with a level exceeding a determined threshold value, the instantaneous power limiter being arranged in series between said first upstream gain control module and said second downstream gain control module.




d

Linearization circuit and related techniques

Circuits and techniques to linearize the operation of an RF power amplifier are described. A linearizer circuit may include a non-amplification signal path which includes a delay line and an amplification signal path which includes at least one amplifier stage. In some embodiments, the amplification signal path may include an odd number of amplification stages. The linearizer may be used to precondition an input signal of an RF power amplifier in a manner that improves the overall linearity of operation.




d

Differential circuit compensated with self-heating effect of active device

A differential circuit with a function to compensate unevenness observed in the differential gain thereof is disclosed. The differential circuit provides a low-pass filter in one of the paired transistors not receiving the input signal in addition to another low-pass filter that provides an average of output signals as a reference level of the differential circuit. The cut-off frequency of the filter is preferably set to be equal to the transition frequency at which the self-heating effect explicitly influences the trans-conductance of the transistor.




d

Operational transconductance amplifier with increased current sinking capability

An amplifier circuit includes an input terminal and an output terminal. A current sinking transistor includes a first conduction terminal coupled to the output terminal and a second conduction terminal coupled to a reference supply node. A voltage sensing circuit has a first input coupled to the input terminal and a second input coupled to the output terminal. An output of the voltage sensing circuit is coupled to the control terminal of the current sinking transistor. The voltage sensing circuit functions to sense a rise in the voltage at the output terminal which exceeds the voltage at the input terminal, and respond thereto by activating the current sinking transistor.




d

System and method for pre-charging a current mirror

A system for pre-charging a current minor includes a controller configured to provide a first current and an additional current to a current minor to rapidly charge a capacitance associated with the current minor based on a reference voltage or control signals. A power amplifier module includes at least one current minor and a controller. A capacitor is coupled to the current minor. The controller provides a bias current in an amount proportional to an input to a voltage-to-current converter. The controller receives a control signal that directs the controller to apply one of a pre-charge voltage and a nominal voltage to the voltage-to-current converter.




d

Dual-band high efficiency Doherty amplifiers with hybrid packaged power devices

An amplifying structure includes a main amplifier configured to amplify a first signal; and a peak amplifier configured to amplify a second signal, each of the main amplifier and the peak amplifier including, respectively, a hybrid power device, the hybrid power device including, a first power transistor die configured to amplify signals of a first frequency, and a second power transistor die configured to amplify signals of a second frequency different than the first frequency.




d

Two mode power converter for audio amplifiers

A power converter with positive and negative supply rail outputs for feeding a single ended class D amplifier, the converter comprising a transformer arrangement, a supply pump reduction arrangement connected between the secondary windings and the positive and negative supply rail outputs, and a boost drive mode switching arrangement. A controller is adapted to control the power converter in a negate drive mode and a boost drive mode, wherein the output voltage in the boost mode is increased by means of the transformer and the boost drive mode switching arrangement. The output voltages on the positive and negative rails can be generated at two different output voltage levels without changing the duty cycle or dead time of the control signals.




d

Input receiver circuit having single-to-differential amplifier, and semiconductor device including the same

An input receiver circuit including a single-to-differential amplifier and a semiconductor device including the input receiver circuit are disclosed. The input receiver circuit includes a first stage amplifier unit and a second stage amplifier unit. The first stage amplifier unit amplifies a single input signal in a single-to-differential mode to generate a differential output signal, without using a reference voltage. The second stage amplifier unit amplifies the differential output signal in a differential-to-single mode to generate a single output signal.




d

Transimpedance amplifier (TIA) circuit and method

A TIA circuit and method are provided that merge the automatic gain control function with the bandwidth adjustment function to allow the TIA circuit to operate over a wide dynamic range at multiple data rates. The TIA circuit has an effective resistance that is adjustable for adjusting the gain and the bandwidth of the TIA circuit. The mechanism of the TIA circuit that is used to adjust the effective resistance, and hence the gain and bandwidth of the TIA circuit, is temperature independent, and as such, the performance of the TIA circuit is not affected by temperature variations.




d

Multiple E-probe waveguide power combiner/divider

A power combiner/divider having a waveguide, a plurality of amplifiers disposed on a supporting structure, a plurality of probes, each one having a first end electrically coupled to an output of a corresponding one of the plurality of amplifiers and a second end projecting outwardly from the supporting structure and into the waveguide. The probes are disposed in a common region of the waveguide. The region has a common electric field maximum within the waveguide. A first portion of the probes proximate the sidewalls have lengths different from a second portion of the probes disposed in a region distal from the sidewalls of the waveguide. The waveguide is supported by the support structure. The power combiner is a monolithic microwave integrated circuit structure.




d

Transmit-receive front end

The present invention discloses a transmit-receive (TR) front end. The TR front end includes a low-noise amplifier (LNA); a power amplifier (PA); a transformer, coupled to the PA, for increasing a voltage swing and a power transmission of the PA; and a TR switch, coupled between the transformer and the LNA. The LNA is single ended and there is no transformer between the LNA and the TR switch.




d

Split amplifiers with improved linearity

Split amplifiers with configurable gain and linearization circuitry are disclosed. In an exemplary design, an apparatus includes first and second amplifier circuits and a linearization circuit, which may be part of an amplifier. The first and second amplifier circuits are coupled in parallel and to an amplifier input. The linearization circuit is also coupled to the amplifier input. The first and second amplifier circuits are enabled in a high-gain mode. One of the first and second amplifier circuits is enabled in a low-gain mode. The linearization circuit is enabled in the second mode and disabled in the first mode. The amplifier is split into multiple sections. Each section includes an amplifier circuit and is a fraction of the amplifier. High linearly may be obtained using one amplifier circuit and the linearization circuit in the low-gain mode.




d

Gain calibration of a high speed amplifier

Embodiments include systems and methods for accurately controlling gain of a high-speed variable-gain amplifier (VGA) without adversely impacting bandwidth performance. Embodiments include a VGA with a variable resistor, for which resistance is a function of a control level. A gain calibration system controls the control level by using a gain control feedback subsystem to sample outputs of a duplicate VGA, which includes a duplicate variable resistor. The sampled duplicate outputs are compared to a target gain generated by a reference generator. The control level can be fed back to control the gain of the duplicate VGA until the target gain is reached. The control level can also be fed to the actual VGA to control its gain. By performing gain control on the duplicate VGA without interfering with the output signal path of the actual VGA, the actual VGA's gain can be accurately controlled without impacting its bandwidth.




d

Thermally coupled current limiter

This disclosure relates generally to radio frequency (RF) amplification devices and methods of limiting an RF signal current. Embodiments of the RF amplification device include an RF amplification circuit and a feedback circuit. The RF amplification circuit is configured to amplify an RF input signal so as to generate an amplified RF signal that provides an RF signal current with a current magnitude. The feedback circuit is used to limit the RF signal current. In particular, a thermal sense element in the feedback circuit is configured to generate a sense current, and thermal conduction from the RF amplification circuit sets a sense current level of the sense current as being indicative of the current magnitude of the RF signal current. To limit the RF signal current, the feedback circuit decreases the current magnitude of the RF signal current in response to the sense current level reaching a trigger current level.




d

Microwave semiconductor amplifier

A microwave semiconductor amplifier includes a semiconductor amplifier element, an input matching circuit and an output matching circuit. The semiconductor amplifying element includes an input electrode and an output electrode and has a capacitive output impedance. The input matching circuit is connected to the input electrode. The output matching circuit includes a bonding wire and a first transmission line. The bonding wire includes first and second end portions. The first end portion is connected to the output electrode. The second end portion is connected to one end portion of the first transmission line. A fundamental impedance and a second harmonic impedance seen toward the external load change toward the one end portion. The second harmonic impedance at the one end portion has an inductive reactance. The output matching circuit matches the capacitive output impedance of the semiconductor amplifying element to the fundamental impedance of the external load.




d

Tunable wide band driver amplifier

A tunable wide band driver amplifier is disclosed. In an exemplary embodiment, an apparatus includes a first band selection circuit selectively connected between an output terminal of an amplifier and a circuit ground. The first band selection circuit configured to adjust an amplification band from a first frequency band to a second frequency band. The apparatus also includes a first harmonic reduction circuit selectively connected between the first band selection circuit and the circuit ground and configured to reduce 2nd harmonic frequencies associated with the first frequency band when the amplification band is set to the first frequency band.




d

High impedance microwave electronics

High impedance, high frequency nanoscale device electronics configured to interface with low impedance loads include an impedance transforming stage constructed of multiple nanoscale devices, such as carbon nanotube field-effect transistors. In an embodiment of the present invention, an impedance transforming output stage of a multistage amplifier is configured to drive a 50 ohm transmission line with unity voltage gain using multiple carbon nanotube field-effect transistors in parallel. In a further embodiment, a receiver provided for an electronically steered receive array is a monolithic, lumped-element system formed from nanoscale devices and configured to interface with the external electrical systems via a single transmission line.




d

Light emitting apparatus, manufacturing method for the light emitting apparatus, printer, and manufacturing method for the printer

A light emitting apparatus including: a plurality of light emitting elements; a drive circuit including a transistor and a capacitor having one end connected to a gate of the transistor; and a signal supply circuit for receiving a digital gradation signal and outputting an analog voltage signal to the drive circuit, including a computation circuit configured to correct the input digital gradation signal to generate a corrected digital gradation signal, in which the drive circuit is configured to conduct an auto-zero operation which reduce the gate-source voltage of the transistor to a threshold voltage by flowing the drain current to the capacitor, and the computation circuit is configured to generate the corrected digital gradation signal by multiplying a correction coefficient to the input digital gradation signal subtracted by a particular signal common to the plurality of light emitting elements.




d

Combining an audio power amplifier and a power converter in a single device

An apparatus is described that includes an audio power amplifier having an input and an output. An alternating-current to direct-current power converter is coupled to the audio power amplifier in a single package to supply power to the audio power amplifier.




d

Method and apparatus for envelope tracking

Aspects of the disclosure provide a circuit that includes a first circuit, a second circuit, and an adder. The first circuit is configured to generate a first signal by outputting and holding, at a first timing, a first stream in response to an input stream of data. The second circuit is configured to generate a second signal by outputting and holding, at a second timing, a second stream in response to the input stream of data. The adder is configured to add the first signal with the second signal to generate an up-sampled stream for the input stream of data and reduce a frequency component in the up-sampled stream generated by the up-sampling.




d

Pop-free single-ended output class-D amplifier

A pop-free single-ended output class-D amplifier includes: an input signal generator for generating an input signal; a power supply for supplying input power; a reference voltage generator for generating a reference voltage; a gain-adjustable stage for generating an amplified signal according to the reference voltage and adjusting a gain of the single-ended output class-D amplifier; a pulse width modulation module for outputting a pulse width modulation signal according to the reference voltage, the amplified signal, and the input power; a low-pass filter for low-pass filtering the pulse width modulation signal to generate an output voltage; and a logic controller for generating at least one control signal to control the reference voltage generator, the gain-adjustable stage, and the pulse width modulation module according to the input power, the reference voltage, and the pulse width modulation signal.




d

Power amplifier with an adaptive bias

An electronic circuit, including, a power amplifier adapted to amplify an RF signal and provide it as output from the integrated circuit; a power source that is adapted to provide an unregulated voltage to the power amplifier; a regulator adapted to provide a regulated bias voltage; a subtracter that is adapted to accept a voltage proportional to the unregulated voltage and subtract it from the bias voltage to provide a reference voltage to the power amplifier; wherein the power amplifier is adapted to use the reference voltage to adjust the output from the power amplifier so that it will provide a stable power output.




d

Circuitry for reducing power consumption

Circuitry for reducing power consumption is described. The circuitry includes a power amplifier. The circuitry also includes a predistorter coupled to the power amplifier. The circuitry further includes a power supply coupled to the power amplifier. The circuitry additionally includes a controller coupled to the power amplifier, to the predistorter and to the power supply. The controller captures a transmit signal and a feedback signal concurrently and determines a minimum bias voltage from a set of voltages and a predistortion that enable the power amplifier to produce an amplified transmit signal in accordance with a requirement.




d

Multimode differential amplifier biasing system

Differential power amplifier circuitry includes a differential transistor pair, an input transformer, and biasing circuitry. The base contact of each transistor in the differential transistor pair may be coupled to the input transformer through a coupling capacitor. The coupling capacitors may be designed to resonate with the input transformer about a desired frequency range, thereby passing desirable signals to the differential transistor pair while blocking undesirable signals. The biasing circuitry may include a pair of emitter follower transistors, each coupled at the emitter to the base contact of each one of the transistors in the differential transistor pair and adapted to bias the differential transistor pair to maximize efficiency and stability.




d

Power amplifier with feedback impedance for stable output

An amplifier circuit amplifies a signal for wireless transmission. A feedback circuit, including a capacitor, is coupled to the amplifier circuit. Components of the feedback circuit are selected based on a feedback factor such that an input impedance to the amplifier circuit has a same impedance characteristic as a feedback circuit impedance of the feedback circuit.




d

Switched-mode power supply and method of operation

A method of operating a switched-mode power supply (SMPS) for supplying power to a load circuit, which draws a supply current that varies with an input signal to the load circuit is disclosed. The method comprises monitoring the input signal and controlling the amount of accumulated energy transferred for consumption by the load circuit, in use, in accordance with the input signal.




d

High-efficiency power module

One or more embodiments of the present invention pertain to an all solid-state microwave power module. The module includes a plurality of solid-state amplifiers configured to amplify a signal using a low power stage, a medium power stage, and a high power stage. The module also includes a power conditioner configured to activate a voltage sequencer (e.g., bias controller) when power is received from a power source. The voltage sequencer is configured to sequentially apply voltage to a gate of each amplifier and sequentially apply voltage to a drain of each amplifier.




d

Wireless communication unit and semiconductor device having a power amplifier therefor

A semiconductor package device comprises a radio frequency power transistor having an output port operably coupled to a single de-coupling capacitance located within the semiconductor package device. The single de-coupling capacitance is arranged to provide both high frequency decoupling and low frequency decoupling of signals output from the radio frequency power transistor.




d

Power distortion-based servo control systems for frequency tuning RF power sources

A radio frequency system includes a power amplifier that outputs a radio frequency signal to a matching network via a transmission line between the power amplifier and the matching network. A sensor monitors the radio frequency signal and generates first sensor signals based on the radio frequency signal. A distortion module determines a first distortion value according to at least one of (i) a sinusoidal function of the first sensor signals and (ii) a cross-correlation function of the first sensor signals. A first correction circuit (i) generates a first impedance tuning value based on the first distortion value and a first predetermined value, and (ii) provides feedforward control of impedance matching performed within the matching network including outputting the first impedance tuning value to one of the power amplifier and the matching network.




d

Power amplifier modules including related systems, devices, and methods

A power amplifier module includes a power amplifier including a GaAs bipolar transistor having a collector, a base abutting the collector, and an emitter, the collector having a doping concentration of at least about 3×1016 cm−3 at a junction with the base, the collector also having at least a first grading in which doping concentration increases away from the base; and an RF transmission line driven by the power amplifier, the RF transmission line including a conductive layer and finish plating on the conductive layer, the finish plating including a gold layer, a palladium layer proximate the gold layer, and a diffusion barrier layer proximate the palladium layer, the diffusion barrier layer including nickel and having a thickness that is less than about the skin depth of nickel at 0.9 GHz. Other embodiments of the module are provided along with related methods and components thereof.




d

Systems and methods for providing modulation of switchmode RF power amplifiers

Systems and methods are provided for generating an amplitude modulation signal to a switchmode power amplifier. A DC to DC switch is configured to receive a DC input voltage and to provide a DC output voltage. A low dropout regulator is configured to provide the amplitude modulation signal according to a modulation control signal received by the low dropout regulator. A control circuit is configured to establish a nominal operating power level for the power amplifier via the amplitude modulation signal and to maintain a minimum voltage difference between the DC output voltage and the low dropout regulator output. A modulator control circuit is configured to provide the modulation control signal to the low dropout regulator. The modulator control circuit provides the transition from a high amplitude to a low amplitude and a transition from the low amplitude to the high amplitude at configurable first and second slopes, respectively.




d

Impedance matching method for a multiband antenna, and transmission or receiver channel having automatic matching

An automatic antenna impedance matching method for a radiofrequency transmission circuit. An impedance matching network is inserted between an amplifier and an antenna. The output current and voltage of the amplifier and their phase difference are measured by a variable measurement impedance, and the complex load impedance of the amplifier is deduced from this; the impedance of the antenna is calculated as a function of this complex impedance and as a function of the known current values of the impedances of the matching network. Starting from the value found for the impedance of the antenna, new values of the matching network are calculated that allow the load to be matched to the nominal impedance of the amplifier. The measurement impedance has a value controllable by the calculation processor according to the application and notably as a function of the operating frequency and of the nominal impedance of the amplifier.




d

Blind I/Q mismatch compensation with receiver non-linearity

Apparatus and methods disclosed herein perform gain, clipping, and phase compensation in the presence of I/Q mismatch in quadrature RF receivers. Gain and phase mismatch are exacerbated by differences in clipping between I & Q signals in low resolution ADCs. Signals in the stronger channel arm are clipped differentially more than weaker signals in the other channel arm. Embodiments herein perform clipping operations during iterations of gain mismatch calculations in order to balance clipping between the I and Q channel arms. Gain compensation coefficients are iteratively converged, clipping levels are established, and data flowing through the network is gain and clipping compensated. A compensation phase angle and phase compensation coefficients are then determined from gain and clipping compensated sample data. The resulting phase compensation coefficients are applied to the gain and clipping corrected receiver data to yield a gain, clipping, and phase compensated data stream.




d

Transceiver and related switching method applied therein

A transceiver includes: a power amplifying circuit arranged to generate differential output signals during a transmitting mode of the transceiver; a balance-unbalance circuit arranged to convert the differential output signals into a single-ended output signal; a switchable matching circuit arranged to receive the single-ended output signal on a signal port of the transceiver during the transmitting mode, and to convert a single-ended receiving signal on the signal port into a single-ended input signal during a receiving mode of the transceiver; and a low-noise amplifying circuit arranged to convert the single-ended input signal into a low-noise input signal during the receiving mode. The power amplifying circuit, the Balun, the switchable matching circuit, and the low-noise amplifying circuit are configured as a single chip.




d

Amplification systems and methods with one or more channels

Systems and methods are provided for amplifying multiple input signals to generate multiple output signals. An example system includes a first channel, a second channel, and a third channel. The first channel is configured to receive one or more first input signals, process information associated with the one or more first input signals and a first ramp signal, and generate one or more first output signals. The second channel is configured to receive one or more second input signals, process information associated with the one or more second input signals and a second ramp signal, and generate one or more second output signals. The first ramp signal corresponds to a first phase. The second ramp signal corresponds to a second phase. The first phase and the second phase are different.




d

Apparatus and method for expanding operation region of power amplifier

An apparatus for amplifying power is provided. The apparatus includes a supply modulator for generating a supply voltage based on an amplitude component of a transmission signal, and a power amplify module for amplifying power of the transmission signal using the supply voltage, wherein the power amplify module includes a first power amplifier and a second power amplifier, and when an output power of the transmission signal is greater than a reference power, the first power amplifier amplifies the power of the transmission signal using the supply voltage, and when the output power of the transmission signal is equal to or less than the reference power, the second power amplifier amplifies the power of the transmission signal using the supply voltage.




d

Variable switched DC-to-DC voltage converter

A voltage converter can be switched among two or more modes to produce an output voltage tracking a reference voltage that can be of an intermediate level between discrete levels corresponding to the modes. One or more voltages generated from a power supply voltage, such as a battery voltage, can be compared with the reference voltage to determine whether to adjust the mode. The reference voltage can be independent of the power supply voltage.




d

Automatic gain control device and method, power adjusting device and radio transmitting system

An automatic gain control device includes: a variable gain adjusting unit, for adjusting an input signal by a variable gain and outputting an adjustment result; an analog-digital converting unit, for performing analog-digital conversion on the adjustment result to obtain an analog-digital conversion result; and a gain determining unit, for determining a distribution status over a predetermined period of time of a maximum or a minimum of the analog-digital conversion result, comparing the distribution status with a first distribution condition, and if the distribution status meets the first distribution condition, then keeping the variable gain unchanged, otherwise changing the variable gain and determining newly a distribution status until the newly determined distribution status meets a second distribution condition which is at least as strict as the first distribution condition.




d

Chuck device having two collets

A chuck device includes front and rear collets, a driving ring, and a driving sleeve. The driving ring and the driving sleeve can be driven hydraulically to move toward or away from each other. When the driving ring and the driving sleeve are moved hydraulically away from each other, each of the front and rear collets is moved to a release position, when the driving ring and the driving sleeve are moved hydraulically toward each other, each of the front and rear collets is moved to a clamping position.




d

Scan head and scan arm using the same

A scan head assembled to a scan arm for an ion implanter and a scan arm using the same are provided, wherein the scan head is capable of micro tilting a work piece and comprises a case, a shaft assembly, an electrostatic chuck, a first driving mechanism and a micro-tilt mechanism. The shaft assembly passes through a first side of the case and has a twist axis. The electrostatic chuck is fastened on a first end of the shaft assembly outside the case for holding the work piece. The first driving mechanism is disposed within the case and capable of driving the shaft assembly and the ESC to rotate about the twist axis. The micro-tilt mechanism is disposed within the case and capable of driving the shaft assembly and the ESC to tilt relative to the case.




d

Tool holder such as a boring head, a chuck, or a milling cutting arbor integrating a damping device

A damping tool holder, such as a boring head, a chuck, or a milling cutting arbor, integrates a damping device (2), in the form of an elongated body. The damping device (2) is housed in a mounting body (3), connected by one end to the tool-holder body (1) and having at its other end an end fitting (4) for mounting a tool, whereby the mounting body (3) is equipped with at least one lubricant feed pipe (32), emptying at its front end into the end fitting (4) for mounting a tool and connected at its other end to a circular groove (102) for distributing lubricant that is provided on the front surface of the tool holder (1).




d

Ultrasonic machining assembly for use with portable devices

A machining system that includes an ultrasonic machining assembly, wherein the ultrasonic machining assembly further includes a machining tool; a collet adapted to receive the machining tool; and an ultrasonic transducer, wherein the ultrasonic transducer is operative to transmit acoustical vibrations to the machining tool; and a machining apparatus, wherein the machining apparatus is adapted to receive and secure the ultrasonic machining assembly, and wherein the machining apparatus is operative to transmit torque to the machining tool by applying rotary motion to the ultrasonic machining assembly.




d

Electrostatic chuck and showerhead with enhanced thermal properties and methods of making thereof

Embodiments of the present invention generally provide chamber components with enhanced thermal properties and methods of enhancing thermal properties of chamber components including bonding materials. One embodiment of the present invention provides a method for fabricating a composite structure. The method includes applying a bonding material to a first component, and converting the bonding material applied to the first component to an enhanced bonding layer by heating the bonding material to outgas volatile species from the bonding material. The outgassed volatile species accumulates to at least 0.05% in mass of the bonding material. The method further includes contacting a second component and the enhanced bonding layer to join the first and second components.




d

Torque-limiting driver with a self-locking adapter

An internal adapter for use in torque-limiting handles for interchangeable orthopedic tools contains a slidable collar component, house component, retaining ring, spring, driver component, cover and cam which engages a torque-limiting mechanism. A plurality of securing ball mechanisms releasably secure an orthopedic tool in the adapter, while a configuration of chamfered surfaces centrally stabilize the tool. A plurality of guiding chamfers located in a driver component rotationally secures the orthopedic tool.




d

Reciprocating tool attachment assembly and methods

An attachment apparatus for a reciprocating tool provides a tool holder having an angled bracket and a guide rod extending from the angled bracket. The guide rod can engage a travel slot on the reciprocating tool. An instrument such as a saw blade can be attached to the angled bracket or guide rod. The guide rod stabilizes the instrument during use. The travel slot can be defined integrally on the reciprocating tool or on an attachment to the tool. In some embodiments, a neck mount assembly is attached to the neck on the reciprocating tool. The neck mount assembly can include a frame and a guide plate. The guide plate can include a travel slot shaped for receiving the guide rod.